

# Recent T2K Oscillation Results



L. Ludovici INFN/Roma

Jennifer Consortium General Meeting October 6<sup>th</sup>, 2017

T2K experiment Recent oscillation results Conclusions & Outlook





# T2K (Tokai to Kamioka) experiment



06/10/2017

L. Ludovici

## JPARC Neutrino Beamline



### ND280 On-axis and off-axis detectors at 280m

### 06/10/2017

### TARGET STATION

750KW carbon target (civil engineer designed for 4MW)

L. Ludovici

400 MeV Linac **3GeV Rapid Cycling** Synchrotron (25Hz,1MW) 30 GeV Main Ring 750KW design power Normal+Superconducting proton extraction line Beam position and CT 3 horns focusing system He filled decay volume Muon monitor system

# Off-Axis neutrino Beam

BNL proposal E889 http://minos.phy.bnl.gov/nwg/papers/E889

 $E_{v} = \frac{m_{\pi}^{2} - m_{\mu}^{2}}{2 (E_{\pi} - p_{\pi} \cos \theta)} \qquad \Phi_{v} = \frac{1}{4\pi} \frac{m_{\pi}^{2}}{(E_{\pi} - p_{\pi} \cos \theta)^{2}}$   $E_{\pi} \gg m_{\pi}, \text{ and } \theta \ll 1$   $\frac{m_{\pi}^{2} - m_{\mu}^{2}}{m_{\pi}^{2} (1 + \gamma_{\pi}^{2} \theta^{2})} E_{\pi} \qquad \frac{1}{\pi} \frac{1}{L^{2}} \frac{(E_{\pi}}{m_{\pi}})^{2} \frac{1}{(1 + \gamma_{\pi}^{2} \theta^{2})^{2}}$ 

Much higher flux than old-style NBB Strong cut-off of HE tail: reduced NC $\pi^{\circ}$  bckg. Reduced  $v_e$  contamination Tune energy to maximise sensitivity:  $\Delta = 1.27 \cdot \Delta m^2 (eV^2) \cdot L(Km) / E(GeV)$ Beam energy almost fixed by geometry

06/10/2017

θ



## Long Baseline Far/Near



# T2K Analysis Strategy

Measure #v events kinematic.distrib.

Near Detector

EXPERIMENTAL DATA v interaction MC, beam MC near detector simulation

Extract  $\Phi(Ev), v$  interact. properties

Beam MC (Far/Near rative volume volum

Measure #v events kinematic.distrib.

Far Detector

Oscillation Fit (3 frameworks: 2 frequentist, 1 Bayesian)

L. Ludovici

Expected #v, Kinematic.distrib. w/o oscillation

# T2K Analysis Strategy

Measure #v events kinematic.distrib.

Near Detector

EXPERIMENTAL DATA

Measure #v events kinematic.distrib.

Far Detector



<u> UD/ IU/ ZUI /</u>

## **T2K Near Detector**



Off-Axis detector (ND280) Fine grain detectors+TPC trackers 0.2 T magnetic field (refurbished UA1/NOMAD magnet)

Neutrino flux Neutrino interaction model

> On-Axis detector (INGRID) Grid of Scintillator/Iron sandwich blocks

Measurement of beam direction and profile Beam stability monitor

# On-Axis (INGRID)





Grid of Fe/Scintillator sandwich detectors spanning across the neutrino beam center

Day by day monitor of neutrino event rates and beam profile stability



1 mrad  $\rightarrow$  2% beam energy shift

L. Ludovici

## **Off-Axis detector**



P0D (π° detector) Scintillator/(brass/Pb), optimised for photon conversion and reconstruction

ECAL Pb/Scintillator tracking calorimeter (e, $\gamma$  energy flow and e/ $\mu/\pi$  PID) MAGNET 0.2 T (former UA1/NOMAD magnet)

SMRD (side muon range detector) Scintillator planes in the magnet yoke

TRACKER: 2 FGD + 3 TPC FGD (scintillating bars ~1x1cm): fully active neutrino target TPC: tracking, momentum, e/μ PID (dE/dx ~10<sup>3</sup> muon rejection)



06/10/2017

### ND280 events





11



### 06/10/2017

#### L. Ludovici

### Super-Kamiokande



50 kt water Cherenkov Inner Detector: 11,129 20" PMTs, 40% coverage Outer Detector: ~2000 8" PMTs

Operational since 1996 (SK I)

After 2001 accident running with 20% coverage (SK II)

Reconstructed in 2006 (SK III)

DAQ upgrade in 2008 (SK IV)

