

Galactic Science: from Fermi-LAT to CTA

F. de Palma

(INFN Bari and Università Telematica Pegaso), on behalf of the Fermi-LAT and CTA Collaborations

Gamma Ray Astrophysics with CTA Sexten 2017

- Overview of Galactic sources
 - Pulsars
 - Pulsar Wind Nebulae
 - Binaries
 - Novae
- LAT SNR observations
- Catalogs
- Prospect for CTA Galactic science
- Conclusions

What does Fermi see of our Galaxy?

Galactic sources:

- <u>Pulsars</u>
- <u>PWNe</u>
- <u>Novae</u>
- <u>Binary systems</u>
- <u>SNRs</u>
- Galactic center and interstellar emission
- Solar System

3FGL Catalog: 3033 sources 6% are PSR and 5% other Galactic sources

Now up to 205 γ -ray pulsars!

Current public gamma-ray pulsar list: http://tinyurl.com/fermipulsars

26/07/2017

F. de Palma @ Gamma Ray Astrophysics with CTA

Credit: T. Johnson 4

Pulsar classes

26/07/2017

Gamma-ray Space Telescope

Pulsar Wind Nebulae

- Energy is carried away in a magnetized wind of charged particles.
- PWNe contain both the relic accelerated particles from the pulsar and particles accelerated within the termination shock.

Crab

Crab not a standard candle

Abdo+ Science 2011, Buehler+ ApJ 2012 (2011 flare) Mayer+ ApJ 2013 (2013 flare) Also detected by Agile: Tavani+ Science 2011

26/07/2017

Microquasars: Cygnus X-3

- BH or NS in binary systems with relativistic jets
- Identified by:
 - Location;
 - modulation of the γ-ray flux at the orbital period of the binary system;
 - γ-ray variability correlated with the radio emission.

Corbel+ MNRAS 2012, Abdo+ Science 2009. Also detected by Agile: Tavani+ Nature 2009

Pulsar Binaries: PSR B1259-63

- Emission due to the interaction of the relativistic PSR wind and the photon field of the massive star.
- Periodicity: 3.4 years

Abdo+ Apj 2011.

γ-ray Novae

- 6 Novae detected up to now (ongoing researches on new candidates)
- Soft spectrum transient γ -ray sources detected over 2–7 weeks.
- Unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions.

F. de Palma @ Gamma Ray Astrophysics with CTA

Cheung+ Apj 2016

Supernova Remnants

26/07/2017

SNRs with hadronic emission

y-ray emission dominated by Inverse Compton

Young SNRs

Hadronic scenario

γ-ray emission dominated by pion decay Presence of accelerated protons

Morphology studies with Pass 8

RCW 86

Detected as extended with Pass8: radius ~ 0.37° ±0.02°

Best morphological photon distribution: **H.E.S.S. template** (A. Abramowski+,

accepted for publication by A&A)

Multi-zone analysis ongoing

IC 443

Preliminary results in Hewitt+ @ Fermi Symposium 2015

M. Ajello+ ApJ 2016

RX J1713.7-3946 with Pass 8

Dec. (J2000) (°)

Improved spatial correlation with TeV template (*Aharonian* + 2006)

 3.5 σ significance of improvement using a split template

Condon, B+ @ Gamma 2016

G326.3-1.8

Dermi Gamma-ray Space Telescope

Harder and softer spectrum for the PWN and the SNR respectively

Energy dependent morphology

at higher energies

Devin, J+ @ SF2A 2017

Gamma-ray

3FHL identification & association

F. de Palma @ Gamma Ray Astrophysics with CTA

7

- Study of extended sources in the Galactic plane
- Detected 46 extended sources:
 - 16 are new
 - 13 agree with previous publications
 - 17 have a different morphology.
 - Only 4 known LAT extended sources were not detected since they don't have emission above 10 GeV

Preliminary version: Arxiv:1702.00476

- 6 Years,
- 10 GeV 2 TeV

Sources modeled as flat disk

F. de Palma @ Gamma Ray Astrophysics with CTA

FGES

- First detection of gamma-ray extension (point source in Castro+ 2012)
- Good agreement with x-ray/radio size
- Rules out giant molecular cloud west of remnant
- Good candidate for TeV observation

- Previous analysis starting at 2 GeV (Ajello+ 2012) correspond to radio structure while at above 10 GeV (FGES) it seems to correspond to TeV contours (HESS J1804-216, Aharonian+2006)
- Origin of the GeV TeV emission:
 - PWN, but it is unusually large spatial extent for a PWN, or
 - interaction of escaping CR with nearby MC

Gamma-ray Space Telescope

Characterized 279 regions containing known radio SNRs:

- 102 candidates have significant GeV emission:
 - 36 candidates classified through spatial association with radio data:
 - 17 extended: <u>4 new</u>!
 - 2 show spectral curvature
 - 13 point-like hypothesis preferred: <u>10 new</u>!
 - 2 are flagged for IEMs systematics
 - 4 identified as other sources (Crab, binary, and PWN/PSR)
 - 14 marginally classified candidates
- For the 245 candidates that don't have a significant GeV emission or that fail classification, we report their ULs.
- <u>All the detected sources were tested for effects related to the choice of IEMs.</u>

Acero+ 2016 APJS

Indexes of the candidate sources are distributed in the large range between 1.5 and 5, while fluxes are in a two orders of magnitude interval.

