TOP commissioning Status Report

R.Mussa (INFN Torino)

Jennifer Meeting

KEK, October 6 2017

Belle-II Detector

TOP counter: operating principle

- Measure x-y position (5 mm) of photons (imaging)
- Measure precise (40 ps) time of arrival of photons (time-of-propagation); TOF from IP works additively

TOP optics

Quartz bars: 1250x450x20 mm³

Mirrors: 100x450x20 mm³

Prisms: 100x456x20 mm³ at bar face, expanding to 456x50 mm² at PMT

Material: Corning 7980

Cherenkov ring imaging with precision time measurement (better than 100ps)

Installation completed! 2016, May 11.

Quartz Property	Requirement
Flatness	<6.3µm
Perpendicularity	<20 arcsec
Parallelism	<4 arcsec
Roughness	< 0.5nm (RMS)
Bulk transmittance	> 98%/m
Surface reflectance	>99.9%/reflection

Assembly procedure

Optics: alignment, gluing, curing and aging (~2 weeks). Enclosure: gluing CCDs and LEDs, integrating fiber mounts. QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance cheekotember 5, 2016

QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".

Optics alignment and gluing

 $\theta_{\rm H}$ < 40 arcsec.

Support button alignment

Single Mode Fiber routing and preparation

24 fibers are divided into 4 bundles, each one serving 4 modules (+2 spare fibers) Each bundle reaches 2 connector boxes, each one serving 2 modules

MultiMode Fiber Bundles assembly and tests

Design, mass production and QC of connectors to insert MM fibers in the Quartz Box (Padova)

Irradiation tests on GRIN lenses and MM fibers

MM fiber QC and characterization (Padova)

Production of SM-MM fiber adaptors

for flat-fielding (Padova)

TOP: Quartz Bar Installation

Laser calibration data

The challenge:

- 512 pixels per module
- 9 light sources per module
- Each pixel sees a different laser peak
- Laser peak is a combination of 2 or 3 gaussians with the same width: 0,1,2 reflections.
- A fraction of pixels see light from two sources
- Light intensity per pixel depend on MM fiber angular distribution.
- SM-MM fiber piping efficiency is not constant
- Each pixel will have its own PDF for fiber calibration.

time (ns)

TOP : time calibration (coordinator: U.Tamponi)

TOP : time calibration (coordinator: U.Tamponi)

Calibration steps

On top of this we have the **PMT** gain, threshold efficiency and channel masking monitoring, that go in the condition DB

Readiness and roadmap

3) Local T0 is the only module that will have to use CAF

The calibration software is evolving steadily.

Issues in Enic

	eo ar elvio				
0	Bil-2018	Matrix inversion-based time base correction		DONE	Marko Staric
0	BII-2019	Iterative based time base correction		DONE	Xiaolong Wang
	BII-2020	TOP T0 correction	•	IN PROGRESS	Stefano Lacaprara
	Bil-2021	PMT gain monitoring tool		IN PROGRESS	Yosuke Maeda
	Bil-2022	TOP Calibration monitoring tools		IN PROGRESS	Elisa Guido
O BII-3	811-2023	TOP Channel masking		DONE	Samuel Thomas Cunliffe
	BII-2024	TOP Alignment module		IN PROGRESS	Alessandro Gaz
0	BII-2026	TOP inter-module time alignment without B field		WON'T FIX	Umberto Tamponi
	BII-2045	Realistic digitizer module		IN PROGRESS	Marko Staric
	BII-2046	Simulation of the laser events with double calpulse		OPEN	Marko Staric
0	BII-2061	Missing DB classes for TOP calibration constants		DONE	Umberto Tamponi
	88-2351	TOP Calibration benchmark tools		OPEN	Umberto Tamponi

Also, slow control, DQM Saurabh Sandyila, Bogun Wang

MCPPMT rotation problem

PMT rotation inside PMT module

- Effect only for photons of incident angles large than ~43°
- Will be fixed if necessary after phase 2
 - bubbles under the optical cookie
 Has been fixed in situ by shimming

The PMT tube contains Kovar

The force on the PMT was measured to be:

(nickel-cobalt ferrous alloy)

Rotation of PMT module

Large effect on photon transmittance due to

~1 kgf/PMT in B=1.5 T

Alexandria data da ser a ser a ser

Test stands in Italy

200 250 Amplitude [ADC counts]

250

150

discriminator (CFD) with templates. Important for time resolution with low gain

TOP: assembly and installation schedule

Secondments Torino

Umberto Tamponi from 1 June to 8 July 2015 (38d construction) Oscar Brunasso Cattarello from 16 to 31 August 2015 (16d construction) Roberto Mussa from 3 to 26 October 2015 (24d construction)

