$b ightarrow s \ell \ell$: angular analyses and studies with muons

Eluned Smith

RWTH Aachen

on behalf of the LHCb collaboration Beauty 2018 (7-11 May 2018)

Why rare $b \rightarrow s \ell \ell$ decays?

NB: this talk covers $b \rightarrow s\mu\mu$ decays at LHCb, for $b \rightarrow see$ decays (including LFU results) see Albert Puig's talk (up next!)

- b → sℓℓ transitions are forbidden at tree level → suppressed decays in the SM maybe be more sensitive to new physics (NP) effects.
- Virtual new physics particles \rightarrow high mass reach.

Use of effective theories in $b \rightarrow s\ell\ell$ SM predictions

- The heavy physics in b→sℓℓ decays can be integrated out to give effective couplings, parameterised by the Wilson Coefficients (C_i).
- $b \rightarrow s\ell\ell$ transitions are most sensitive to the coefficients $C_{9/10}$

Measuring $b \rightarrow s \ell \ell$ transitions

• Angular analyses and branching fraction measurements

$B^0 \rightarrow K^{*0} [\rightarrow K^+ \pi^-] \mu^+ \mu^-$ angular analysis $[C_7, C_9, C_{10}]$

Angular decay fully described by the dilepton mass (q^2) and the angles $\cos(\theta_l)$ $\cos(\theta_k)$ and ϕ :

3D fit to all three angles (in q^2 bins), exploiting the correlations between the S_i , F_L and A_{FB} terms to obtain their respective values (+ swave - see back-up).

Beauty 2018 (7-11 May 2018)

$B^0 \rightarrow \overline{K^{*0}} [\rightarrow K^+ \pi^-] \mu^+ \mu^-$ angular analysis: Results

Eluned Smith

Beauty 2018 (7-11 May 2018)

5/24

$B^0 \rightarrow K^{*0} [\rightarrow K^+ \pi^-] \mu^+ \mu^-$ angular analysis: Results

Generally very good agreement with the Standard Model

Eluned Smith

6/24

$B^0 \rightarrow K^{*0} [\rightarrow K^+ \pi^-] \mu^+ \mu^-$ angular analysis: Results

Reduce form factor dependence

Can construct ratios of angular observables where form-factors cancel at leading order: $P'_5 = S_5 / \sqrt{F_L(1 - F_L)}$ P'_5 plot: Bins 4/5 = local SM tension of 2.8 and 3.0 σ . Global tension= 3.4 σ , assuming tension due to shift in Wilson coeff. $\mathcal{R}e(C_9)$ (LHCb only)

Beauty 2018 (7-11 May 2018)

 $B^0 \to K^{*0} [\to K^+\pi^-] \mu^+\mu^-$ branching fraction

Performance comparison: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$B^0_s o \phi[o K^+K^-]\mu^+\mu^-$ [$\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{10}$]

Equivalent process of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ for $B_s^0 \overset{c}{\to}$ mesons.

Angular variables consistent with the SM. P_5' cannot be measured as $B_s^0 \to \phi \mu^+ \mu^-$ not self-tagging.

In bin $1 < q^2 < 6$ GeV/ c^2 the data is 3.3σ from the SM prediction.

$b \rightarrow s \ell \ell$ transitions in baryons

- Baryon sector still relatively unexplored compared to mesons
- Measurements can complement those from meson sector

The decays $\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$ and $\Lambda_b^0 \to p K \mu^+ \mu^-$

13/24

Beauty 2018 (7-11 May 2018)

CPV in $\Lambda^0_b \to p K \mu^+ \mu^-$

Baryon production asymmetries not well known: use ΔA_{cp} and triple products

 $a_{CP}^{\hat{T}-odd}$ = (1.2 \pm 5.0(stat) \pm 0.7(syst)) imes 10⁻² ightarrow no significant CPV

• Measure $\Delta A_{CP} = A_{CP}(\Lambda_b^0 \to pK^-\mu^+\mu^-) - A_{CP}(\Lambda_b^0 \to J/\psi pK^-)$

