T2K Upgrades

Jennifer Consortium general meeting KEK 06/10/2017

T2K Phase II (T2K-II)

- T2K-II extension proposal (arXiv:1609.04111)
- Original T2K program is 7.8×10²¹ POT
- Plan: Accumulate 2×10²²POT by ~2026 (3σ CPV sensitivity for favorable parameters) => *High Intensity Neutrino beam*

T2K-II goals

- ~400 events expected for v_e appearance signal
 Analysis improvement to increase statistical significance
- Systematics Error 5.8 => 4% (<3% HyperK/Dune)
 Near Detectors measurements is a key!
- Approved for the Stage-1 by PAC.
- Technical Design end in 2017 to request for Stage-2 app

J-PARC neutrino beam upgrade

- Continuous upgrade of neutrino beam up to 2030
- Present beam power ~470 kW
- New MR power supply for 750kW by 2019
- Repetition rate increase to
 0.86 Hz for 1.3MW by 2026

	Now (achieved)	2020	~2025	
p/spill	2.4×10 ¹⁴	2.2×10 ¹⁴	3.2×10 ¹⁴	
cycle	2.48s	1.3s	1.16s	
power	470kW	800kW	I.3MW	

- J-PARC upgrade for Hyper-K is top priority in KEK Project Implementation Plan (KEK-PIP)
- Strong commitment for future neutrino program

Systematic errors sources

- Acceptance differences Near/Far detector
- ✓ Different target Near/Far (CH/H₂0)
- ✓ Low energy Neutrino X-sections
- ✓ Near/Far ratio
- ✓ Theoretical Models

The T2K ND280 Near Detector

Role of the ND280 near detector

- Measure the neutrino interaction rates (flux cross-section) in various channels
- Strongly constrain the expected rates at SuperKamiokande for precision oscillation analyses
- Measure neutrino nucleus cross-sections in several channels

ND280 limitations

- One of the main limitations of the ND280 data used for the oscillation analyses is that they mainly cover the forward region while SK has a 4π acceptance
- Model dependence when extrapolating to the full phase space
- The neutrino-nucleus cross-section is not well known, an upgrade is necessary to reduce the systematic errors for T2K-II

The ND280 Upgrade project

Recent activity

- 2015-2016 ND280 Upgrade Task Force
- November 2016 Open Workshop at CERN
- January 2017 Expression of Interest submitted to CERN SPSC (towards a project in the framework of the CERN Neutrino Platform)
- February 2017: the ND280 project is formally approved by T2K
- March-Aug 2017 workshops at CERN and Tokai

Involved sub-detectors

- Atmospheric pressure TPCs (Horizontal TPC) 2 detectors (~2m x 2m x 0.8 m)
- Active targets (one, ~2tons)
- TOF detectors
- other ND280 detectors and systems (ECAL, DAQ, ...)
- R&D for a High Pressure TPC

New "horizontal" TPCs

"new" field-cages

- no outer volume: one structure must do:
 - Electrostatic insulation
 - gas tightness
 - overpressure
- with minimal wasted volume
 - thin
 - light
 - multiple strip layers
- Optimized for low-energy secondaries at large angles
- light + thin + single panel \rightarrow challenging design

Design and optimization of the field-

cage

Aleph / ILC scheme:

Strip layers glued / embedded in the mechanical structure (typically: composite materials)

Insulator from a thin Mylar foil winded around many times using a higly resistive glue

Figure 7: Cross section of the Large Prototype field cage wall.

