WP1 status (Belle II software and physics case)

Christoph Schwanda (HEPHY) JENNIFER Consortium General Meeting KEK, October 6, 2017

SuperKEKB

Belle II upgrade

- 2011-2018: major upgrade of both the collider and the detector (Belle → Belle II, KEKB → SuperKEKB)
- Physics data taking starts late 2018/early 2019
- Aim to increase the Belle data set by a factor of 50

Big Questions: Are determinations of angles consistent with determinations of the sides of the triangle ? Are angle determinations from loop and tree decays consistent ?

Will CKM unitarity hold at Belle II?

The angle γ/φ₃ A fierce competion between Belle II and LHCb

Rare decays, charm physics,

Observable	Expected th.	Expected exp. Facility		
	accuracy	uncertainty		
CKM matrix				
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory	
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II	
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II	
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb	
ϕ_2		1.5°	Belle II	
ϕ_3	***	3°	LHCb	
CPV				
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb	
$S(B_s o \phi \phi)$	**	0.05	LHCb	
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb	
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II	
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II	
$S(B_s o \phi \gamma))$	***	0.05	LHCb	
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II	
A_{SL}^d	***	0.001	LHCb	
A_{SL}^s	***	0.001	LHCb	
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II	
rare decays				
$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II	
$B(B \rightarrow D\tau\nu)$		3%	Belle II	
$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II	
${\cal B}(B_s o \mu \mu)$	***	10%	LHCb	
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb	
$\mathcal{B}(B \rightarrow K^{(*)}\nu\nu)$	***	30%	Belle II	
$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II	
$\mathcal{B}(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)	
$B(K \rightarrow \pi \nu \nu)$	**	10%	K-factory	
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory	
charm and τ				
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II	
$ q/p _D$	***	0.03	Belle II	
$arg(q/p)_D$	***	1.5°	Belle II	

Tau lepton flavour violation

EU grant n.644294

7

Searching for dark matter

SM

SM

χ

Direct detection

Direct production @ colliders

Search for events with missing energy, particle disappearance, dark forces, etc.

Search for interaction of DM particles with (usually) underground detectors: heat, scintillation light, etc..

Space/earth based experiments: gamma ray energy excess, anti-particle excess, HE neutrinos etc.

Indirect detection

8

Quarkonium

Quarkonium-like states

Belle II collaboration map

 104 Belle II institutions in 24 countries: WP1 typically uses secondments for attending collaboration meetings/workshops at KEK

Objectives of WP1

Exploit the physics potential of Belle II by

- Task 1.1: Developing the detector-related software (charged track reconstruction, alignment, particle identification, ...)
- Task 1.2: Implementing software tools for physics analysis
- Task 1.3: Identify the key measurements for Belle II (Belle II-theory interface platform)

Performance neutral & e⁻ (MC9)

- ECL resolution (Energy (a) and θ (b)) & efficiency (c).
- Electron ID E/p (d). Plan to use add more ECL shower variables. Material budget in front of ECL (e)
- K_L ID in KLM. (f)
- MC9 (Release & Bkg conditions) Performance note in preparation (Phases II & III)

Performance Hadron ID & Tracking (MC9)

- $pr/\pi ID: \Lambda \rightarrow p\pi$ (d). Discovered Pythia lifetime config problem.
- We need to prepare coherent plan for systematics measurements (Tuesday session)

Particle ID (MC9 ccbar)

 Degradation of global PID due to over-weighting of dE/dx in combination. This needs to be resolved. Affects other PID.

Vertex Fitters & Conversions

- Tree Fitter ready (Full decay chain fit, full covariance, fits with neutrals, 3-D beam constraint) CLHEP & ROOT conversion to Eigen Library in progress. (a)
- Conversion vertex analysis: new analytical variables to identify π⁰ decay types using RAVE. (b)

Background overlay

Big impact on Belle II GRID computing

- Benefits w.r.t background mixing
 - measured background (with random trigger) instead of simulated one
 - smaller background files for the same number of events (by 20 times)
 - faster simulation (by factor of four)

CPU time for generic BBbar [seconds/event]			
	background mixing background overlay		
Simulation	4.40	1.16	Ī
Tracking	1.70	1.88	
PID	0.18	0.16	
Clustering	0.11	0.11	
Total	6.40	3.34	

Implementation in basf2 almost ready (planned for release-01-00-00)

- overlay framework developed to unify the approach
- all detectors except ECL implemented (ECL code in a feature branch → under review)

M. Staric (IJS)

Much better performance but has not been implemented in MC9 because of the storage issue

