ctools “user” Introduction

Francesco Longo
Universita’ di Trieste and INFN Trieste

Most of the material from J.Knodleseder

Overview
Activity
Roadmap
Issues
News
Documents
Wiki

Code status
Links
Forums
Files

Repository

ctools

ctools

ctools are a set of ftools-like executables needed for the scientific analysis of Cherenkov Telescope Array data. ctools is
also a Python module that allows for interactive data analysis and building of analysis scripts and pipelines. ctools
includes also an observation simulator to enable the scientific simulation of future CTA observations.

ctools are based on Gammalib, a versatile toolbox for the high-level analysis of astronomical gamma-ray data. Besides
CTA, Gammalib supports also the analysis of Fermi-LAT data, and extensions to support further gamma-ray
instruments are planned. This enables a simultaneous and coherent multi-instrument analysis of high-energy sources in
the Universe.

ctools and Gammalib is free software distributed under the GPL license version 3.

ctools
Features
Documentation
Getting ctools
Support & getting help
Contributing
Science Validation

What are the ctools?

Tools for end users to extract science results from Cherenkov
Telescope Array event lists and instrument response functions

s)

Background reduced event lists
Instrument response functions

E2dN/E [MeV cm™2

ctools wm)

cherenkov telescope array

-
B S

N
”

oo

| —
Simulated event lists
Instrument response functions

2 00 05 10 15 20 Cta
Phase

Where do the ctools come from?

- 'cs Jll Search HEASARC website
N 3 National Aeronautics and Space Administration [Advanced Search]
A "TA Goddard Space Flight Center HEASARC Quick Links

Sciences and Exploration

~

HEASARC Home Observatories Archive Calibration Software Tools Students/Teachers/Public

e —
Cakibile

NASA’s HEASARC: Software

i
FITSIO FTOOLS Fv HEASoft Hera Maki PIMMS PROFIT Xanadu Xselect XSTAR ASTRO-Update

FTOOLS
A General Package of Software to Manipulate FITS Files
NEWS:

e New Service: Run the FTOOLS tasks directly from your web browser (WebHera).

e FTOOLS 6.20 released. (18 January 2017)

 FITS format invented in 1980'ies for the interchan§e of astronomical images on
magnetic tapes (Wells, Greisen, Harten, 1981, A&AS, 44, 363)
« HEASARC established in 1990 as NASA’s archive for high-energy observatories
(su (?port.ROSAT, CGRO, ASCA, RXTE and achieve cost savmdgs by reusing software
nd archive resources, today supports 32 HE missions and 25 CMB experiments)

« FTOOLS developed by HEASARC since 1992 as a generic set of software utilities to
manipulate FITS files (current release: 6.20, 18/1/2017)

| (a

Where do the ctools come from?

FTOOLS characteristics
« Modular workflow
« Use of IRAF parameter files

FTOOLS (like) analysis has become a standard
in high-energy astronomy. Thousands of
astronomers are today familiar with this

standard.

| a

Where do the ctools come from?

ctools are intentionally very similar to the Fermi/LAT Science Tools

« Fermi/LAT Science Tools proven successful

« Basically no learning curve for Fermi/LAT users

« Low learning curve for users of other HE observatories

« But admittedly some learning curve for people from the VHE community

s 2

Status of ctools

Database access
cscaldb
csiactdata
csiactobs
csfindobs
csiactcopy

ctools

Instrument Response Functions

Event Data

Simulation
csobs2caldb
csroot2caldb
csobsdef
ctobssim

Fermi/LAT Science Tools

Photon

Simulation
Database gtorbsim

Event Data

Spacecraft Data

Data Selection

gtselect -

gtmktime

| | !

Light Curves Likelihood Solar System
Counts Maps Analysis Analysis
Spectra gtlike gtltcubest

gtbin

\4
Inspection and
Preparation
csobsinfo
csobsselect
csmodelinfo
csmodelmerge
\4
Data Selection
ctselect
\ 4
Binning
ctbin
ctcubemask
ctexpcube
ctpsfcube
ctedispcube
ctbkgcube
v v v v v
Y P y Timing analysis Likelihood Utilities
ctskymap csspec cslighterv a"aIYSIS csinfo _
cssrcdetect ctlike cstsmapsplit
ctbutterfly cstsmapmerge
ctulimit csworkflow
cterror cstsdist
cttsmap cssens
ctmodel cspull
csresmap ctmapcube
csviscube

In terms of functionality and number of
tools equivalent to the Fermi/LAT
Science Tools

More models

Fitting of spatial and temporal
parameters possible

cta

ctools developers

ctools CTA

cherenkov telescope array

Home Downloac

Cherenkov Telescope Array Science Analysis Software

Home | Documentation »

Develop

ctools is an open source projet and you are highly welcome to contribute to the development. Contributions can come in
any areas: writing C++ code, contributing Python scripts, writing documentation, testing code, etc.

The ctools development is managed by a development platform that is accessible at https://cta-
redmine.irap.omp.eu/projects/ctools/. Please check out the Wiki on that platform that contains information on how to
contribute to the ctools development.

You may also want to get in the ctools information flow by subscribing to the ctools@irap.omp.eu mailing list. To subscribe
simply send an e-mail to ctools-subscribe@irap.omp.eu.

We are organising regular Coding sprints to allow newcomers to get familiar with the code base and the coding practices.
You are highly invited to join one of the next coding sprints.

You can also follow @gammalib on twitter to get informed about new release of GammalLib and ctools.

Behind the scenes

Next sprint: 3-7 April 2017

w a

ctools

ctools CTA

cherenkov telescope array

Home Download

Cherenkov Telescope Array Science Analysis Software

Home | Documentation » User Manual »

INntroduction

ctools is a highly modular collection of utilities for processing and analysing CTA reconstructed event data in the FITS
(Flexible Image Transport System) data format. Each utility presents itself as a FTOOL (see
http://heasarc.gsfc.nasa.gov/ftools/) and performs a single simple task such as event binning, event selection or model
fitting. Individual utilities can easily be chained together in scripts to achieve more complex operations, either by using the
command line interface, or by using the Python scripting language. The ctools user interface is controlled by standard
IRAF-style parameter files. Software is written in C++ to provide portability across most computer systems. The data format
dependencies between hardware platforms are isolated through the cfitsio library package from HEASARC
(http://heasarc.gsfc.nasa.gov/fitsio/).