HARP scheme:

One strip layer is glued to the mechanical structure, additional layers as mylar strips stretched on light supports

New resistive-anode Micromegas

- Try a new configuration: 'encapsulated resistive anode with grounded mesh'
 - Charge spreading allows space point resolution improvement with less electronics channels
 - The protection provided by the resistive foil allows lighter Font End Cards
 - Less track distortions due to field homogeneity
 - Less sensitive to noise

a target option: SuperFGD

• Need a target detector that can detect the particles produced by neutrino neutrino interactions with a 4pi acceptance and momentum threshold lower than the currents state-of-the-art of plastic scintillators

• Instead of XZ plastic scintillator bars, use plastic scintillator cubes coated with chemical reflector and 3 WLS fibers in the 3 orthogonal directions that provides 3 views (XY, XZ, YZ) **arXiv:1707.01785**

Cubes: 10x10x10 mm³ Material: extruded polystyrene + p-terphenyl White chemical reflector, thickness ~ 50 mkm 3 holes: each of 1.5 mm diameter WLS fibers: Kuraray Y11

Size detector	1.8 x 0.6 x 2.0 m ³		
Size cube	1 cm ³		
# of channels	~59k		
# of cubes	~2.16M		
fiber length	~59km		

Parameter	Value	
Coating thickness	50 µm	
Hole diameter	1.5 mm	
WLS fiber diameter	1.0 mm	

Motivations for WAGASCI tracker

Benjamin Quilain

Proposal : WAGASCI, a high granularity 2π scintillator tracker.

→ WAGASCI tracker: Alternance of XY planes & 3D grid scintillators.

- $\rightarrow \sim 2\pi$ angular acceptance
- \rightarrow Good vertex resolution (even for large angle tracks)

<u>GRID-like scintillators</u>

High angle efficiency !

<u>**2 targets :**</u> 1 $H_{2}O$ (& 1 plastic module \rightarrow End of the talk).

<u>H₂O Module ID card :</u> <u>Module size :</u> 230 x 60 x 130 cm³ ~ **1.8 tons** (FGD ~ 2t). <u>Cell size (resolution) :</u> 2.5x2.5x2.5 cm³ cells <u>Plastic background substraction :</u> **H₂O:CH(Plastic)=7:3** in H₂O module (FGD2 is 4:6)

Simulated performance

- The goal of SuperFGD is to detect particles with a 4pi acceptance
- The momentum threshold is also reduced:
- 1 particle hit enough to obtain a XYZ point
- in standard plast. scint. detectors. 2 hits are needed to obtain XY

- Proton momentum threshold ~300 MeV/c (SuperFGD) Vs ~450 MeV/c (FGD)
- Expect ~8% probability to misidentify a muon or a pion as a proton
- Expect to reject $\gamma \rightarrow e^+e^-$ with efficiency up to 90% only by light yield

ND280 upgrade performance studies

- Horizontal targets and new TPCs can measure very well the high angle region both for Water-in and Water-out WAGASCI targets
- At cos Θ ~0 the efficiency is improved to >50% for water-in, ~70% for water-out
- Also momentum threshold is lower with the new configuration

Near Detectors (High Pressure TPC)

Need low momentum thresholds to reduce xsec systematics

Important difference lie below threshold for liquid detectors

Concept:

- high pressure TPC to increase the mass 10x w.r.t. standard TPC → enough events by interaction in gas
- Study low momentum final state particles and in particular resolve vertex
- \rightarrow HPTPC detectors to reduce xsec systematics on different targets (mostly He, Ne, Ar)

T2K has pioneered (~1 bar) gas TPCs for accelerator neutrinos
Need a path to high pressures for sufficient statistics
Generic to next generation LBL experiments

Prototype HPTPC

Optical Readout

Expression of Interest (EOI) SPSC-EOI-15

- Decision taken at the November workshop
- Signed by 190 people (including a CERN group)
 Submitted to SPSC early January
- First contact with referees and questions received
- Addendum submitted April 4-5

One project, two goals

- Study, optimize, design and build an upgrade of the ND280 near detector capable of improved and model-independent precision below ~4% in line with T2K-II physics needs
- Study, optimize, design a High Pressure TPC that could serve as base for a detector aimed at exploring the details of neutrino interactions. Demonstrate the concept with prototypes on a test beam.

