

Recent HAWC results and future developments

Gamma Ray Astrophysics with CTA Sexten, July 24th-28tth 2017

Sabrina Casanova, IFJ-PAN & MPIK

Outline

- The HAWC detector
- The sky seen by HAWC
 - 2HWC Catalog
 - Extended regions (Fermi bubbles, Cygnus Region, Geminga)
 - The Galaxy above 50 TeV
 - Search for extragalactic transients
- Future Developments
 - Outtriggers
 - Beyond HAWC : High sensitivity EAS array in the CTA era

High Energy Gamma-Ray Detectors

Satellite Detector

Extensive Air Shower (EAS) Detector

Imaging Atmospheric Cherenkov Telescope (IACT)

The HAWC Detector

- Site: Sierra Negra, Mexico, 19°N, 4,100 m • altitude
- Instantaneous FOV 2sr. Daily 8sr (66% of the
- Duty cycle >90%.
- 300 WCDs covering 22,000m² area.
- Inaugurated March 2015.

HAWC Water Cherenkov Detectors

 The WCDs are filled with 200,000 I of purified water. The particles from the shower induce Cherenkov light in water, detected by the 4 PMTs.

Water trucks filling the tanks

8-inch 10-inch PMTs

Detection Technique

- The particle detectors are tanks full of water. Particles from the shower pass through the water and induce Cherenkov light detected by PMTs.
- High altitude means closer to the shower maximum.

Gamma-Hadron Separation

- Main background is hadronic CR, e.g. 400 γ /day from the Crab vs 15k CR/s.
- Gamma/hadron can be discriminated based on the event footprint on the detector: gamma-ray showers are more compact, cosmic rays showers tend to "break apart".

The gamma-ray Galactic Plane

2th HAWC Catalog

2HWC J0534+220	-	-2.58 ± 0.01	184.7 ± 2.4	Crab
2HWC J0631+169	-	-2.57 ± 0.15	6.7 ± 1.5	Geminga
"	2.0	-2.23 ± 0.08	48.7 ± 6.9	Geminga
2HWC J0635+180	-	-2.56 ± 0.16	6.5 ± 1.5	Geminga
2HWC J0700+143	1.0	-2.17 ± 0.16	13.8 ± 4.2	-
"	2.0	-2.03 ± 0.14	23.0 ± 7.3	-
2HWC J0819+157	0.5	-1.50 ± 0.67	1.6 ± 3.1	-
2HWC J1040+308	0.5	-2.08 ± 0.25	6.6 ± 3.5	-
2HWC J1104+381	-	-3.04 ± 0.03	70.8 ± 2.9	Markarian 421
2HWC J1309-054	-	-2.55 ± 0.18	12.3 ± 3.5	-
2HWC J1653+397	-	-2.86 ± 0.04	56.5 ± 2.7	Markarian 501
2HWC J1809-190	-	-2.61 ± 0.11	80.9 ± 15.1	HESS J1809-193
2HWC J1812-126	-	-2.84 ± 0.16	27.4 ± 5.7	HESS J1813-126
2HWC J1814-173	-	-2.61 ± 0.09	88.4 ± 13.0	HESS J1813-178
"	1.0	-2.55 ± 0.07	151.6 ± 18.8	HESS J1813-178
2HWC J1819-150*	-	-2.88 ± 0.10	59.0 ± 7.9	SNR G015.4+00.1
2HWC J1825-134	-	-2.58 ± 0.04	138.0 ± 8.1	HESS J1826-130
"	0.9	-2.56 ± 0.03	249.2 ± 11.4	HESS J1826-130
2HWC J1829+070	-	-2.69 ± 0.17	8.1 ± 1.7	-
2HWC J1831-098	-	-2.80 ± 0.09	44.2 ± 4.7	HESS J1831-098

Region

Abeysekara et al, ApJ, 2017

2nd HAWC Catalog

40 sources of which 1/4 are new

The Galactic Plane seen by HAWC

New Source Confirmed

HAWC source distribution

Good candidates for observations with high resolution and high sensitive IACTs (MOUs)

HAWC sky above 50 TeV

MGRO 1908+06

HESS J1825+137 HESS J1826-130

Geminga Region

Paper submitted to Science!