 $\Delta A_{CP} = (-3.5 \pm 5.0 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-2} \rightarrow \text{no significant CPV}$ Beauty 2018 (7-11 May 2018)
Eluned Smith

Global fits

- Global fits performed by theorists to a range of results from $b \to s \ell \ell$ measurements
- Will also discuss interpretations of global fits

Global fits

- Sub-divide between 'clean' observables (LFU measurements see next talk) and 'dirty' observables (e.g. angular analyses)
- Just LFU ightarrow \sim 4 σ deviations
- Combining all measurements \rightarrow over 5 σ deviations

Non-exhaustive list of global fit examples: arXiv:1704.05438, arXiv:1703.09189, arXiv:1603.00865, arXiv:1702.02234

one example of a global fit, many others out there (!)						
Coeff.	best fit	1σ	2σ	pull		
C_9^{μ}	-1.56	[-2.12, -1.10]	[-2.87, -0.7]	1] 4.1σ		
C_{10}^{μ}	+1.20	[+0.88, +1.57]	[+0.58, +2.0]	$0] 4.2\sigma$		
C_9^e	+1.54	[+1.13, +1.98]	[+0.76, +2.4]	8] 4.3σ		
C_{10}^{e}	-1.27	$[-1.65,\ -0.92]$	[-2.08, -0.6]	1] 4.3σ		
$C_{9}^{\mu} = -C_{10}^{\mu}$	-0.63	[-0.80, -0.47]	[-0.98, -0.3]	2] 4.2σ		
$C_{9}^{e} = -C_{10}^{e}$	+0.76	[+0.55, +1.00]	[+0.36, +1.2]	7] 4.3 σ		
$C_9^e = C_{10}^e$	-1.91	[-2.30, -1.51]	[-2.71, -1.1]	0] 3.9 σ		

Pull assuming 1D variation only and just LFU measurements -> increased tension when including angular analyses

arXiv:1704.05435

LHCb

Eluned Smith

Beauty 2018 (7-11 May 2018)

What could be causing this anomaly?

- Due to the difficulty of modelling Charmonium resonances, the J/ψ and ψ(2S) are generally removed from data when looking at just the short-distance contributions.
- Vector resonances producing dimuon pairs could mimic a contribution to *C*₉ allowing *C*₉ to be expressed as

$$C_{\rm 9eff}=C_9+Y(q^2)$$

• Possible that the deficiency in muons could be due to destructive interference from such Charmonium resonances.

Data driven measurements of short and long distance interference

- Data driven approach \rightarrow fit to unbinned data in q^2 for the data B^+ $\rightarrow K^+ \mu^+ \mu^-$
- Express Y(q²) in terms of the sum of the magnitude and phases of the vector meson resonances (ρ, ω, φ, J/ψ, ψ(2S), ψ(X)) → model these contributions as a sum of Breit Wigners with individual width and phase.

Data driven measurements of short and long distance interference

- Four solutions fit data well reflecting the unknown sign of the J/ψ and $\psi(2S)$ phases (NB resolution dominants these resonances widths)
- The phases that are measured suggest a small contribution to the short-distance component in the dimuon mass regions far from the J/ ψ and $\psi(2S)$ masses, given the assumptions made in model.

$b \rightarrow d\ell\ell$ transitions

 The increased data collected at the LHCb detector means that the Cabibbo-suppressed b→dℓℓ modes are becoming more of interest

Why $b \rightarrow d\ell\ell$ transitions?