We identified synergies and strong overlaps in the interests expressed by the participating groups. Associating the two projects will strengthen the collaboration. Expression of Interest for the January 2017 SPSC

Near Detectors based on gas TPCs for neutrino long baseline experiments¹

R. Hamacher-Baumann, L. Koch, T. Radermacher, S. Roth, J. Steinmann RWTH Aachen University, III. Physikalisches Institut, Aachen, Germany

V. Bererdi, M.G. Celaneui, R.A. Intenti, L. Mageletti, E. Redicioni INFN and Dipartimento Interateneo di Fisica, Bari, Italy

S. Bordoni, M. Capeeris Gerrido, A. De Roeck, R. Glude, B. Mandelli, D. Miadenov, M. Nessi, F. Resneti CERN, Geneva, Switzerland

Z. Liptak, J. Lopez, A. Marino, Y. Magai, E. D. Zimmerman University of Colorado at Bouider, Department of Physics, Bouider, Colorado, U.S.A.

YMayato, M. Korde, M. Nakabata, Y. Nakajima, Y. Nahimura University of Takyo, institute for Cosmic Ray Reesarch, Kamioka Obs., Kamioka, Japan

M. Antonova, A. Lamaplov, A. Kostin, M. Khabibalin, A. Khabibartaev, Y. Kudenko, A. Małodiev, G. Wineev, J. Ovsiannikova, S. Suvarav, N. Yershov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

F. Senchez, M. Cevell-Sforze, T. Lox, B. Bourguille, M. Leyton Institut de Feica d'Ates Energies (IFAE), The Barcelona institute of Science and Technology, Campus UMB, Bellaterra (Barcelona) Spain

J. Amey, RJ. Dunne, P. Jonsson, R.P. Litchfreid, W. Ma, L. Pickering, M. A. Uchida, Y. Uchida, M.O. Waszko, C.V.C. Wret Imperial College, London, United Engdom.

C. Browner, M. Wantz, M. Vagilou Kawli institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba, Japan

 Bolognewi , D. Calvet, R. Coles, A. Delbart, S. Ernery, F. Gizzarelli, H. Lamoureux, M. Martini, E. Nazzucato, G. Vasseur, M. Zito RFU, CEA Sociay, GiFeur/Ivette, France

1 Corresponding authors: Alain Blondel (alain.blondel@cern.ch), Marco Zito (marco.zito@cea.fr)

Main Detector Sub-systems

- TPC
 - Field cage
 - Other mechanical structures
 - Micromegas
 - Electronics
 - Gas system
- TOF
- Active targets
- HPTPC prototype

WP1 Mechanical design and integration WP2 TPC field cage and gas vessel WP3 TPC Readout technology WP4 TPC electronics and DAQ WP5 Scintillator-based trackers WP6 TOF system WP7 Gas system and calibration WP8 Test beam measurements WP9 High Pressure TPC WP9 Simulation and optimization studies WP10 Physics studies WP11 DAQ WP12 Software

preliminary Timeline

- To benefit from the MR upgrade the upgraded detector should be installed around 2020 (data taking until ~2026)
- The installation must happen during the Summer shutdown to limit the downtime
- It seems reasonable to aim for the 2021 Summer shutdown as the target for the installation of the upgraded detector
- The schedule needs to be prepared taking into account the technical and budgetary constraints for the various detectors.
 - 2017: pursue optimization studies, define preferred configuration, finalize
 WP structure and responsibilities, prepare and submit proposal for SPSC
 - 2018 Prototype of TPC (field cage, micromegas) in a testbeam. Define the detector options (granularity etc). Prepare for production. NB similar milestones for the other detectors
 - > **2019-2020** Production, integration at CERN. System test (cosmics?).
 - > 2021 Shipment to Japan, installation, commissioning.

conclusions

- A realistic and optimized ND280 upgrade configuration is proposed
- This will be part of a proposal to be finalized by the end of this year (January 2018 SPSC)
- In parallel making progress with the technical design
- Short-term goal: test beams in 2018, before LHC LS2

2017	2018	2019	2020	2021	2022	2023
Design proposal	TDR prototypes	Construction	Construction Integration	Installation	Commissioning Operation	Operation