This User Manual describes the use of the ctools software.

Concept

clectron-positron pair

GeV

All gamma-ray telescopes measure individual photons as events =>
Handle events from gamma-ray telescopes in an abstract and common software
framework.

Existing high-energy analysis frameworks share a number of common features (FITS files,
likelihood fitting, modular design).

‘ctools

il ... is the client that uses the bricks provided by

CTA specific generic
... to build a set of analysis executables for CTA (and alike)

29 June - 3 July 2015 4th ctools z.a.nd gamnjahb coding sprint
(JGrgen Knédliseder)

Summary

Status of ctools SW
Gammalib introduction
ctools introduction
CTA response functions

ctools introduction

ctools et

Home Get it
Cherenkov Telescope Array Science Analysis Software

ctools

About

ctools is a software package developed for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of
data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided
that the data and response functions are available in the format defined for CTA.

ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-
wise data analysis. ctools comprises also a Python module allowing to control all executables. Creation of shell or
Python scripts and pipelines is supported. ctools comprises also cscripts, which are Python scripts that behave like
binary ftools executables. Extensions of the ctools package by user defined binary executable or Python scripts is
supported.

ctools are based on Gammalib, a versatile toolbox for the high-level analysis of astronomical gamma-ray data. Besides
CTA. GammalLib supports also the analysis of Fermi/LAT and COMPTEL data, and extensions to support further gamma-
ray instruments are planned. An interface to virtual observatory ressources is also in preparation. By making use of
the GammalLib multi-instrument capabilities, ctools supports the joint analysis of CTA (or any IACT providing data in
the CTA format), Fermi/LAT and COMPTEL data.

ctools is free software distributed under the GNU GPL license version 3

http://cta.irap.omp.eu/ctools/

ctools paper

arXiv.org > astro-ph > arXiv:1606.00393 Search or Article |

Astrophysics > Instrumentation and Methods for Astrophysics

Gammalib and ctools: A software framework for the analysis of astronomical gamma-ray
data

J. Knodlseder, M. Mayer, C. Deil, J.-B. Cayrou, E. Owen, N. Kelley-Hoskins, C.-C. Lu, R. Buehler, F. Forest, T. Louge, H. Siejkowski, K. Kosack, L.
Gerard, A. Schulz, P. Martin, D. Sanchez, S. Ohm, T. Hassan, S. Brau-Nogué

(Submitted on 1 Jun 2016 (v1), last revised 22 Jul 2016 (this version, v2))

The field of gamma-ray astronomy has seen important progress during the last decade, yet there exists so far no common software framework for the scientific
analysis of gamma-ray telescope data. We propose to fill this gap by means of the Gammalib software, a generic library that we have developed to support the
analysis of gamma-ray event data. Gammalib has been written in C++ and all functionality is available in Python through an extension module. On top of this
framework we have developed the ctools software package, a suite of software tools that enables building of flexible workflows for the analysis of Imaging Air
Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the
modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools have been written in Python and C++, and can be
either used from the command line, via shell scripts, or directly from Python. In this paper we present the Gammalib and ctools software versions 1.0 that have been
released end of 2015. Gammalib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of
Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose to use ctools as the Science Tools software for the Cherenkov Telescope Array

Observatory.
Comments: 19 pages, 10 figures, accepted for publication in A&A, corrected X axis units in Figure 10
Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM); High Energy Astrophysical Phenomena (astro-ph.HE)
Journal reference: A&A 593, Al (2016)
DOI: 10.1051/0004-6361/201628822
Cite as: arXiv:1606.00393 [astro-ph.IM]

(or arXiv:1606.00393v2 [astro-ph.IM] for this version)

Status of ctools

(ctools
herenkov teesoe arey CTA About Getting ctools For Users For Developers Help

Cherenkov Telescope Array Science Analysis Software

Home | Documentation » Getting ctools » previous | next | index

DOWI’]|Oad Table Of Contents

Download
ctools can be obtained in form of releases or directly from the git development repository. Prefer a release if you intend » Releases
using ctools for production (and publications). Clone the code from git if you need the most recent code that implements » Development release
new features and corrects known bugs. » Git repository
Releases Previous topic

The latest ctools release is ctools-1.3.1 (20 July 2017). Getting ctools
Below a table of ctools releases. Please read the Release History to learn more about new features and corrected bugs in a Next topic

given release.
Installing ctools

Warning
At this stage of the project there is a strict link between the ctools and gammalib versions. Please make sure that you have the .
corresponding gammalib version installed before installing ctools. The Mac OS X packages comprise both ctools and gammalib. QU|Ck search
ctools gammalib Mac OS X package Go
131 131 ctools-1.3.1-macosx10.7.dmg Enter search terms or a module,
1.3.0 1.3.0 ctools-1.3.0-macosx10.7.dmg class or function name.
1.2.1 1.2.0 ctools-1.2.1-macosx10.7.dmg
1.2.0 1.2.0 ctools-1.2.0-macosx10.7.dmg
1.1.0 1.1.0 ctools-1.1.0-macosx10.3.dmg
1.01 1.0.1 ctools-1.0.1-macosx10.3.dmg
1.0.0 1.0.0 ctools-1.0.0-macosx10.3.dmg
0.10.0 0.11.0 ctools-0.10.0-macosx10.3.dmg
0.9.0 0.10.0 ctools-0.9.1-macosx10.3.dmg
0.8.1 0.9.1 ctools-00-08-01-macosx10.3.dmg
0.8.0 0.9.0 ctools-00-08-00-macosx10.3.dmg

Gammalib

Gammalib

.- .Gammalib

Home Get it

*
Lib A versatile toolbox for scientific analysis of astronomical gamma-ray data

Gammalib

About

The Gammalib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a
C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as
data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements
instruments specific functionalities such as instrument response functions and data formats. Instrument specific
functionalities share a common interface to allow for extension of the GammalLib to include new gamma-ray
instruments. The GammalLib provides an abstract data analysis framework that enables simultaneous multi-mission
analysis.