- Combining b → sℓℓ with their Cabibbo-suppressed partner allows a measurement of V_{td}/V_{ts} and thus a test of Minimal Flavour Violation.
- Expect branching fractions to be \sim 25 times smaller than s quark partner

Examples of $b \rightarrow d\ell \ell$ transitions

LHCb

Conclusions and outlook

- Number of anomalies in $b \to s\ell\ell$ transitions, consistent with a deficit in the muon channel
- Could be theoretical limitations or new physics
- More data necessary to further qualify this, as well as development in theory
- Advent of Belle 2 and further runs at the LHC will yield interesting results

Back-up slides

Data driven measurements of short and long distance interference

Following the notation of Ref. [40], the *CP*-averaged differential decay rate of $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays as a function of the dimuon mass squared, $q^2 \equiv m_{\mu\mu}^2$, is given by

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2 \alpha^2 |V_{tb} V_{ts}^*|^2}{128\pi^5} |\mathbf{k}| \beta \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta^2 \left| \mathcal{C}_{10} f_+(q^2) \right|^2 + \frac{4m_\mu^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10} f_0(q^2) \right|^2 + |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta^2 \right] \left| \mathcal{C}_9 f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\}, \tag{1}$$

where $|\mathbf{k}|$ is the kaon momentum in the B^+ meson rest frame. The parameters $f_{0,+,T}$ denote the scalar, vector and tensor $B \to K$ form factors.

 $\mathcal{C}_9^{\text{eff}} = \mathcal{C}_9 + Y(q^2),$ Insert term into eq. above

where the term $Y(q^2)$ describes the sum of resonant and continuum hadronic states appearing in the dimuon mass spectrum. In this analysis $Y(q^2)$ is replaced by the sum of vector meson resonances j such that If n*pi/2 term disappears in eq.1

assumes no continuum
$$C_9^{\text{eff}} = C_9 + \sum_j \eta_j e^{\frac{i \delta_j}{2}} A_j^{\text{res}}(q^2),$$
 (3)

where η_j is the magnitude of the resonance amplitude and δ_j its phase relative to C_9 .

CPV in $\Lambda^0_b \to p K \mu^+ \mu^-$

Baryon production asymmetries not well known: use ΔA_{cp} and triple products Sensitivity of methods may differ depending on strong phase interference

 $\hat{T}_{even}, \hat{T}_{odd}$ amplitudes $a_{CP}^{\hat{T}-odd} \propto \cos(\delta_{even} - \delta_{odd})\sin(\phi_{even} - \phi_{odd})$ not sensitive if $\delta_{even} - \delta_{odd} = \pi/2$ or $3\pi/2$

A₁, A₂ amplitudes

$$\mathcal{A}_{CP} \propto sin(\delta_1 - \delta_2)sin(\phi_1 - \phi_2)$$

not sensitive if $\delta_1 - \delta_2 = 0$ or π

- δ = strong phase, ϕ = weak phase
 - Measure $\Delta A_{CP} = A_{CP}(\Lambda_b^0 \to pK^-\mu^+\mu^-) A_{CP}(\Lambda_b^0 \to J/\psi \, pK^-)$
 - ΔA_{CP} = (-3.5 ± 5.0 (stat) ± 0.2 (syst)) ×10⁻² → no significant CPV

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: S-wave pollution

28/24

- S wave: $K^+\pi^-$ doesn't come from K^{*0} (P-wave) but from spin 0 configuration
- Introduces additional terms in decay amplitude

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}} \bigg|_{\mathrm{S}+\mathrm{P}} = (1-F_{\mathrm{S}}) \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}} \bigg|_{\mathrm{P}} + \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_{\ell} + \text{S-P interference}$$

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi}\Big|_{\mathrm{S+P}} = (1-F_S) \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi}\Big|_{\mathrm{P}} \\ + \frac{3}{16\pi} \Big[F_S \sin^2\theta_l + S_{S1} \sin^2\theta_l \cos\theta_K \\ + S_{S2} \sin2\theta_l \sin\theta_K \cos\phi \\ + S_{S3} \sin\theta_l \sin\theta_K \cos\phi \\ + S_{S4} \sin\theta_l \sin\theta_K \sin\phi \\ + S_{S5} \sin2\theta_l \sin\theta_K \sin\phi \Big].$$

