

Japan and Europe Network for Neutrino and Intensity Frontier Experimental Research, H2020 Consortium General Meeting, Tsukuba, Japan, 5.10.2017

Status of the ARICH commisioning

Rok Pestotnik

Jožef Stefan Institute, Ljubljana

on behalf of the Belle2 ARICH group:

I. Adachi^{b,c}, R. Dolenec^d, K. Hataya^e, S. Iori^f, S. Iwata^e, H. Kakuno^e, R. Kataura^g, H. Kawai^h, H. Kindo^c, T. Kobayashi^g, S. Korpar^{i,a}, P. Križan^{d,a}, T. Kumita^e, M. Mrvar^a, S. Nishida^{b,c}, K. Ogawa^g, S. Ogawa^f, R. Pestotnik^a, L. Šantelj^b, T. Sumiyoshi^e, M. Tabata^h, M. Yonenaga^e, Y. Yusa^g

^aJožef Stefan Institute, Ljubljana, Slovenia, ^bHigh Energy Accelerator Research Organization (KEK), Tsukuba, Japan, ^cSOKENDAI (The Graduate University of Advanced Science), Tsukuba, Japan, ^dUniversity of Ljubljana, Slovenia, ^eTokyo Metropolitan University, Hachioji, Japan, ^fToho University, Funabashi, Japan, ^gNiigata University, Japan, ^hChiba University, Japan, ⁱUniversity of Maribor, Slovenia

Outline

Introduction

Status of the project

Achievements

Schedule

JENNIFER impact

Summary

JENNIFER deliverables - ARICH part:

full commissioning and calibration \rightarrow march 2018

Particle identification in Belle II

(TOP)

R.Pestotnik, ARICH@JENIFFER GM 2017

Two dedicated particle ID devices -

• Barrel: imaging Time-Of-Propagation

both RICHes – designed to fit into available space:

• End-cap: Proximity focusing Aerogel RICH (ARICH)

Introduction : Aerogel RICH

Goals and constraints:

- > 4 σ K/ π separation @ 1-3.5 GeV/c
- operation in magnetic field 1.5T
- limited available space ~280 mm
- radiation tolerance (n,γ)

Selected type:

proximity focusing aerogel RICH

- <n> ~ 1.05
- θ_c(π) ≈ 307 mrad @ 3.5 GeV/c
- $\theta_{c}(\pi) \theta_{c}(K) = 30 \text{ mrad } @ 3.5 \text{ GeV/c}$
 - pion threshold 0.44 GeV/c,
 - kaon threshold 1.54 GeV/c
- neutron fluence: up to $\sim 10^{12}$ n/cm2
- radiation dose: up to ~1000 Gy

* to increase the number of photons without degrading the resolution R.Pestotnik, ARICH@JENIFFER GM 2017

ARICH components

Aerogel radiator:

- Two 2cm thick layers $n_1 = 1.045 n_2 = 1.055$
- Optical transparency limited due to Rayleigh scattering
- large tiles 18x18x2cm³ to minimize photon losses at the edges

Hybrid Avalanche Photo Detector - HAPD

- QE: 30%
- 144 channels, total area 7cm x 7cm
- Excellent separation of single photoelectrons
- Works in a magnetic field of 1.5T
- 7 kV HV + 4x ~300 V bias + 175 V guard ring

Readout Electronics: limited space behind the HAPD- 5cm

- Front-end board with 4 ASICs and Spartan6 FPGA
- Merger board prototype with Virtex5 FPGA: JTAG, optical link, trigger in, front-end connector

R.Pestotnik, ARICH@JENIFFER GM 2017

ARICH geometry design

Status of the ARICH installation/commisioning

October 2016 - July Installation of major components: Aerogel tiles installed in the mechanical frame 420 HAPDs + FEBs + HV divider boards, 72 merger boards, supply cables, polyethylene shield, LED monitor system

August:

Missing detector cables installed Planar front surface mirrors and side plates installed. Assembly: aerogel side combined with the HAPD side. DAQ and HV test with one sector setup: Nominal bias + 4-6 kV HV

September:

ARICH and forward ECL combined and transferred to the IR. Test the movement to the final end-cap position

Aerogel Plane

Photon detector

HAPD Modules Polyethylene shield Planar Mirrors at the edges

R.Pestotnik, ARICH@JENIFFER GM 2017

*** •**

ARICH Database

Operational & geometrical parameters and mappings of the consisting elements are kept in the centralized common Belle II database.

