Detectors for future pp colliders

Michele Selvaggi

CERN

Motivations for pp colliders beyond the LHC

- Future projects in HEP such as the have two objectives:
 - explore the energy frontier, as solutions to known and unexplained phenomena beyond the standard model (might be within reach at the next high energy collider):
 - Dark Matter
 - Neutrinos
 - Matter-antimatter asymmetry
 - measure to high precision the physics of the electroweak symmetry breaking:
 - the shape of the Higgs potential
 - Higgs couplings, in particular to first two generations and gauge bosons → guaranteed deliverable!

see MLM talk for more...

The FCC project

Within the FCC collaboration (CERN as host lab), 4 main accelerator facilities have been studied:

- pp-collider (FCC-hh)
 - defines infrastructure requirements
 - $16T \rightarrow 100 \text{ TeV}$ in 100 km tunnel
- ee-collider (FCC-ee):
 - as a (potential) first step
- ep collider (FCC-eh)
- HE-LHC :
 - 27 TeV (16T magnets in LHC tunnel)

CDRs and European Strategy documents have been made public in Jan. 2019

https://fcc-cdr.web.cern.ch/

Philosophy

- Goal of this talk is to walk you through the process that we went through in the CDR process in trying to design a multi-purpose detector for the FCChh 100 TeV collider
- Guiding principles are machine constraints and physics
- This generic detector serves as a starting point for:
 - benchmarking physics reach of the machine
 - identify:
 - challenges of building such an experiment
 - topics where R&D needed
- Most likely, this is not "THE OPTIMAL" detector. Maybe the optimal route will be to have several detectors optimized for specific signatures.
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future
- Although this discussion will be based on the 100 TeV FCC-hh collider most of the challenges are common to any high energy/high luminosity project.

Physics goals for a 100 TeV collider

- Ultimate discovery machine
 - directly probe new physics up to unprecendented scale
 - discover/exclude:

-	heavy resonances	"strong"	m(q*)	pprox 50 TeV,
		"weak"	m(Z')	pprox 40TeV,
-	SUSY		m(gluino)	pprox 15 TeV,
			m(stop).	\approx 10 TeV

Physics goals for a 100 TeV collider

- Ultimate discovery machine
 - directly probe new physics up to unprecendented scale
 - discover/exclude:

-	heavy resonances	"strong"	m(q*)	pprox 50 TeV,
		"weak"	m(Z')	pprox 40TeV,
-	SUSY		m(gluino)	pprox 15 TeV,
			m(stop).	\approx 10 TeV

Precision machine

- probe Higgs self-coupling to few % level, and %-level precision for top yukawa and 2nd generation.
- measure **SM parameters** with high precision
- exploit complementarity with e⁺e⁻ by probing high dim.operators (EFT) in extreme kinematic regimes (boosted)

Physics program spans over very wide range of characters energy scales !

Towards defining the FCChh detector Physics constraints

• The boosted regime:

→ measure leptons, jets, photons, muons originating multi-TeV resonances

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$
 Calorimeters: $\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$

- Tracking target : $\sigma / p = 20\% @10 \text{ TeV}$
- Muons target: $\sigma / p = 10\%$ @20 TeV
- Calorimeters target: containment of $p_T = 20 \text{ TeV}$ jets

high p_T muons

Towards defining the FCChh detector Physics constraints

- The boosted regime:
 - → measure b-jets, taus from multi-TeV resonances
- Long-lived particles live longer:
 - ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying
 - → extend pixel detector further?
 - useful also for exotic topologies (disappearing tracks and generic BSM Long-lived charged particles)
 - number of channels over large area can get too high
 - \rightarrow re-think reconstruction algorithms:
 - hard to reconstruct displaced vertices
 - exploit hit multiplicity discontinuity

Only 71% 5 TeV b-hadrons decay < 5th layer.