- To determine *F_s* more precisely, exploit difference in *m_{K⁺π⁻}* mass shape between P-, S-wave and fit simultaneously to *m_{K⁺π⁻}*
- $m_{K^+\pi^-}$ line shape in S-wave: LASS model (Nucl. Phys. B296 (1988) 493), P-wave, Breit-Wigner Beauty 2018 (7-11 May 2018) Eluned Smith

Analysis statistically dominated (and still will be in Run 2)

Source	$F_{\rm L}$	$S_3 - S_9$	$A_3 - A_9$	$P_1 - P_8'$
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	< 0.04
Data-simulation differences	0.01 - 0.02	< 0.01	< 0.01	< 0.01
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03
Background model	< 0.01	< 0.01	< 0.01	< 0.02
Peaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02
Det. and prod. asymmetries	-	_	< 0.01	< 0.02

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: J terms

Definition of J_i terms in decay rate (the complex amplitudes are the terms which are sensitive to the Wilson coefficients):

$$\begin{split} J_1^s &= \frac{(2+\beta_{\mu}^2)}{4} \Big[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \Big] + \frac{4m_{\mu}^2}{q^2} \Re e(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*}) \\ J_1^c &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\mu}^2}{q^2} \big[|A_t|^2 + 2\Re e(A_0^L A_0^{R*}) \big] \\ J_2^s &= \frac{\beta_{\mu}^2}{4} \Big[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \Big] \\ J_2^s &= -\beta_{\mu}^2 \Big[|A_{0}^L|^2 + (L \to R) \Big] \\ J_3 &= \frac{\beta_{\mu}^2}{2} \Big[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + (L \to R) \Big] \\ J_4 &= \frac{\beta_{\mu}^2}{\sqrt{2}} \Big[\Re e(A_{0}^L A_{\parallel}^{L*}) - (L \to R) \Big] \\ J_5 &= \sqrt{2}\beta_{\mu} \Big[\Re e(A_{\perp}^L A_{\perp}^{L*}) - (L \to R) \Big] \\ J_7 &= \sqrt{2}\beta_{\mu} \Big[\Re e(A_{0}^L A_{\perp}^{L*}) - (L \to R) \Big] \\ J_8 &= \frac{\beta_{\mu}^2}{\sqrt{2}} \Big[\Im m(A_{0}^L A_{\perp}^{L*}) + (L \to R) \Big] \\ J_9 &= \beta_{\mu}^2 \Big[\Im m(A_{\perp}^L A_{\perp}^{L*}) + (L \to R) \Big] \end{split}$$

with $\beta_{\mu}^2 = (1 - 4m(\mu)^2/q^2)$. The angular distribution therefore depends on 7 q^2 dependent complex amplitudes $(A_0^{L,R}, A_{\parallel}^{L,R}, A_{\perp}^{L,R} \text{ and } A_t)$ corresponding to different polarisation states of the $B \to K^*V^*$ decay.

Beauty 2018 (7-11 May 2018)

Eluned Smith

30/24

The LHCb detector

The LHCb detector is a single arm spectrometer which covers the forward region at LHC.

 $\Delta p/p \sim 0.4\%$ at 5 GeV, $\sigma_{IP} = 20 \ \mu m$ for high p_T tracks. π/K separation: $\epsilon_K \sim 90\%$, 5% $\pi \rightarrow K$ mis-id. π/μ separation: $\epsilon_\mu \sim 97\%$, 1-3% $\pi \rightarrow K$ mis-id.

Beauty 2018 (7-11 May 2018)

- The excellent agreement with theory of flavour measurements places stringent constraints on the mass scale, Λ , of new physics \rightarrow if new physics is assumed to have a generic flavour structure of $\mathcal{O}(1) \rightarrow \Lambda$ as high as 10⁴ TeV (Ann.Rev.Nucl.Part.Sci.60:355, 2010)
- The MFV hypothesis offers solution to this flavour problem: Assume NP flavour structure = SM flavour structure
- Comparing the CKM elements obtained via loop and tree level processes tests the MFV hypothesis.