06/10/2017

# **T2K Data Collection**



14.7 (7.6)  $\times 10^{20}$  PoT in neutrino(antineutrino) mode, 29% of approved T2K PoT Stable operations at 470 kW last year  $\rightarrow$  doubled run1-4 neutrino statistics

# 2017 Analysis Improvements

Super-K event reconstruction:

new algorithm (fitQun) applied to all samplesoptimisation of fiducial volume cuts

 $\rightarrow$  30% increase in "effective" statistics



### Interaction model in our MC neutrino interaction generator (NEUT):

inclusion of a model (Valencia 2p-2h model) for multi-nucleon processes
inclusion of long range correlation effects in the nucleus (random phase approximation, RPA)

New parametrisation of uncertainties, still under systematic checks for robustness  $\rightarrow$  effect is small for  $\delta_{CP}$  but larger for "atmospheric parameters"

### Far detector samples



06/10/2017

L. Ludovici

15

# Atmospheric parameters (2016)



2016 analysis (5 samples joint fit with  $\theta_{13}$  reactor constraint) Compatibles with other experiments. Highest octant and NH "slightly" favoured CPT conserved: P( $v_{\mu} \rightarrow v_{\mu}$ ) consistent with P( $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ )

2017 analysis: on-going work to assess systematic uncertainties from neutrino interactions models

### 06/10/2017

#### L. Ludovici

# $\Theta_{13}$ and $\delta_{CP}$



06/10/2017

L. Ludovici

17

# Results: δ<sub>CP</sub>



CP conserving values (0, $\pi$ ) fall outside 2 $\sigma$  CL intervals Observed events favour large CPV ( $\delta_{CP}$ =-1.83<sup>+0.604</sup><sub>-0.654</sub> radians for NH) and normal mass hierarchy Allowed regions at 2 $\sigma$  CL

- for normal mass hierarchy:  $\delta_{CP}$  = [ -2.98, -0.6 ] radians
- for inverted  $\delta_{CP}$  = [ -1.54, -1.19 ] radians

# Future: T2K-II

- Already approved 7.8x10<sup>21</sup> PoT (by ~2021)
- T2K-II proposal to operate until 2026 with 20x10<sup>21</sup> PoT
- Upgrade Main Ring power supplies to achieve 1 Hz repetition (1.3 MW ultimate beam power)
- ND280 upgrade



Analysis improvements:

new ND280 samples to reduce neutrino interaction model systematics
 new Super-K samples to gain effective statistics (already ~30% with new Super-K reconstruction)

## **T2K-II Sensitivity**



Potential for  $3\sigma$  discovery of CPV if  $\delta_{CP}$  is near the current best fit

Systematic errors are important  $\rightarrow$  expected improvements in T2K-II Significant improvements also on sin<sup>2</sup> $\theta_{23}$  and  $\Delta m_{32}$ 

## **Conclusion and Outlook**

T2K has doubled neutrino mode statistics since Summer 2016

Oscillation analysis updated to 22.5x10<sup>20</sup> PoT (30% of expected PoT):

- improvement in neutrino interaction model
- new SK reconstruction and selection: +30% in effective statistics
- $\rightarrow$  CP conserving values of  $\delta_{CP}$  falls outside  $2\sigma$  CL intervals

T2K is working to:

- take data with beam power increasing toward 750 kW
- add new samples to improve systematics and increase statistics

Proposal to extend the run to  $20x10^{21}$  PoT aiming at  $3\sigma$  CPV discovery for favorable true  $\delta_{CP}$  values (ie. if nature is kind to us!)

### Stay tuned, there will be fun !

06/10/2017

# Thank you

### WP3 status report (September 2017)

### Vincenzo Berardi INFN – Sezione di Bari (ITALY)



# WP3 - Summary 1/2

- Asses the contribution of neutrino interaction in the sand and rock surrounding the near detector;
- Study of neutrino-nuclei and Meson Exchange Current interactions;
- Study of anti-neutrino interactions;
- Share the analysis techniques among the project participants and provide opportunities for the ESR to increase the interaction with KEK scientists.



## WP3 - Summary 2/2

- Task 3.1 Neutrino interactions and cross sections: [CEA, IFAE, INFN, NCBJ, QMUL, RAL]
- Task 3.2 External background studies: [NCBJ,QMUL,RAL]
- Task 3.3 Exotic Physics: [IFAE,QMUL,RAL]



### WP3 – Milestones

- report on anti neutrino analysis; EMD:24 (April 2017) (delivered as scheduled)
- report on the methods of MEC searches; EMD: 48 (april 2019)
- combined muon and electron neutrino oscillation analysis report; EMD: 48 (april 2019)