Gammalib does not rely on any third-party software, except of HEASARC's cfitsio library that is used to implement the
FITS interface. Large parts of the code treat gamma-ray observations in an abstract representation, and do neither
depend on the characteristics of the employed instrument, nor on the particular formats in which data and
instrument response functions are delivered. Instrument specific aspects are implemented as isolated and well
defined modules that interact with the rest of the library through a common interface. This philosophy also enables
the joint analysis of data from different instruments, providing a framework that allows for consistent broad-band
spectral fitting or imaging. So far, Gammalib supports analysis of COMPTEL, Fermi/LAT, and Cherenkov telescope data
(CTA, H.E.S.S., MAGIC, VERITAS).

Gammalib is free software distributed under the GNU GPL license version 3

http://gammalib.sourceforge.net/

Gammalib: the technology under the hood

|

optional, input enhancement

optional, but needed for fits i/o
pa ! \f (backspace, tab completion, ...)

(High-level analysis support] (Instrument modules)
Observation Model Sky map Application \
handling handling handling support | CTA
& 7
)
. " Fermi/LAT
Core services H
W it Numerics Linear Function Other E —
5 algebra optimization support !
YOUNEED < A) ;
- Multi-
(Interfaces) E wavelength
)
fits xspec xm| Vo -
e J : \
L :
'
]
:

‘ cfitsio | readline
*

ncurses

How does the analysis work?

« CTA data live in a 4 dimensional world
— Reconstructed arrival direction (2d)
— Reconstructed energy (1d)
— Time (1d)
« For a given time interval, events can be binned in a 3 dimensional
data space

Energy

Galactic longitude

17

How does the analysis work?

« ctools fits the 3d data space to extract spatial and spectral
information about the gamma-ray sources

— Parametrised model components
— Simultaneous fitting of spatial and spectral parameters

Counts cube Model cube(s)

 Classical VHE analysis techniques (on/off fitting, aperture photometry,

etc.) are under development
. (cta

Model summary

Spatial

Point source
Radial symmetric models
» Gaussian
» Disk
* Shell
Elliptical models
» Gaussian
» Disk
“Diffuse” models
« Map
« Map cubes (energy dependent maps)
 lIsotropic
Composite

 Temporal
— Constant
— Light curve

Phase curve

« Spe

And more to come (e.g. Dark Matter Halo)

20

ctral

Power law

Broken power law
Exponentially cut off power law

Super exponentially cut off power
law

Log parabola

Gaussian (line)

File function (arbitrary spectrum)
Node function (arbitrary fit)
Constant

Composite

Multiplicative (useful for EBL)

a

Conclusions

« ctools package allows simulating and analysing CTA &
IACT event data

« Analysis approach and tools intentionally very similar
to Fermi/LAT Science Tools

 Existing functionality equivalent to Fermi/LAT Science
Tools

e |n addition

— More models (in particular for extended source, but also for
temporal variations)

— Spatial and temporal model fitting

 Support for joint multi-mission analysis (CTA, IACT,
Fermi/LAT, COMPTEL, MWL)

| a

ctools examples

ctools

Reference Manual

This manual provides reference information for all ctools and csripts. General information on ctools usage can be found
here.

Below you find links to the command line reference for the tools and scripts that are available.

ctools

ctbin — Generates counts cube

ctbkgcube — Generates background cube
ctbutterfly — Compute butterfly

ctcubemask — Filter counts cube

ctexpcube — Generates exposure cube

ctlike — Performs maximum likelihood fitting
ctmodel — Computes model counts cube
ctobssim — Simulate CTA observations
ctpsfcube — Generates point spread function cube
ctselect — Selects event data

ctskymap — Generates sky map

cttsmap — Generates Test Statistics map
ctulimit — Calculates upper limit

How to use ctobssim?

Simulating CTA data

CTA data are simulated by the executable ctobssim. To start the executable, type ctobssim at the console prompt
(which is denoted by $). ctobssim will query for a number of parameters:

% ctobssim

Model [$CTOOLS/share/models/crab.xml]

RA of pointing (degrees) (©-360) [83.63]

Dec of pointing (degrees) (-90-90) [22.01]
Calibration database [dummy]

Instrument response function [cta_dummy_irf]
Radius of FOV (degrees) (©-180) [5.0]

Start time (MET in s) (@) [@.0]

End time (MET in s) (@) [1800.0]

Lower energy limit (Tev) (@) [@.1]

Upper energy limit (TeVv) (@) [100.0]

Output event data file or observation definition file [events.fits]

Each line represents a query for one parameter. The line starts with a short description of the parameter, followed by
the default parameter value proposed by ctobssim in squared brackets []. If no parameter is entered (which is the
case for the majority of parameters shown here), the default parameter will be used. Otherwise, the specified
parameter will overwrite the default parameter.

You may have recognised that the environment variable $CTO0LS has been used in the path names of the first two
parameters. ctools will automatically expand the environment variables.

The CTA instrument properties (effective area, PSF width) are taken for the moment from a dummy performance table
that is located in $CTOOLS/share/caldb/cta.

Events are simulated based on the instrument properties and based on a source and background model. Only events
that fall within the specified region of interest (ROI), defined as a circle around a sky position in Right Ascension and
Declination (in degrees), will be stored in the output event data file. The duration of the simulation is taken here to 30
minutes (or 1800 seconds). Events are simulated for energies between 0.1 and 100 TeV.

http://cta.irap.omp.eu/ctools/

How to?

Implementation

The general model is describe in ctools using a model definition XML file. Below is a simple example of such a file
comprising one source and one background model. Each model is factorised in a spectral (tag <spectrum>) and a spatial
component (tags <spatialModel> and <radialModel>):

M(x,y, E) = Mspectral (E) X Mspatial x,y)

In this specific example, the source component Crab describes a point source at the location of the Crab nebula with a
power law spectral shape. The background component Background is modelled as a radial Gaussian function in offset
angle squared (with the offset angle being defined as the angle between pointing and measured event direction) and a
spectral function that is tabulated in an ASClII file.