• displaced vertices

Towards defining the FCChh detector Physics constraints

- The boosted regime:
 - → measure W, H, top jets from multi-TeV resonances
 - Highly boosted hadronically decaying SM heavy states (W, Z, H or t) will have highly collimated decay products
 - The ability to distinguish such boosted states from vanilla QCD jets is an essential tool in many searches for BSM (such as top partners, Z', etc ...)

ex: W(10 TeV) will have decay products separated by DR = 0.01 = 10 mrad

SM physics @ 100 TeV

SM Physics is more forward @100TeV

- in order to maintain sensitivity in need large rapidity (with tracking) and low p_T coverage
 - → highly challenging levels of radiation at large rapidities

• <u>Goals:</u>

- Precision spectroscopy and calorimetry up to |η| < 4
- Tracking and calorimetry up to |η| < 6

 q_2

SM physics processes@ 100 TeV

 Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV

 \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity.

- Cross-section for relevant processes (HH) shows a significant increase.
 - \rightarrow interesting physics sticks out more !

Machine and detector requirements

ſ	parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}	TeV	14	14	27	100
	circumference	km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$	$cm^{-2}s^{-1}$	1	5	25	30
	bunch spacing	ns	25	25	25	25
	number of bunches		2808	2808	2808	10600
	goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
ſ	σ_{inel}	mbarn	85	85	91	108
	σ_{tot}	mbarn	111	111	126	153
	BC rate	MHz	31.6	31.6	31.6	32.5
	peak pp collision rate	GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC		27	135	721	997
ſ	rms luminous region σ_z	mm	45	57	57	49
	line PU density	mm ⁻¹	0.2	0.9	5	8.1
	time PU density	ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
	charged tracks per collision N_{ch}		95	95	108	130
	Rate of charged tracks	GHz	76	380	2500	4160
	$< p_T >$	GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions	10^{16}	2.6	26	91	324
Charged	part. flux at 2.5 cm est.(FLUKA)	GHzcm^{-2}	0.1	0.7	2.7	8.4 (12)
1 MeV-n	eq fluence at 2.5 cm est.(FLUKA)	$10^{16}{ m cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ion	ising dose at 2.5 cm est.(FLUKA)	MGy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	=5	GeV	316	316	427	765
$dP/d\eta _n$	=5	kW	0.04	0.2	1.0	4.0

Machine and detector requirements

lumi & pile-up

	parameter		unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}		TeV	14	14	27	100
	circumference		km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$		$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1	5	25	30
	bunch spacing		ns	25	25	25	25
	number of bunches			2808	2808	2808	10600
	goal $\int \mathcal{L}$		ab^{-1}	0.3	3	10	30
	σ_{inel}		mbarn	85	85	91	108
	σ_{tot}		mbarn	111	111	126	153
	BC rate		MHz	31.6	31.6	31.6	32.5
	peak pp collision rate		GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC			27	135	721	997
	rms luminous region σ_z		mm	45	57	57	49
	line PU density		mm^{-1}	0.2	0.9	5	8.1
	time PU density		ps^{-1}	0.1	0.28	1.51	2.43
	$ dN_{ch}/d\eta _{\eta=0}$			7	7	8	9.6
	charged tracks per collision N_{ch}			95	95	108	130
	Rate of charged tracks		GHz	76	380	2500	4160
	$< p_T >$		GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions		10^{16}	2.6	26	91	324
Charged part. flux at 2.5 cm est.(FLUKA)		G	$Hz \mathrm{cm}^{-2}$	0.1	0.7	2.7	8.4 (12)
1 MeV-neq fluence at 2.5 cm est.(FLUKA)		1	$0^{16} \mathrm{cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ior	nising dose at 2.5 cm est.(FLUKA)		MGy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	$\eta=5$		GeV	316	316	427	765
$dP/d\eta _r$	$\gamma = 5$		kW	0.04	0.2	1.0	4.0