- Confirmation (~12 σ pre-trial) of Geminga (PSR J0633+1746) by HAWC.
- Evidence (~7 σ pre-trial) of a new extended source near PSR B0656+14.
- Both pulsars, similar in age and distance, were suggested as contributors of the positron fraction.
- A very interesting region to be explored with the CTA small size telescopes.

The Cygnus Cocoon Region

Fermi bubbles

above and below the Galactic center.

Edges line up with X-ray features.

Correlate with microwave excess (WMAP haze)

Both hadronic and leptonic model fit Fermi LAT data.

Fermi Bubbles

Abeysekara et al, ApJ, 2017

Active Galactic Nuclei are Variable

First HAWC Alert

HAWC detection of increased TeV flux state for Markarian 501

ATel #8922; Andrés Sandoval (IF-UNAM), Robert Lauer (UNM), Joshua Wood (UMD) on behalf of the HAWC collaboration on 7 Apr 2016; 23:38 UT Credential Certification: C. Michelle Hui (c.m.hui@nasa.gov)

Paper on online flare monitoring in preparation!

Subjects: Gamma Ray, TeV, VHE, Request for Observations, AGN, Blazar

- HAWC is already providing prompt notification of flaring activity.
- First Astronomer's Telegram sent on April reporting a Mkr 501 flare (~2 Crab units for 2 days).
- Monitoring all gamma-ray sources visible to HAWC every day.

HAWC Multi-Messenger: IceCube Neutrinos

IceCube Event follow-up

- Highest energy (2.6 PeV) pointed astrophysical track-like event.
- June 11, 2014, 4:54 UTC. (RA,Dec) = (110.3, 11.5)
- HAWC-111 live (pass1). Several hours out of HAWC's FOV.
- Searches:
 - Integrated dataset (Steady, Aug 2013-May 2015)
 - Next Day / Prior Day
 - ±2 and ±5 days around the event.
 - All searches consistent with cosmic-ray background.

The steady neutrino flux, assuming it is evenly divided among N_s sources (IceCube, PRL 2014), should be detectable in HAWC in a year if photons are not attenuated.

We can set constraining limits on every IceCube event in the HAWC FOV.

IceCube ATel: #7856 HAWC Follow-up ATel: #7868

HAWC Multi-Messenger: LIGO Gravitational Waves

- **GW151226**, 2015-12-26 03:38:53 UTC, z=0.09 +0.03 -0.04
 - 14.2M● + 7.5M● ⇒20.8M●
- Analysis under MoU with LIGO. HAWC field of view covered a large part of the localization contour at time of coincidence. Real-time all-sky GRB search: 4 sliding windows (0.1, 1, 10, 100 seconds) AWGNo significant detection.

Gamma-Ray Observatory GCN circular: http://gcn.gsfc.nasa.gov/gcn3/19156.gcn3

HAWC&ParticleAstrophysics

Complements TeV IACTs

Identifies new and flaring sources for follow up observation of morphology and sub TeV specti Extends TeV spectra to higher energies

Complements GeV All Sky Survey

Monitors 1000s of Fermi GeV sources at higher energies

Complements TeV neutrino observations

Identifies new and flaring TeV sources to improve the sensitivity and interpretation of blind searches

Complements Advanced LIGO

Simultaneous observations of nearby, short GRBs from ns-ns inspiral

Future Developments

Near future:

- HAWC is adding more detectors to enhance the sensitivity above 10 TeV.
- Outriggers will help to accurately determine core position for showers off the main tank array.
- Increase effective area above 10 TeV by 3-4x
- Plans for ~300 tanks of 2500 liter tanks (1/80 HAWC tank).
- Funded by LANL, Mexico, MPIK. Tank deployment and firsts tests ongoing.