<?xml version="1.0" standalone="no"?>
<source_library title="source library"s
<source name="Crab" type="PointSource">

<spectrum type="PowerLaw">
<parameter name="Prefactor" scale="1e-16" value="5.7" min="1e-07" max="1000.0" free="1"/>

<parameter name="Index" scale="-1" value="2.48" min="0.0" max="+5.0" free="1"/>
<parameter name="Scale" scale="1e6" value="0.3" min="0.01" max="1000.0" free="0"/>
</spectrum>

<spatialModel type="SkyDirFunction">
<parameter name="RA" scale="1.0" value="83.6331" min="-360" max="360" free="1"/>
<parameter name="DEC" scale="1.0" value="22.0145" min="-90" max="90" free="1"/>
</spatialModel>
</source>
<source name="Background" type="RadialAcceptance" instrument="CTA">
<spectrum type="FileFunction" file="$CTOOLS/share/models/bkg_dummy.txt">
<parameter name="Normalization" scale="1.0" value="1.0" min="0.0" max="1000.0" free="1"/>
</spectrum>
<radialModel type="Gaussian">
<parameter name="Sigma" scale="1.0" value="3.0" min="0.01" max="10.0" free="1"/>
</radialModel>
</source>
</source_library>

How to use?

The source and background model is defined by the XML file $CTOOLS/share/models/crab.xml:

<?xml version="1.0" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource">
<spectrum type="PowerLaw">
<parameter name="Prefactor” scale="1le-16" value="5.7" min="1e-07" max="1000.0" free="1"/>

<parameter name="Index" scale="-1" value="2.48" min="0.0" max="+5.8" free="1"/>
<parameter name="Scale” scale="1e6" value="0.3" min="0.01" max="1000.0" free="0"/>
</spectrum>

<spatialModel type="SkyDirFunction">
<parameter name="RA" scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
<parameter name="DEC" scale="1.0" value="22.0145" min="-90" max="9@" free="0"/>
</spatialModel>
</source>
<source name="Background” type="RadialAcceptance” instrument="CTA">
<spectrum type="FileFunction” file="$CTOOLS/share/models/bkg_dummy.txt">
<parameter scale="1.0" name="Normalization” min="0.0" max="1000.0" value="1.0" free="1"/>
</spectrum>
<radialModel type="Gaussian">
<parameter name="Sigma" scale="1.0" value="3.0" min="0.01" max="10.0" free="1"/>
</radialModel>
</source>
</source_library>

The model consists of a source library that contains 2 “sources”: the Crab nebula and an instrumental background
model.

The Crab nebula is modelled by a factorized sky model that has a spectral and a spatial component (tags <spectrum>
and <spatialModel>, respectively). The spectrum is modelled by a power law, which is defined by 3 parameters: the
Prefactor, the Index and the Scale. The spatial model has 2 parameters: Right Ascension in degrees (RA), and
Declination in degrees (DEC). Each parameter has a value and a scale factor, the real value of the parameter being the
product value * scale. Typically, scale is chosen so that value is of the order of 1 (this is relevant for model fitting later).
In addition, value is bound by a minimum (min) and maximum (max) value, and a parameter may be free (free="1") or
fixed (free="0"). The min, max, and free attributes are not relevant here for the simulations, but they will be
important for the model fitting later.

http://cta.irap.omp.eu/ctools/

How to use?

The spectral intensity I(E) (in units of photons/cm2/s/MeV) of the power law is given by

dN E\"
N, =
dE °(E0)

where the parameters in the XML definition have the following mappings:

e Ny = Prefactor
® 7y = Index
e FEy = scale

Note that energies are given in MeV.

The instrumental background of CTA is modelled by a factorized data model that has a spectral and a radial
component (tags <spectrum> and <radialModel>, respectively). The spectral component describes the on-axis
background counting rate of CTA as function of energy in units of counts/s/sr/TeV. The radial component describes the
variation of the background rate with offset angle squared, (i.e. square of the offset angle with respect to the pointing
direction) which is modelled here by a Gaussian. The only parameter of the radial component is the width of the
Gaussian Sigma, which is here set to 3 degrees squared.

http://cta.irap.omp.eu/ctools/

Spectral Models

Power law
The GModelSpectralPlaw class implements the power law function

dN EN\?
ﬁ“’“(ﬁ)

where the parameters in the XML definition have the following mappings:

o ky = prefactor
e = Index
o Ey=scale

The XML format for specifying a power law is:

<spectrum type="Poweriaw">

<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" max="1860.0" free="1"/>
<parameter name="Index" scale="-1" value="2.43" min=".8" m= +5.8" free="1"/>
<parameter name="Scale” scale="1e6" value="8.3" min="8.e1" mex="18ee.8" free="0"/>
</spectrum>

An alternative power law function is defined by the GModelSpectralPlaw?2 class that uses the integral flux as
parameter rather than the Prefactor:

dN N(y+1)E
4B g g

where the parameters in the XML definition have the following mappings:

¢ N = Integral

* = Index

o FEin = LowerLimit
e Fru = UpperLimit

The XML format for specifying a power law defined by the integral flux is:

<spectrum type="PowerLaw2™>
<parameter scale="1e-87" name="1
<parameter scale="1.8" name= value: 8" free="1"/>
<parameter scale="1.8" name="Loweriimit” md " value="180.8" free="9"/>
<parameter scale="1.8" name="Upperiimit™ min="18.8" max="10000€0.8" value="560020.8" free="9"/>

</spectrum>

value="1.¢" free="1"/>

NOTE: The UpperLimit and LowerLimit parameters are always treated as fixed and, as should be apparent from this
definition, the flux given by the Integral parameter is over the range (LowerLimit, UpperLimit). Use of this model
allows the errors on the integrated flux to be evaluated directly by likelihood, obviating the need to propagate the
errors if one is using the PowerLaw form.

http://gammalib.sourceforge.net/user_manual/modules/model.html##tsec-model

Spectral Models

Exponentially cut-off power law

The GModelSpectralExpPlaw class implements the exponentially cut-off power law function

iz o(m) ()
dE \®/) “P\Ex

where the parameters in the XML definition have the following mappings:

e Jp = Prefactor
Y= Index

Ey = scale

o FEout = Cutoff

The XML format for specifying an exponentially cut-off power law is:

<spectrum type="ExpCutoff™>

<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" mex="18€8.8" free="1"/>

<parameter name="Index" scale="-1" value="2.43" min="8.8" mex="+5.8" free="1"/>

<parameter name="Cutoff” scale="1e6" value="1.8" min="2.21" mex="188.8" free="1"/>