→ x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

Machine and detector requirements

rad. levels

	parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}	TeV	14	14	27	100
	circumference	km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$	$cm^{-2}s^{-1}$	1	5	25	30
	bunch spacing	ns	25	25	25	25
	number of bunches		2808	2808	2808	10600
	goal $\int \mathcal{L}$	ab ⁻¹	0.3	3	10	30
	σ_{inel}	mbarn	85	85	91	108
	σ_{tot}	mbarn	111	111	126	153
	BC rate	MHz	31.6	31.6	31.6	32.5
	peak pp collision rate	GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC		27	135	721	997
	rms luminous region σ_z	mm	45	57	57	49
	line PU density	$\rm mm^{-1}$	0.2	0.9	5	8.1
	time PU density	ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
	charged tracks per collision N_{ch}		95	95	108	130
	Rate of charged tracks	GHz	76	380	2500	4160
	$< p_T >$	GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions	10^{16}	2.6	26	91	324
Charged part. flux at 2.5 cm est.(FLUKA)		$\mathrm{GHz}\mathrm{cm}^{-2}$	0.1	0.7	2.7	8.4 (12)
1 MeV-n	eq fluence at 2.5 cm est.(FLUKA)	$10^{16}{ m cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ior	nising dose at 2.5 cm est.(FLUKA)	MGy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	$\eta=5$	GeV	316	316	427	765
$dP/d\eta _r$	η=5	kW	0.04	0.2	1.0	4.0

→ x50 HL-LHC

^{10&}lt;sup>18</sup> cm⁻² MeV-neq @ 2.5 cm !!

An FCC-hh detector

- Must be able to cope with:
 - very large dynamic range of signatures (E = 20 GeV 20 TeV)
 - hostile environment (1k pile-up and up to 10¹⁸ cm⁻² MeV neq fluence)
- Characteristics:
 - large acceptance (for low pT physics)
 - extreme granularity (for high p_T and pile-up rejection)
 - timing capabilities
 - radiation hardness

An FCC-hh detector that can do the job

Tracker

- $-6 < \eta < 6$ coverage
- pixel : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) ~ 0.5-1.5%
- outer : $\sigma_{r\varphi} \sim 10 \mu m$, $\sigma_Z \sim 30-100 \mu m$, X/X₀(layer) ~ 1.5-3%

Calorimeters

- ECAL: LArg , $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci , 9 λ, r = 2.8 4.8 m (barrel)

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m, L = 3m, B = 4T

The FCC-hh detector

Cavern and MDI

- $L^* = 40m$ (as opposed $L^* = 23 m$ in LHC experiments)
- · Last focusing quadrupoles are outside the cavern
- MDI is not a concern (as opposed to e⁺e⁻)

Radiation tolerance

Tracker: first IB layer (2.5 cm): $\sim 6 \cdot 10^{17} \mathrm{cm}^{-2}$ $^{\mathrm{HL-LHC}}_{\mathrm{FCC} = 30 \times \mathrm{HL-LHC}}_{\mathrm{FCC} = 30 \times \mathrm{HL-LHC}}$ 1 MeV neutron equivalent fluence [cm⁻²] HL-LHC rad. tolerance limit @ R=27 cm: $\sim 10^{16} {\rm cm}^{-2}$ external part: $\sim 5 \cdot 10^{15} \mathrm{cm}^{-2}$ 10²⁰ 1600 10¹⁸ 1400 10¹⁶ 1200 10¹⁴ E 1000 800 10¹² 600 10¹⁰ 400 10⁸ 200 10⁶ 0 500 2000 2500 3500 4000 1000 1500 3000 0 z [cm] Forward calorimetry: maximum at $\sim 10^{18} \text{ cm}^{-2}$

- A hadron fluence > 10^{16} cm⁻² is very challenging for silicon sensors
- This limit is reached already @ 27 cm from the beam pipe
- Dedicated R&D needed to push the limit of radiation hardness

Tracker

- Binary readout
- I6 billions readout channels, x(3-10) phase II detectors)
- Radiation hardness is an issue for innermost layers

- Tilted geometry with inclined modules:
 - minimize effect of Multiple scattering (low material)
 - helps with pattern recognition

low p_T muons \rightarrow resolution dominated by MS

Pile-up rejection

With PU density = 8 mm⁻¹ need $\delta z_0 \sim 100 \,\mu$ m resolution in track longitudinal impact parameter \rightarrow at large angles this corresponds to beam-pipe contribution alone !!!