Current Performance of the VXDTF2

	Finding Eff.	Fake Rate	Clone Rate	Runtime / Event
VXDTF1	84.04	18.07	0.41	32.7 ms
VXDTF2	93.58	20.62	0.43	16.3 ms

1.00 0.95 Finding efficiency 0.75 84.04 - VXDTF1 93.58 - VXDTF2 0.70 0.51.0 1.5 2.02.5 0.0Transverse momentum / GeV

SVD stand-alone tracking with the VXDTF2

Keep in mind for the fake rate:

- final fit quality can improve it
- background contains real (electron) tracks, that at low momentum maybe can be filtered with dE/dx from (interesting) hadrons
- no shape, energy or time information from the SVD used (effective integration time is large)
- Memory footprint can be reduced strongly without efficiency loss (not yet committed)

Combinatorial Kalman Filter Studies Progressing well

	VXDTF2	CKF ²
Finding Ef.	0.933	0.947
Hit Ef. (SVD)	0.782	0.912
Hit Ef. (PXD)	0.812	0.857
Fake Rate	0.178	0.138
Clone Rate	0.091	0.064
Hit Purity (PXD)	0.858	0.916

CKF²:

"Afterburner"

- CDC stand-alone tracking
- Extrapolation to SVD with CKF
 - Take out assigned hits
- SVD stand-alone tracking
- Merge CDC and SVD tracks
- Extrapolation to PXD with CKF

Performance measure vs MC Tracks

VXDTF2 details may differ from previous page due to sector map

B2TiP

- The "Belle II Theory Interface Platform" is a joint theory-experiment effort to define the Belle II physics program
- B2TiP is organized in 9 working groups
- The charge of each WG is to identify the "golden modes", perform simulation studies and finally produce a chapter of the B2TiP report
- The activity is driven by a series of workshops

B2TiP WG structure

WG1	Semileptonic & Leptonic B decays
WG2	Radiative & electroweak penguins
WG3	$lpha$ (ϕ_2) and eta (ϕ_1)
WG4	ϕ_3
WG5	Charmless hadronic B decays
WG6	Charm physics
WG7	Quarkonium-like states
WG8	Tau, low multiplicity and electroweak physics
WG9	New Physics (models)

B2TiP workshop series

- 1. October 30-31, 2014 @ KEK
- 2. April 27-29, 2015 @ Krakow
- 3. October 28-29, 2015 @ KEK*)
- 4. May 23-25, 2016 @ Pittsburgh*)
- 5. November 15-17, 2016 @ MIAPP Munich (editorial meeting)

plus the kickoff meeting June 16-17, 2014 @ KEK and a few focused meetings

*) co-funded by JENNIFER

Status of Belle II Physics Book

- Belle II physics book (630p), to be printed by PTEP / Oxford University Press <u>https://confluence.desy.de/display/BI/B2TiP+ReportStatus</u>
- A few small unfinished areas, but otherwise close to complete and ready for review to commence.
- Await formation of Belle II publication committee to conduct collaboration wide review and form full collaboration author list ASAP.

P. Urquijo et al.

WP1 secondments

Period 1 (months 1-24)
– Total performed: 13.6 months

	INFN	НЕРНҮ	IFJ PAN	UKP	JSI	METU	CNRS
Seconded days	178	31	78	64	26	0	30

- Period 2 (months 25-48)
 - Performed so far: 171 days (5.7 months)
 - Planned for period 2: 52.8 months
 - 47.1 months are thus still open

WP1 deliverables

- D1.1 Offline workshop
 - Description: Annual workshops amongst participants to discuss the status of offline software, outstanding issues and possible improvements, and to exchange knowledge amongst involved researchers
 - Due: March 2016
 - Delivered: September 2016
- D1.2 Belle II tutorials
 - Description: Tutorial courses for Belle II members (especially ESRs) attached to Belle II collaboration meetings, to demonstrate the use of physics analysis tools
 - Due: March 2016
 - Delivered: September 2016

WP1 deliverables

- D1.3 Reference guide
 - Description: Writing and maintaining a reference data reconstruction and analysis tools guide
 - Due: March 2018
 - Delivered: pending
- D1.4 B2TiP report
 - Description: "Belle II Yellow Report" summarizing all important observables and including a "milestone table", clarifying the targets for the first 5/ab, 10/ab as well as for the final goal at 50/ab
 - Due: March 2017
 - Delivered: May 2017

Summary

- The Belle II experiment has a rich physics case and will study decays of B and charmed mesons and tau leptons from 2019
- WP1 is helping the exploitation of Belle II physics through supporting offline-software development, implementation of analysis tools and the B2TiP activity
- 13.6 WP1 secondment months in period 1, 5.7 months done in period 2, 47.1 months to go
- No problems foreseen in the preparation of the remaining deliverable