<parameter name="Scale” scale="1e6" value="8.3" min="2.e1"” mex="18e2.8" free="8"/>
</spectrum>

http://gammalib.sourceforge.net/user_manual/modules/model.html##tsec-model

Spectral Models

Broken power law

The GModelSpectralBrokenPlaw class implements the broken power law function

(E)lf E<B,

N _ E,
aE (£)" oherwine
E

where the parameters in the XML definition have the following mappings:

o Jy = prefactor
* Y = Indexl

* 7Yy = Index2

o Ej = greakvalue

The XML format for specifying a broken power law is:

<spectrum type="BrokenPowerLaw™>

<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" max="1208.8" free="1"/>
<parameter name="Index1" scale="-1" value="2.43" min="8.8" max="+5.8" Tree="1"/>
<parameter name="Breakvalue” scale="1e6" value="8.3" min="8.81" max="1208.8" free="1"/>
<parameter name="Index2" scale="-1" value="2.78" min="8.81" max="1888.8" free="1"/>
< /spectrum>

http://gammalib.sourceforge.net/user_manual/modules/model.html##tsec-model

Spectral Models

Log parabola
The GModelSpectralLogParabola class implements the log parabola function

dN E nln(E/Eq)
Fioh ’”(fo)

where the parameters in the XML definition have the following mappings:

bo = Prefactor
= Index

7] = Curvature
Ep = scale

The XML format for specifying a log parabola spectrum is:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1€€0.0" free="1"/>

<parameter name="Index" scale="-1 value="2.32473" min=".8" max="+#5.8" free="1"/>

<parameter name="Curvature™ scale="-1" value="2.e74" min="-5.8" max="+5.8" free="1"/>

<parameter name="Scale” scale="1e6" value="1.8" min="0.81" max="1ee8.8" free="0"/>
</spectrum>

An alternative XML format is supported for compatibility with the Fermi/LAT XML format:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1€00.8" free="1"/>

<parameter name="alpha” scale="1 value="2.32473" min="0.8" max="+5.8" free="1"/>
<parameter name="beta™ scale="1" value="8.874" min="-5.8" max="+5.8" free="1"/>
<parameter name="Scale” scale="1e6" value="1.e" min="9.81" max="1ee8.8" free="8"/>
</spectrum>
where

e 3alpha =-Index
e beta =-Curvature

http://gammalib.sourceforge.net/user_manual/modules/model.html##tsec-model

Spectral Models

File function

A function defined using an input ASCII file with columns of energy and differential flux values. The energy units
are assumed to be MeV and the flux values are assumed to em™ s~ *MeV ™! (the only exception being a model

for which the spatial component is a constant diffuse model GModelSpatialDiffuseConst; in this case, the units are

-2 1
em~ s~ MeV~'sr!). The sole parameter is a multiplicative normalization:

AN dN
dE = NIE|

where the parameters in the XML definition have the following mappings:
* No = Normelization
The XML format for specifying a file function is:
<spectrum type="FileFunction™ file="data/filefunction.txt™>

<parameter scale="1.8" name="Normalization™ min="28.8" max="1808.8" value="1.8" free="1"/>
</spectrum>

If the file is given as relative path, the path is relative to the working directory of the executable. Alternatively, an
absolute path may be specified. Any environment variable present in the path name will be expanded.

http://gammalib.sourceforge.net/user_manual/modules/model.html##tsec-model

How to use?

ctobssim will write 2 files in the working directory: events.fits and ctobssim.log. The first file contains the
simulated events in FITS format and can be inspected using fv or ds9. The FITS file will contain 3 extensions: an
empty primary image, a binary table named EVENTS that holds the events (one row per event), and a binary table
named GTI holding the Good Time Intervals (for the moment a single row with 2 columns providing the start and the
stop time of the simulated time interval).

The second file produced by ctobssim is a human readable log file that contains information about the job execution.
As example, the last lines from this file are shown here:

2014-10-30T22:35:06: +== +

2014-10-30T722:35:06: | Simulate observation |

2014-10-30T722:35:06: +== +

2014-10-30T22:35:06: === Observation ===

2014-10-30T22:35:06: Simulation area: 1.9635e+11 cm2
2014-10-30722:35:06: Simulation cone: RA=83.63 deg, Dec=22.01 deg, r=5.5 deg
2014-10-30722:35:06: Time interval: @ - 1800 s
2014-10-30722:35:06: Photon energy range: 100 GeV - 100 TeV
2014-10-30722:35:06: Event energy range: 100 GeV - 100 TeV
2014-10-30T22:35:06: MC source photons: 287547 [Crab]
2014-10-30722:35:06: MC source events: 995 [Crab]
2014-10-30T22:35:86: MC source events: 995 (all source models)
2014-10-30722:35:06: MC background events: 5146
2014-10-30T22:35:86: MC events: 6141 (all models)
2014-10-30722:35:06:

2014-10-30T722:35:06: t+==================+

2014-10-30T722:35:06: | Save observation |

2014-10-308T722:35:06: t+==================+

2014-10-30T722:35:06:
2014-10-30T22:35:06: Application "ctobssim" terminated after 1@ wall clock seconds, consuming ©.3604 seconds o

< | | »

Each line starts with the UTC time at which the line has been written. In this run, 207547 Crab photons have been
thrown over an area of 19.6 square kilometres during a time interval of 1800 seconds. 995 of these photons have been
registered by CTA as events. In the same time interval, 5146 background events have been registred by CTA.

http://cta.irap.omp.eu/ctools/

How to use?

CTA Instrument Response Functions

Note

Instrument response functions are formally not part of ctools as they should be provided by the instrument teams. The
GammaLib framework on which ctools are built comes with a set of basic response functions, but for getting the latest instrument
response functions you should contact the relevant instrument teams. CTA consortium members should download the latest
calibration database containing Prod1 and Prod2 instrument response functions from the consortium Sharepoint site (requires
password).

What are instrument response functions?