High resolution (~ 5-10 ps) timing information needed !!

Calorimeters

- ECAL: LAr + Pb technology driven by radiation hardness
 HCAL:
 - Organic scintillator + Steel, R/O with WLS fiber + SiPM
 - LAr in the forward (Dose > 10 MGy)
 - <u>Design goals</u>:
 - High longitudinal (7+10 layers) + transverse segmentation (x4 CMS and ATLAS)
 - Particle-flow compliant
 - standalone PU rejection

Challenges: LAr cryo, especially in forward region, 2e6 channels (200 Tb/s at 16 bit)

- Standalone muon measurement with angle of track exiting the coil
- Target muon resolution can be easily achieved with 50 µm position resolution (combining with tracker)
- Good standalone resolution below $|\eta| < 2.5$
- Rates manageable with HL-LHC technology (sMDT)

Data rates and trigger

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
$b\overline{b}$ rate	MHz	5	25	250	750
$b\overline{b} p_T^b > 30 \text{GeV/c cross-section}$	μb	1.6	1.6	4.3	28
$b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{jet} > 50 \text{GeV/c cross-section}$ [341]	μb	21	21	56	300
Jets $p_T^{jet} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90

Need more selectivity at Level I (full allocated Phasell bandwidth for single muon pt > 30 GeV)!

- Phase II:
 - ATLAS/CMS calorimeters/muons readout @40MHz and sent via optical fibres to Level I trigger outside the cavern to create LI trigger decisions (25 Tb/s)
 - Full detector readout @IMHz (@40MHz ~ 200 Tb/s)

FCC-hh:

- At FCC-hh Calo+Muon would correspond to 250 Tb/s (seems feasible)
- However full detector would correspond to I-2 Pb/s
 - Seems hardly feasible (30 yrs from now)
- More selectivity needed @LI (4D hit information?)

Strategy for R & D

- High profile R&d program needs to be carried on to make this possible, (leverage HL-LHC efforts)
- Possible Directions:
 - Radiation hard silicon detectors
 - High precision timing
 - Low power, high speed links
 - Highly segmented calorimeters
 - Software, reconstruction algorithms (4D particle-flow, boosted object tagging)
 - Large scale muon systems
 - Magnets
 - Cryogenics

CERN has released a document On plans for R&D as input to European Strategy: CERN-OPEN-2018-006

Strategic R&D Programme on

Technologies for Future Experiments

Conclusions

- A next generation of accelerators is needed to study the Higgs and explore the energy frontier
- A detector operating at 100 TeV collider must feature excellent performance in a wide energy range
- Physics (low and high Q²) and machine (1000PU) impose several constraints on the detector design
- A general purpose reference detector has been designed to set the scale of the challenges of performing experiments with such machine
- We think that detectors able to extract all the physics potential from such a machine can be built, but a high profile R&D programme for detectors and electronics technologies has to be conducted:
 - radiation hardness, picosecond timing, granularity, high speed low power optical links

Backup

Stray field and service cavern

Dipole vs. Solenoid

Table 7.2: Main characteristics of the central solenoid, a forward solenoid and a forward dipole magnet.

	Unit	Main solenoid	Forward solenoid	Forward dipole
Operating current	kA	30	30	16
Stored energy	GJ	12.5	0.43	0.20
Self-inductance	Н	27.9	0.96	1.54
Current density	A/mm^2	7.3	16.1	25.6
Peak field on conductor	Т	4.5	4.5	5.9
Operating temperature	K	4.5	4.5	4.5
Current sharing temp.	K	6.5	6.5	6.2
Temperature margin	K	2.0	2.0	1.7
Heat load cold mass	W	286	37	50
Heat load thermal shield	W	5140	843	1500
Cold mass	t	1070	48	114
Vacuum vessel	t	875	32	48
Conductor length	km	84	16	23

Figure 7.6: a) Cold mass for a central solenoid of 4 T with two forward solenoids and b) a central solenoid of 4 T and two forward dipole magnets with field integral of 4 Tm.