Future:

- Working together with other scientists on a future wide field-of-view TeV observatory for the Southern Hemisphere that will complement CTA in the south.
- Expected improvements: higher altitude, larger area, better hadronic rejection, better shower sensitivity.

Gamma-Like Event of ~60TeV

hit time [ns]

HAWC is getting better with "Outrigger" extension project

We can increase the sensitivity to the highest energy events by determining the core position for showers that fall off the array.

The 350 small WCD outrigger detectors cover an area 4x HAWC and will increase by 3-4x the sensitivity at 50 TeV.

Large Water Cherenkov Survey instrument in CTA Era

- Complementary to CTA
- Transient phenomena
- Very extended emission regions
- Strong flaring sources
- Continuous and unbiased monitoring

Potential sites in Argentina, Bolivia, and Chile Investigating sites at ~4,800 m and ~5,600 m

Beyond HAWC: Even Lower Energy

- Same detector at a higher altitude has increased sensitivity especially at lower energies
- Factor of 4 increase in sensitivity between ALMA and HAWC altitude

High altitude -> low threshold

Beyond HAWC: Southern Site

Discovering rare transient events requires full sky coverage

GRB finder for Advanced LIGO, which will detect all neutron binary coalescence with z<0.5

AGN flares & GRBs as distant probes of high energy physics (e.g. Lorentz invariance and axions)

Galactic Center

TeV Source finder for CTA south

Alto Chorrillo Argentina 4800m

Backup slides

Bin Energy (current vs EE)

Crab Nebula spectrum (EE)

Crab gamma-ray candidate

• Event reconstructed within 0.4° of the Crab Nebula.

γ/h separation

F. Salesa Greus - IFJ-PAN

4-Apr-2017

F. Salesa Greus - IFJ-PAN

4-Apr-2017

F. Salesa Greus - IFJ-PAN 37

Angular Resolution

sensitivity

Overhead Effective Area

 10^{6}

HAWC Collaboration+17

Crab Nebula above 56 TeV

Pointlike Search : Crab Nebula (>56TeV)

The Crab Nebula

- Crab Nebula detected with high significance $\sim 100\sigma$.
- It was used to test our angular resolution and g/h cuts.
- The AR (68% containment) is 0.25° for events with more that hit more than 50% PMTs hit.
- Signal to background ratio ~10:1 for large events (>75% PMTs hit) while keeping >60% of the gamma-

understanding larger area

HAWC Multi-Messenger: IceCube

IceCube Collab. Science, 2013; PRL, 2014; Phy.s Rev. D, 2015

Neutrino / Photon Connection: Pions

$\pi^0 \to \gamma \gamma$	dN_{ν}	dN_{γ}
$\pi^{\pm} \to \mu \ \nu_{\mu} \to \nu_{\mu} \ \nu_{\mu} \ \nu$	$'_e \overline{dE} \sim$	\overline{dE}

HAWC's Strengths for IceCube Followup

- Wide FOV: Search for cascade coincidences.
- Continuous observation.
- Can search archival data.
- HAWC Sensitive up to 100 TeV

- Some interpretations. Sources may:
 - Be more than expected, weaker flux.
 - Be opaque to gamma- and cosmicrays.
 - Have high redshift.
 - Be transient.

Beyond HAWC: Increase Sensitivity

- Increase photodetection efficiency for lower energies
 - Winston Cones
 - Large Area Photodetectors
 - Liquid Scintillator
- Larger Area Array

Sensitivity proportional to Area, NOT sqrt(Area) due to background rejection

	HAWC 150m x 150m	HAWC(100k m^2) 300m x 300m
Deep Survey Sensitivity (4 years)	20mCrab	4-5mCrab
Instantaneous sensitivity (σ / \sqrt{hr}) ~	~3	12-15