_)
The instrument response functions provide a mathematical description that links the measured quantities d of an

._}
event to the physical quantities p of the incident photon. The following figure illustrates this relationship:

/ dp R(dl7,)

— —
I(p) is the gamma-ray intensity arriving at Earth as a function of photon properties p (which usually are true
_)

photon energy, true photon incident direction, and true photon arrival time), while e(d) is the expected event rate
_)

as function of event properties d (which usually are the measured photon energy, measured or reconstructued

photon incident direction, and measured photon arrival time). The expected event rate is obtained by integrating the
: : == o e

product of the instrumental response function R(d | p , @) and the emitted intensity I(p) over the photon

properties ? The argument E) in the response function comprises any auxiliary parameter on which the response

function may depend on (e.g. pointing direction, triggered telescopes, optical efficiencies, atmospheric conditions,

etc.). All these quantities and hence the instrument response function may depend on time.

http://cta.irap.omp.eu/ctools/user_manual/getting_started/response.html

Response Functions

CTA response functions

The instrument response functions for CTA are factorised into the effective area A¢st(d, p, E, f) (units cm?),

spread function PSF(p'ld, p, E, t), and the energy dispersion Edisp(E’Id,p, E, t) following:

the point

RQ',E',t'\d,p,E, 1) = Ae;(d, p, E,) X PSF(p'\d, p, E, 1) X Edisp(E'Id, D.E, 1)

ctools are shipped with response functions for the northern and southern arrays, and variants are available that have
been optimised for exposure times of 0.5 hours, 5 hours and 50 hours. In total, the following six instrument response
functions are available: North_0.5h, North_5h, North_50h, South_©.5h, South 5h, and South_5@h.

Each response is stored in a single FITS file, and each component of the response factorisation is stored in a binary table of
that FITS file. In addition, the response files contain an additional table that describes the background rate as function of
energy and position in the field of view. An example of a CTA response file is shown below:

Index Extension Type Dimension View
|0 Primary Image 0 P | | |
1 EFFECTIVE AREA Binary 6 cols X1 rows Header | Hist | Plot | Al | Select |
e POINT SPREAD FUNCTION Binary 10 cols X1 rows Header | Hist | Plot | Al | Select |
13 ENERGY DISPERSION Binary 7 cols X1 rows Header | Hist | Plot | Al | Select |
4 BACKGROUND Binary 7 cols X1 rows e | Hist | Plot | All | Select |/
Z

Each table in the response file is in a standardised format that is the one that is also used for the Fermi/LAT telescope. As
an example, the effective area component of the response file is shown below. Response information is stored in a n-
dimensional cube, and each axis of this cube is described by the lower and upper edges of the axis bins. In this example
the effective area is stored as a 2D matrix with the first axis being energy and the second axis being offaxis angle. Effective
area information is stored for true (EFFAREA) and reconstructed (EFFAREA_RECO) energy. Vector columns are used to store
all information.

http://cta.irap.omp.eu/ctools/user_manual/getting_started/response.html

How to use?

Binning CTA data

As next analysis step you will bin the data in a counts cube using the executable ctbin. A counts cube isa 3
dimensional data cube, spanned by Right Ascension (or Galactic longitude), Declination (or Galactic latitude), and the
logarithm (base 10) of energy.

ctbin is executed by typing:

$ ctbin

Input event list or observation definition file [events.fits]

First coordinate of image center in degrees (RA or galactic 1) [83.63]
Second coordinate of image center in degrees (DEC or galactic b) [22.01]
Projection method e.g. AIT|AZP|CAR|MER|STG|TAN (AIT|AZP|CAR|MER|STG|TAN) [CAR]
Coordinate system (CEL - celestial, GAL - galactic) (CEL|GAL) [CEL]
Image scale (in degrees/pixel) [0.02]

Size of the X axis in pixels [200]

Size of the Y axis in pixels [200]

Algorithm for defining energy bins (FILE|LIN|LOG) [LOG]

Start value for first energy bin in Tev [0.1]

Stop value for last energy bin in TeV [100.0]

Number of energy bins [20@]

Output counts cube [cntmap.fits]

In this example we adjust the event data file name and accept all the remaining parameter defaults as they perfectly
satisfy our needs. The counts cube will be centred on the location of the Crab (Right Ascension 83.63 degrees,
Declination 22.01 degrees) and will be aligned in celestial coordinates. A cartesian projection has been selected. The
counts cube has 200 x 200 spatial pixels of 0.02 x 0.02 degrees in size, hence it covers a total area of 4 x 4 degrees.

The counts cube will contain 20 maps, which are logarithmically spaced in energy, and which cover the energy range
from 0.1 TeV to 100 TeV. In this example, the counts cube will be saved as cntmap.fits in the working directory. In
addition to the counts cube, that is stored as the primary image extension, the FITS file also contains an extension
named EBOUNDS that defines the energy boundaries that were used, and an extension GTI that defines the Good Time
Intervals that have been used. The following image shows the resulting FITS file. The EBOUNDS table has 20 rows, one
for each energy bin, while the GTI table has just a single row, indicating the start and stop time of the simulated data.

File Edit Tools Help
Index Extension Type Dimension View
0 Primary Image 200X200X20 peader | image | Tave |
a1 EBOUNDS Binary 2colsX20roWS yeager | Hist| Prot | Al | Setect |

1| 72 GTI Binary Zcols X1rows peader | Hist | Pot | an | select |
YA

How to use?

Fitting CTA data

Now we are ready to fit the simulated data with a model. For simplicity we use in this example the same model that we
used to simulate the data with ctobssim. Model fitting is done using the executable ctlike, and we do the fit by typing:

$ ctlike

Event list, counts cube or observation definition file [events.fits] cntmap.fits
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml]

Source model output file [crab_results.xml]

Fitting of the data is done in binned mode, which means that the events have been binned into a counts cube and the
fit computes the log-likelihood function by summing over all 200 x 200 x 20 bins of the counts cube. There is an
alternative method, the so called unbinned mode, where the events are not binned into a counts cube and the log-
likelihood is computed directly by summing over all events. We will explore the unbinned mode later.