Dipole:

- Loose rotational symmetry
- Need compensation system for the hadron beam
- Better tracking performance however

Figure 7.7: Longitudinal half-sections of the two versions of the magnet system. Magnetic fieldmap for a central solenoid of 4 T with a forward dipole (left) and a forward solenoid (right).

Total and residual ionizing dose

b)

Material budget

Figure 7.10: Material budget of the different sub-systems. The calorimetry provides $\geq 10.5 \lambda$ nuclear interaction lengths to maximise shower containment and the total detector material represents between 180 and 280 X_0 radiation lengths.

Boosted b-tagging

Machine and detector requirements lumi & pile-up

- LHC: 30 PU events/bc
- HL-LHC: 140 PU events/bc
- FCC-hh: 1000 PU events/bc

Timing helps in identifying PU vertices

Photon resolution with PU

Jet Performance with Full sim

- Excellent resolution up to p_T = 10 TeV !!
- Large impact of PU at low pT (as expected)
 - crucial for low mass di-jet resonances (again, such as HH→bbγγ)
 - Further motivation for Particle-flow

→ since charged PU contribution can be easily subtracted (Charged Hadron Subtraction)

High Mass resonances

- Constant term drives jet energy resolution at high p_T
- Directly impacts sensitivity for excluding discovering narrow resonance high mass resonances Z' → j j
- Small impact on strongly coupled (wide) resonances

Jet Pile-Up identification

- With 200-1000PU, will get huge amount of fake-jets from PU combinatorics
- need both longitudinal/lateral segmentation for PU identification
- Simplistic observables show possible handles, pessimistic.. (in reality tracking will help a lot)

Jet substructure

- Performance good up to I TeV, with Calorimeter standalone, and without B field!
- Far from having explored everything possible:
 - Particle-Flow tracks and B field (decrease local occupancy) will improve
 - Machine Learning techniques will help a lot (train on 3D shower image)

100 TeV machine parameters

	LHC HL-LHC		FCC-hh		
			Initial	Nominal	
Physics performance and beam parameters					
Peak luminosity ¹ $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	5.0	5.0	< 30.0	
Optimum average integrated luminosity / day $[fb^{-1}]$	0.47	2.8	2.2	8	
Assumed turnaround time [h]			5	4	
Target turnaround time [h]			2	2	
Peak number of inelastic events / crossing	27	135 levelled	171	1026	
Total / inelastic cross section σ proton [mbarn]	111	/ 85	153	/ 108	
Luminous region RMS length [cm]			5.7	5.7	
Distance IP to first quadrupole, L* [m]	23		40	40	
Beam parameters					
Number of bunches n	28	08	104	400	
Bunch spacing [ns]	25	25	2	.5	
Bunch population N [10 ¹¹]	1.15	2.2	1	.0	
Nominal transverse normalised emittance [µm]	3.75	2.5	2.2	2.2	
Number of IPs contributing to ΔQ	3	2	2+2	2	
Maximum total b-b tune shift ΔQ	0.01	0.015	0.011	0.03	
Beam current [A]	0.584 1.12		0.5		
RMS bunch length ² [cm]	7.55		:	8	
IP beta function [m]	0.55	0.15 (min)	1.1	0.3	
RMS IP spot size [µm]	16.7	7.1 (min)	6.8	3.5	
Full crossing angle [µrad]	285	590	104	200^{3}	

Table S.1: Key FCC-hh baseline parameters compared to LHC and HL-LHC parameters.

 Full crossing angle [µrad]
 285
 590
 104

 ¹ For the nominal parameters, the peak luminosity is reached during the run.

 ² The HL-LHC assumes a different longitudinal distribution; the equivalent Gaussian is 9 cm.

 ³ The crossing angle will be compensated using the crab crossing scheme.

MDI

Figure 2.4: Detector region layout.

2m thick shielding wall to protect front of final focus system from collisio debris

Possible future colliders: FCC-hh

High Field Dipoles Magnets (16T)

- Nb-Ti not suited anymore (4-10T)
- Focus on Nb3Sn (also HLLHC)

Goal: Jc = 1500 A/mm² @ 4.2 K

 High Temperature Superconductors (Bi-2212) are promising, but stress sensitive, also low current density (but constant)

Many challenges:

- Need margin B ~ 20 T
- Conductor instabilities
- NbSn3 stress sensitivity ...
- Cost?