Gamma-ray Space Telescope

F. de Palma @ Gamma Ray Astrophysics with CTA

Radio-GeV Flux

LAT-detected SNRs tend to be radio-bright:

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

Gamma-ray Space Telescope

• Indication of break at TeV energies

26/07/2017

• Caveat: TeV sources are not uniformly surveyed.

- Indication of break at TeV energies
- Caveat: TeV sources are not uniformly surveyed.

Constraining CR emission

Assuming that the whole gamma ray emission arises from the interaction of CR with the ISM.

$$F(1 - 100 \,\text{GeV}) \approx f(\Gamma_{\text{CR}}) \times \frac{\epsilon_{\text{CR}}}{0.01} \times \frac{E_{\text{SN}}}{10^{51} \,\text{erg}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \times 10^{-9} \,\text{cm}^{-2} \,\text{s}^{-1}$$

Gamma-ray Space Telescope

ermi

Gamma-ray Space Telescope

26/07/2017

The estimates and upper limits on the CR energy content span more than three orders of magnitude, from a few $10^{49} erg$ to several $10^{52} erg$.

- SNRs above the $\epsilon_{CR} = 1$ ($E_{CR} = E_{SN} = 10^{51} erg$) \rightarrow higher density than derived from X-ray or assumed \rightarrow interacting SNRs are in dense environment.
- Young SNRs $\epsilon_{CR} \sim 0.1 \rightarrow$ IC processes may contribute to their measured luminosity.

Donath A.+, TeVPa 2016

Very High Energy (VHE – 0.2-100 TeV) γ-ray image of the inner part of the Milky Way (I=65°-250°, |b|<3.5°) from the latest H.E.S.S. Galactic Plane Survey (HGPS).

Deil et al. 2015, talk at the 34th ICRC

CTA flux sensitivity

Major sensitivity improvement & wider energy range

Science with CTA

- total dark time available for all CTA observations will be 1100–1300 h/year at each site.
- open, proposal-driven observatory
- for first 10 years 40% of the time is devoted to key science programs (KSP) run by the CTA consortium

The plot and tables in the next slides are from:

<u>The CTA Consortium, Science with the</u> <u>Cherenkov Telescope Array</u>, to be submitted soon.

See A.Giuliani talk!

Key Science Projects (KSP)

Theme	Question		Galactic Plane Survey	Cosmic Ray PeVatrons
Understanding the Origin and Role of Relativistic Cosmic Particles	1:1	What are the sites of high-energy particle acceleration in the universe?	~~	v
	1.2	What are the mechanisms for cosmic particle acceleration?	~	~~
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?	~	~~
	2.2	What are the characteristics of relativistic jets, winds and explosions?	~	~~
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?		

Simulated GPS

10 y Sensitivity of the GPS

A total of 1020 and 600 hours for CTA-South and CTA-North, respectively.

Estimated number of target sources

From 1st approx. estimation ~ 100 new SNRs, hundreds of PWN, handful of binaries and few pulsars.

From R. Zanin ICRC2017

Pevatron KSP

Target	Туре	Exposure (h)	Array	Year	Configuration
RX J1713.7-3946	SNR	50	S	1 - 3	Full array
PeVatrons	Unknown	5×50	S	>3	MSTs + SSTs

F. de Palma @ Gamma Ray Astrophysics with CTA

Morphology studies for RX J 1713

Simulated morphologies for different emission mechanisms with 50h of observation.

SNR RXJ1713.7-3946

Spectral studies

Molecular cloud illuminated by cosmic rays coming from a nearby SNR at different distances

- Fermi has proved to be extremely successful in studying galactic sources, both steady and variable.
- Pass 8 is allowing detailed studies of the morphology of extended sources, better identifying emitting regions.
- Multiwavelength analysis allows to study the emission mechanism.
- In the SNR catalog we have identified a statistically significant population of Galactic SNRs, including:
 - 17 (4 new) extended and 13 (10 new) pointlike SNR candidates
- CTA observations of the Galactic plane will strongly improve our understanding of the Galactic high energy emission.
 - A strong increase of detected sources is expected
 - Spatial resolved spectroscopy will be possible given CTA high spatial and spectra resolution.