Roberto Mussafrom 12 to 28 May 2016 (17d construction)Simonetta Marcellofrom 20 to 25 June 2016 (6d commissioning)Fabrizio Bianchifrom 16 to 24 October 2016 (9d computing)Roberto Mussafrom 12 to 25 October 2016 (14d commissioning)Simonetta Marcellofrom 14 to 22 October 2016 (9d commissioning)

Roberto Mussafrom 31 Jan to 15 February 2017 (16d commissioning)Fabrizio Bianchifrom 4 to 15 February 2017 (12d computing)Roberto Mussafrom 13 to 24 June 2017 (12d commissioning)Fabrizio Bianchifrom 17 to 26 June 2017 (10d computing)Oscar Brunasso Cattarellofrom 16 July to 2 August 2017 (18d construction)Roberto Mussafrom 3 to 14 October June 2017 (10d commissioning)Simonetta Marcellofrom 3 to 12 October June 2017 (10d commissioning)

Totals WP2 : 224 d = 7.5 months

Construction (UT,RM,OBC,SM): TOP assembly and installation: 113d

Commissioning (RM+SM): TOP laser calibration and cosmic ray test: 79d

Computing (FB): 31d

Remaining on WP2 (UT+RM) : 2.5 months

Secondments details

Massimo Benettoni from 13 to 27 April 2015 (15d construction) Ezio Torassa from 19 June to 4 July 2015 (15d construction) Massimo Rebeschini from 27 June to 13 July 2015 (15d construction) Loris Ramina from 27 June to 13 July 2015 (15d construction) Alessandro Gaz from 3 October to 1 November 2015 (30d test moduli) Ezio Torassa from 16 October to 30 October 2015 (15d construction) Loris Ramina from 24 October to 9 November 2015 (15d construction) Massimo Rebeschini from 24 October to 9 November 2015 (15d construction) Massimo Benettoni from 7 November to 22 November 2015 (15d construction) from 4 April to 16 April 2016 (15d installation) Ezio Torassa Ezio Torassa from 14 June to 25 June 2016 (15d commissioning) from 15 May to 19 June 2017 (36d commissioning) Wenlong Yuan Ezio Torassa from 12 June to 29 June 2017 (18d commissioning)

Summary

1) Construction and assembling of the TOP modules Massimo Benettoni 1 month (30 d) Massimo Rebeschini 1 month (30 d) Loris Ramina 1 month (30 d) Ezio Torassa 1 month (30 d)

- 2) Test of the TOP modules before installation : Alessandro Gaz (30 d)
- 3) Installation of the TOP detector : Ezio Torassa (15d)
- 4) Commissioning of the TOP detector :
- Wenlong Yuan 1 month (36 d)
- Ezio Torassa 1 month (33 d)

TOT 7.5 months To be done (ET+WY+AM): 2.5 months

Work in progress

- Cosmic Ray Run with CDC,KLM,ECL,....
- Merging in global DAQ
- Laser Calibration and comparison with MC simulations
- **TimeBase Calibration**
- **Firmware: Feature Extraction, Template Fitter**
- **Detector alignment**
- Pixel by pixel T0 calibration
- **TOP** Trigger

... still plenty of work to do before first collisions

MCPPMT aging

TOP upgrade: life extended ALD-MCPPMT

Test plan (draft)

Year	2017			2018			2019				2020				
Month	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7
Global schedule					Phas	se 2			Phys	ics r	un	Phy	sics r	un	
	Curr	ent p	produ	ictio	n										
PMT production			Ano	ther	smal	l pro	ducti	on							
							Mas	s pro	oduct	tion i	fneo	essa	ry		
New PMTs (prospect)	28	3 26	5	5 /	mon	th	10 F	PMTs	/moi	nth					
PMT test at Nagoya	1	<mark>0 /</mark> m	onth	5 /	mon	th	10 F	MTs	/mo	nth					
PMT test at KEK							~1	.00 P	MTs		~	1 <mark>00 F</mark>	MTs		
PMT installation													Ass	y l	nstall
Available PMTs	37	63	Unclear (depends on budget situation)							Resu					

Maximum rate:

- QE measurement: 2 PMTs/day = 40 PMTs/month
- HV test: 8 PMTs/day = 160 PMTs/month
- Laser test in 0 T: 5 PMTs/day = 100 PMTs/month

TOP management

- Leader: Toru lijima
- Deputy: Gary Varner
- Gemba leader: Kenji Inami
 - Supervision to all Gemba works