How long? Manageable in ~ 15-20 yrs?

Precision vs. sensitivity

- We often talk about "precise" SM measurements. What we actually aim at is "sensitive" tests of the Standard Model, where sensitive refers to the ability to reveal BSM behaviours.
- Sensitivity may not require extreme precision. Going after "sensitivity", rather than just precision, opens itself new opportunities .
- For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

BR measurement:
$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \Rightarrow \text{precision probes large } \Lambda$$

e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$
 $\sigma(\text{pT} > X): \qquad \delta O \sim \left(\frac{Q}{\Lambda}\right)^2 \Rightarrow \text{kinematic reach probes large } \Lambda$

e.g. $\delta O=15\%$ at Q=1 TeV $\Rightarrow \Lambda \sim 2.5$ TeV

Reach @100TeV

events = $\sigma \mathscr{L}$

 $\sigma \approx \sigma$ (part) L

 $\sigma \approx (s / M^{2+2/a})^a$

<u>Reach of collider at $\sqrt{s_1}$ vs $\sqrt{s_2}$:</u>

 $(M_2 / M_1) \sim (s_2 / s_1)^{1/2} [(s_1/s_2)(\mathscr{L}_1/\mathscr{L}_2)]^{1/(2a+1)}$

At high mass (high x), a >> I:

Mass reach goes up by factor 7 (roughly)

Ratio parton-luminosity

Indicates how rate of given process (e.g. single Higgs production) scales from 14 TeV to 100 TeV:

$$\frac{\text{\# events } (\sqrt{s} = 100 \text{ TeV})}{\text{\# events } (\sqrt{s} = 14 \text{ TeV})} \approx L_1 / L_2 \approx (s_2/s_1)^a \approx (100/14)^{2a}$$

Rates at 100 TeV

Huge statistics allow for great potential of further exploration of SM particles at 100 TeV

HH →bbγγ

- Large QCD backgrounds (jjγγ and γ+jets)
- Main difference w.r.t LHC is the very large ttH background
- Strategy:
 - exploit correlation of means in $(m_{\chi\chi}, m_{hh})$ in signal
 - build a parametric model in 2D
 - perform a 2D Likelihood fit on the coupling modifier k_λ
 - $\delta k_{\lambda} / k_{\lambda} = 5-7\%$ (stat stat+syst.) in this channel alone

$\delta k_{\lambda} / k_{\lambda} = 5$ % doable by combining with other channels

Summary direct measurements

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δgнzz / gнzz (%)	1.5	0.17	tbd
δgнww / gнww (%)	1.7	0.43	tbd
δд _{ньь} / д _{ньь} (%)	3.7	0.61	tbd
δд _{нсс} / д _{нсс} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	—	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.91 (*)
δдннн / дннн (%)	50	~30 (indirect)	7
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%

* From BR ratios wrt B(H \rightarrow 4I) @ FCC-ee

** From pp \rightarrow ttH / pp \rightarrow ttZ, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

Heavy resonances @ 100 TeV

Detector requirements from high p_T searches

• Change in paradigm: heavy flavour tagging

• displaced vertices

- multi-TeV b-Hadrons decay outside the pixel volume
- Need to adapt identification algorithms for maintaining sensitivity in in high mass searches.

Disappearing Tracks

- Observed relic density of Dark Matter Higgsino-like: I TeV, Wino-like: 3TeV
- Mass degeneracy: wino 170MeV, Higgsino 350MeV
- Wino/Higgsino LSP meta-stable chargino, cτ= 6cm(wino)
 7mm(higgsino)

- Disappearing tracks analysis shows discovery reach beyond upper limits of MDM
- In a similar way FCC-hh can explore conclusively EW charged WIMP models, (low multiplets)

Heavy resonances @ 100 TeV

- M = I TeV Higgsino can be discovered
- M = 3 TeV Wino can be discovered