One of the parameters given to ctlike is a source model output file (we specified crab_results.xml in the example),
and this file will be a copy of the model XML file where the parameter values have been replaced by the fit results. In
addition, the statistical uncertainties are added for each fitted parameter using the attribute error. Below we show the
XML result file that has been produced by the run:

<?xml version="1.8" encoding="UTF-8" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource">
<spectrum type="PowerLaw">
<parameter name="Prefactor"” value="6.07928" error="0.204582" scale="1e-16" min="1e-07" max="1000" free='
<parameter name="Index" value="2.5009" error="0.0252057" scale="-1" min="0" max="5" free="1" />
<parameter name="Scale"” value="0.3" scale="1e+06" min="0.01" max="1000" free="0" />
</spectrum>
<spatialModel type="SkyDirFunction™>
<parameter name="RA" value="83.6331" scale="1" min="-360" max="360" free="0" />
<parameter name="DEC" value="22.0145" scale="1" min="-90@" max="90" free="0" />
</spatialModel>
</source>

Likelihood

Doing an unbinned analysis

As gamma-ray events are rare, the counts cubes generated by ctbin will in general be sparse, having many empty
pixels, in particular at high energies. An alternative analysis technique consists of working directly on the event list
without binning the events in a counts cube. We will see the benefit of such an analysis later once you re-run ctlike in
unbinned mode.

For unbinned analysis you first have to define the data space region over which the analysis is done. This is similiar to
the ctbin step in binned analysis where you defined the size of the counts cube, the energy range, and the time
interval. For unbinned analysis you have no such thing as a counts cube, but you have to define over which region of
the data space the selected events are spread (because the ctools have to integrate over this region to compute the
total number of predicted events in the data space that you analyse). Furthermore, you have to define what energy
range is covered, and what time interval is spanned by the data. All this is done by the executable ctselect, which
replaces the ctbin step in an unbinned analysis.

ctselect performs an event selection by choosing only events within a given region-of-interest (ROI), within a given
energy band, and within a given time interval from the input event list. The ROI is a circular region on the sky, for
which you define the centre (in celestial coordinates) and the radius. Such a circular ROI is sometimes also called an
acceptance cone. The following example shows how to run ctselect:

$ ctselect

Input event list or observation definition file [events.fits]

RA for ROI centre (degrees) (@-360) [83.63]

Dec for ROI centre (degrees) (-90-90) [22.01]

Radius of ROI (degrees) (©-180) [3.0]

Start time (CTA MET in seconds) (@) [0.0]

End time (CTA MET in seconds) (@) [0.0]

Lower energy limit (TeVv) (@) [0.1]

Upper energy limit (TeV) (@) [100.0]

Output event list or observation definition file [selected_events.fits]

ctlike

% ctlike

Event list, counts cube or observation definition file [cntmap.fits] selected_events.fits
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml]

Source model output file [crab_results.xml]

You will recognise that ctlike runs much faster in unbinned mode compared to binned mode. This is understandable
as the selected event list contains only 6127 events, while the binned counts cube we used before had 200 x 200 x 20 =
800000 pixels. As unbinned maximum likelihood fitting loops over the events (while binned maximum likelihood loops
over the pixels), there are much less operations to perform in unbinned than in binned mode (there is some additional
overhead in unbinned mode that comes from integrating the models over the region of interest, yet this is negligible
compared to the operations needed when looping over the pixels). So as long as you work with short event lists,
unbinned mode is faster. Unbinned ctlike should also be more precise as no binning is performed, hence there is no
loss of information due to histogramming.

TS calculation

Note

The ctlike tool has the ability to estimate the detection significance for sources in the XML model. This is done by computing the
Test Statistic value which is defined as twice the log-likelihood difference between fitting a source at a given position on top of a
(background) model or fitting no source. Roughly speaken, the square root of the Test Statistic value gives the source detection

significance in Gaussian sigmas, although the exact relation depends somewhat on the formulation of the statistical problem.

To instruct ct/ike to compute the Test Statistic value for a given source you need to add the attribute tscalc="1" to the XML
file:

<source name="Crab" type="PointSource" tscalc="1">

ctlike will then compute the Test Statistic value for that source and dump the result in the log file:

2015-05-22T19:58:43: === GModelSky ===
2015-05-22T19:58:43: Namececeeeeeeee....: Crab
2015-05-22T719:58:43: Instruments : all
2015-05-22T719:58:43: Test Statistic: 18662.6

The Test Statistic value will also be added as new attribute ts to the XML result file:

<source name="Crab" type="PointSource" ts="18662.576" tscalc="1"»>

Butterfly

Calculate and visualise butterfly

To visualise the analysis results retrieved above, one can calculate the confidence band of the spectral fit. The tool ctbutterfly
takes the optimised source model as input. It takes the covariance matrix from the fit to conduct a Gaussian error propagation
for each energy value. It will write the butterfly information into an ASCII file. The following example shows how to compute
such a butterfly from the command line.

$ ctbutterfly

Input event list, cube or observation definition file [events.fits]
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml] crab_results.xml
Source of interest [Crab]

Start value for first energy bin in TeVv [0.1]

Stop value for last energy bin in TeVv [100.0]

Output ascii file [butterfly.txt]

Below some lines of the ctbutterfly.log:

2014-16-30T17:
2014-106-30T17:
2014-16-30717:
2014-16-30717:
2014-16-30717:
2014-16-30T717:
2014-16-30T717:
2014-16-30T17:
2014-16-30T17:
2014-16-30T17:
2014-16-30T717:
2014-16-30717:
2014-16-30717:

<

51:
51:
51:
51:
51:
51:
51:
18
18
51:
51:
51:
51:

39:

39

39:

39:

39:

39

39:

39:

39:

39

39:

4===========================4

: | Compute covariance matrix |
4===========================4
4====================4

: | Generate butterfly |
4====================+4
4========================+4

: | Save Butterfly to file |
4========================4

39:

39:

Application "ctbutterfly" terminated after 15 wall clock seconds, consuming ©.051253

»

Butterfly

python %$CTOOLS/share/examples/python/show_butterfly.py butterfly.txt

This will result in a canvas which should look like the following:

10 14

10}

10167

|

10-17 k

1018»

lovl‘) &

dN/dE [MeV ' s ' cm

1020_

1021 &

22
10

10°

10° 10
Energy [MeV]