Example: quantum efficiency of the channels

hapd QE map

Installation of services

Front end boards HV divider boards, FEB Power supply distribution Merger support

Cooling pipe

Backside of the photon detector with all the cables

R.Pestotnik, ARICH

Integration of photon detector and aerogel plane

80

Integration with forward ECL

Radiation monitors

Additional polyethylene shield

Integration in the Belle II spectrometer

LED monitoring system

Power Supply Control system

🕽 🗢 🗉 /HVControl/ArichlvMain.opi	😸 🖨 🗊 /HVControl/arichlvmap_gen.opi
RICH LowVoltage Control - Node: ARICHLV	Main commands
PS State: STANDBY Detector view Vmon(t) Imon(t)	ABORT F
Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6	
ON 1 0 \$(ID) ON 1.5 0.0 ON 38 0.0 ON 20	
ON 10 \$(ID) ON 1.5 -0.0 ON 3.8 0.0 ON 2.0	
	ON 20 00 Sector 1
#### 12\$(ID) 8 = 1 /HVControl/ArichlvMain.opi	Sector 2 Sector 0
#### 12 \$(ID) ARICH LowVoltage Control - Node: ARICHLV	
#### 13\$(ID)	Sector 3 Sector 5
#### 1 3 \$(ID) PS State: STANDBY Detector view Vmon(t) Imon	(t) Sector 4
#### 14 \$(ID) Overview Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6	
### 14 \$(ID)	
### 15\$(ID) Slot# Ch# Switch RampUp VSet VI imit CI imit	Status VMon CMon
### 20\$(ID)	
### 21\$(ID) 0 1 ON 0 4 0 0	ON 3.8 0.0
### 21\$(ID) 0 2 ON 0 2 0 0	
### 22\$(ID) 0 3 ON 0 2 0 0	0N 2.0 0.0 Edit
### 235(ID) 0 4 ON 0 2 0 0	ON 1.5 -0.0 Edit
### 2 3 \$(ID) 0 5 ON 0 4 0 0	ON 3.8 0.0 Edit
#### 24\$(ID) 0 6 ON 0 2 0 0	ON 2.0 -0.0 Edit
### 24\$(ID) 0 7 ON 0 2 0 0	0N 2.0 0.0 Edit
### 25\$(ID)	
1 0 ON 0 2 0 0	0N 1.5 0.0 Edit
	OFF 0.0 0.0 Edit
	OFF 0.0 0.0 Edit
	OFF 0.0 0.0 Edit

Schedule

- Move ARICH in the final end-cap position
- Installation of LV and HV connections to the electronic hut
- Installation and test of the full LV and HV system
- Data acquisition integration tests
- Test of the LED monitoring system
- Test of operability of each sector
- Data taking
- Commissioning of the software:
 - Calibration and Alignment based on the acquired data
- Ready for physics data taking

Impact of the JENNIFER secondments

Direct impact:

Jennifer secondments enable

- crucial on-site presence during construction and commissioning of the ARICH,
- young researchers: extended stays possible
- face-to-face cooperation with group members from other countries

Indirect impact:

Enable the European institution to be part of the leading groups in the particle identification instrumentation by Cherenkov radiation:

- Jožef Stefan Institute organized the most important conference in the area of Ring Imaging Cherenkov Detectors RICH 2016, Sep. 4-9, Bled, Slovenia
- Samo Korpar \rightarrow invited talk at the RICH 2016
- 12 contributions from the group on the RICH 2016

Summary

- Proximity focusing RICH with an aerogel as a radiator will be employed for efficient particle identification in the forward end-cap of the Belle2 spectrometer
- The beamtest results and the detector simulations:
 excellent kaon ID efficiency >95% for p=0.5 ..3.5 GeV/c @ low pion mis-ID prob. of 1%
- → Status
 - → The photon detector and aerogel radiator installation is almost finished.
 - Commissioning of HV, LV and DAQ system in progress
- → Installation of ARICH is progressing as planned
- → No delay is expected to finish the commissioning of the ARICH by the deadline
- Jennifer enables to participate the researchers from European Institute (JSI) in R&D, the installation and the commissioning of the detector, and to share their expertise with the Japanese collaborators.