Confidence band of the fit

ctbutterfly

Purpose: produce a butterfly diagram for a spectral model M

2 n —1
o(E) = ZJM(E) 02In L(FE) OM(E)

el 5{)1' 0pidpk oy

J |\] | B
i i
flux error spectral covariance matrix spectral
model model

’ gradient gradient

General parameters

inobs, f, a, "events.fits",,,"Input event list, counts cube or observation definition file"
inmodel, f, a, "$CTOOLS/share/models/crab.xml",,, "Source model"

srcname, s, a, "Crab",,,"Source of interest" Show_butterﬂy.py

expcube, f, a, "NONE",,, "Exposure cube file (only needed for stacked analysis)" 10

psfcube, f, a, "NONE",,, "PSF cube file (only needed for stacked analysis)"
bkgcube, f, a, "NONE",,, "Background cube file (only needed for stacked analysis)" N
caldb, s, a, "prod2",,, "Calibration database" 10
irf, s, a, "South_506h",,, "Instrument response function"
outfile, f, a, "butterfly.txt",,, "Output ascii file" 10
matrix, f, h, "NONE",,, "Input covariance Matrix FITS file"
E 10V
Energy binning parameters)
#: "
ebinalg, s, h, "LOG", FILE|LIN|LOG,,"Algorithm for defining energy bins" T 10
emin, r, a, 0.1,,,"Start value for first energy bin in TeV"]
emax, r, a, 100.0,,,"Stop value for last energy bin in TeV" = -
enumbins, i, h, 100,,,"Number of energy bins" g 10
ebinfile, f, h, "NONE",,,"Name of the file containing the energy bin definition" F4
20
10
Standard parameters
10%
chatter, i, h, 2,0,4, "Chattiness of output"
clobber, b, h, yes,,, "Overwrite existing output files with new output files?"
debug, b, h, "Debugging mode activated" 10“, - -
mode, s, h, ,»» "Mode of automatic parameters" 10 10 10
logfile, f, h, "ctbutterfly.log",,, "Log filename" Energy [MeV]

4th ctools and gammalib coding sprint

29 June - 3 July 2015 (Jirgen Knodlseder)

Further steps

‘ctools CTA

cherenkov telescope array

Home Download

Cherenkov Telescope Array Science Analysis Software

Home | Documentation » User Manual » Getting started »

Beyond the first steps

Assuming that you have read the quickstart tutorial, here now some chapters to read if you intend to do more complex
analyses. Once you have gone through these chapters you should have a pretty complete picture about the capabilities of
ctools. And you should be ready for doing your own cutting edge analyses.

Combining observations

Performing a stacked analysis

Generating a Test Statistic map

Generating a residual map

Connecting observations to dedicated instrument response functions
Connecting observations to specific models

cttsmap

Purpose: produce a Test Statistics map

TS(a,0) =2(In L(e,d) — In Ly)
\ J

i
model with source model

Spatial binning parameters

located at o, O without

“events.fits",,, "Input event list, counts cube or observation definition file"
"$CTOOLS/share/models/crab.xml",,, "Source model"

“Crab",,, "Test source" SOU rce
“NONE",,, "Exposure cube file (only needed for stacked analysis)"
“NONE",,, "PSF cube file (only needed for stacked analysis)"
“NONE",,, "Background cube file (only needed for stacked analysis)"
“prod2",,, "Calibration database"

"“South_5@h",,, "Instrument response function"

“tsmap.fits",,, "Output Test Statistic map"

for splitting and speed purpose

no,,, "Use pointing instead of xref/yref parameters?"

200,,, "Size of the X axis in pixels"

200,,, "Size of the Y axis in pixels"

0.02,,, "Image scale (in degrees/pixel)"

“CEL", CEL|GAL,,"Coordinate system (CEL - celestial, GAL - galactic)"
83.63,0,360, "First coordinate of image center in degrees (RA or galactic 1)"
22.01,-90,90, "Second coordinate of image center in degrees (DEC or galactic b)"
“CAR", AIT|AZP|CAR|MER|MOL|STG|TAN,, “Projection method"

-1,,, "First bin to compute"
-1,,, "Last bin to compute"
0.0,,, "LogLikelihood value of null hypothesis"

#
General parameters
inobs, f, a,
inmodel, f, a,
srcname, s, a,
expcube, f, a,
psfcube, f, a,
bkgcube, f, a,
caldb, s, a,
irf, s, a,
outmap, f, a,
#
usepnt, b, h,
nxpix, i, a,
nypix, i, a,
binsz, r, a,
coordsys, s, a,
xref, r, a,
yref, r, a,
proj, s, a,
#
Parameters
binmin, i, h,
binmax, i, h,
logL®, r, h,
#
Standard parameters
chatter, i, h,
clobber, b, h,
debug, b, h,
mode, s, h,
logfile, f, h,
29 June

2,0,4, "Chattiness of output"
yes,,, "Overwrite existing output files with new output files?"
no,,, "Debugging mode activated"
“ql",,, "Mode of automatic parameters"
“cttsmap.log",,, "Log filename"

- 3 July 2015

4th ctools and gammalib coding sprint
(Jurgen Knodlseder)

cscripts

cscripts
e cscaldb — Lists available instrument response functions
e csobsdef — Generates observation definition file
e cslightcrv — Computes lightcurve
e cspull — Generates pull distribution
e cssens — Computes CTA sensitivity
e csspec — Computes spectral points
e csresmap — Generates residual map
e cstsdist — Generates TS distribution

csresmap

Purpose: produce a residual counts map*

counts model

A
| |

i {

Zz’ N(a’ 5’ E’&) - M(Oz, 57 EZ)
l_V_J Zv M(a7 57 Ez)
residual F 3

map

*does not yet work
for stacked analysis

022 084 g 2 2 k& as

4th ctools and gammalib coding sprint

29 June - 3 July 2013 (Jirgen Knoédliseder)

32

csspec

Purpose: runs ctlike in various energy bands to produce a spectrum (including upper limits)

$ csspec

Parfile csspec.par not found. Create default parfile.

Event list, counts cube, or observation definition file [events.fits] obs.xml
Source model [$CTOOLS/share/models/crab.xml]

Source name [Crab]

Number of spectral points [20]

Use binned analysis in each energy bin (yes|no) [no]

OQutput file name [spectrum.fits]

10° :
— 10°1° __._‘*—.—1_._‘ . . .
‘ e
§ fags s
<y : - :
e T

| show_spectrum.py
-12 L 1
10 107 10° 10! 102

Energy [TeV]

4th ctools and gammalib coding sprint

(JUrgen Knodlseder) 33

29 June - 3 July 2015

