Characterisation of prototype SiGe monolithic pixel detectors for the TT-PET project

Dean Forshaw On behalf of the TT-PET Collaboration

University of Bern Albert Einstein Center for Fundamental Physics

FACULTÉ DES SCIENCES Section de physique

·

1,

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- TT-PET Project
- Scanner Overview
- Monolithic Chip
- Test beam characterization
- TOF simulation
- Prototype-0

The TT-PET Project

> 3-year project to produce a PET Scanner for small animals based on silicon detector technology, insertable in an MRI machine and with 30ps RMS time resolution. The project started in March 2016.

- > Collaborating institutes:
 - > University of Geneva
 - > University of Bern
 - > Hôpital cantonale de Genève
 - > INFN of Roma Tor Vergata
 - CERN

TSPO PET/MRI (Inflammation model in mouse brain)

PSMR2018

 \mathbf{u}^{b}

UNIVERSITÄT BERN AEC

ALBERT FINSTEII

Why use Time-of-Flight?

b UNIVERSITÄT

 \boldsymbol{u}^{b}

RFRN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- Adding Time-of-Flight information to a PET scan can dramatically increase its performance!
- It is used to localize the source along the line of flight
- It leads to much lower noise, which can be used to increase image quality or decrease radiation dose to the patient

Scanner Overview

- Designed to fit inside removable RF-Coil for nanoScan 3T
- ➢ 16 sensitive towers
- > 16 cooling blocks: ceramic/ 3d printed
- Exterior carbon fiber support and cooling pipes not shown
- > Inner radius: 65mm> Outer radius: 80mm
- > Total Pixel channels: 1,413,120
- Pixel size: 500x500µm²

Scanner Overview

- Sensitive towers composed of many layers of lead, flex circuit, and monolithic pixels sensors
- > 1 tower = 60 sensitive detection layers
- > Sampling style detector
- Geometrical acceptance is maximized using step like structure
- Longer data cables connect to the DAQ outside of the RF-Coil

1Ľ

UNIVERSITÄT Rern

50µm Lead Foil

> 500x500 μ m pixels

Gamma Ray

- > Baseline option: bump bond monolithic chip to flex circuit
- Second option: stack multiple chips on top of each other and wire bond together (same process as inside memory chips)

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch

⊅ UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

PSMR2018

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

⊅ UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

UNIVERSITÄT Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch

UNIVERSITÄT Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch

Event Rate and Data Pressure

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- Readout designed for 50MBq source
 - > 19.2 MHz single hit rate
 - > 5 MHz possible coincidences
 - > 1.2 MHz real coincidences
- > System designed for scalability
 - Custom Designed Tower Control board to control one Tower
 - > Commercial components used where possible
 - CERN VLDB board (GBTx) used to multiplex multiple tower control DAQ boards

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch

Ú

- > Very high granularity, with access to DOI and TOF information for every hit
- > Faster signals mean ability to have high-precision timing measurements
- The scanner can be designed to be compatible with an MRI scanner, providing combined MRI-PET images
- > On the other hand...
- > The mechanics of the scanner are really complex (especially the data flex)
- > There are a very large number of channels, so the data acquisition scheme is critical
- \succ Every channel must be calibrated \rightarrow very long procedure

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- TT-PET Collaboration
- Scanner Overview
- Monolithic Chip
- Test beam characterization
- TOF simulation
- Prototype-0

- First Monolithic Test ASIC
- SG13S SiGe BiCMOS process from IHP microelectronics (130nm)
- Very High CMOS resistivity suitability $(1k\Omega cm)$
- > Test custom guard ring design and qualify HV tolerance (180V)
- 1 small pixel 900x450µm² > 1 large pixel 900x900 μ m²
- Geometry type: n-in-p
- > ToF RMS (mips): 100ps

UNIVERSITÄT RFRN

b UNIVERSITÄT

 $u^{\scriptscriptstyle b}$

BERN AEC ALBERT EINSTEIN CENTER

FOR FUNDAMENTAL PHYSICS

Electronics placed outside of the pixel guard

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- Electronics placed outside of the pixel guard
- > SiGe pre-amplifier
 - > Amplifier rise time 1-2ns
 - Discriminator
 - Time-over-Threshold measurement

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- TT-PET Collaboration
- Scanner Overview
- Monolithic Chip
- Test beam characterization
- TOF simulation
- Other prototypes

Test beam setup

\boldsymbol{u}^{t}

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- > 180 GeV/c pion beam used (CERN SPS beamline)
- > Particle telescope (Geneva FE-I4 telescope) used for tracking
- 2 Monolithic test chips operated at 180V (backside not metalized, and referenced to Gnd)
- > LGAD sensor used as final plane (timing reference)

dforshaw@cern.ch

U

[⊅] UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- > Overlap region (red dashed box)
- Only particle tracks that intersect this ROI are used
- > Upstream Sensor efficiency (99.79 ± 0.01)%
- Downstream efficiency (99.09 ± 0.04)%
- > No areas of large inefficiency

Charge Uniformity

UNIVERSITÄT BERN AEC

 u^{\flat}

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- > Amount of charge shown in ToT
- Drop in amount of charge collected around edges of pixel
- Non-uniform electric field near edges
- Sensor not thinned down to 100um and not backside metalised
- Aim for 2-3 V/um to maximise e⁻ carrier mobility

- > Tot distribution on left
- > Time-walk correction done using a polynomial fit
- Spread of the time-walk and SNR information used to estimate actual pre-amp peaking time <2ns (agree with our cadence simulations)</p>

ToF measurement

	Time resolution [ps]	
Pixel	w/o position correction	with position correction
Downstream Small	202.3 ± 0.8	167.7 ± 0.7
Upstream Small	219.0 ± 0.7	188.2 ± 0.6
Upstream Large	265 ± 1	212 ± 1

Despite lack of vital processing steps ToF no so far away from 100ps for MIP's expected

dforshaw@cern.ch

UNIVERSITÄT BERN AEC

ALBERT EINSTEIN CENTER

FOR FUNDAMENTAL PHYSICS

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- TT-PET Collaboration
- Scanner Overview
- Monolithic Chip
- Test beam characterization
- TOF simulation
- Prototype-0

Simple phantom simulation

- > Simple reconstruction (FBP)
- >10° events simulated
- Expected detector response included

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC:

dforshaw@cern.ch

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- TT-PET Collaboration
- Scanner Overview
- Monolithic Chip
- Test beam characterization
- TOF simulation
- Prototype-0

Prototype-0

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- A fully featured prototype was submitted in April 2017 (MPW run)
- > It has a smaller matrix (30 pixels) and a simplified readout scheme, but it's otherwise complete
- Low resistivity wafer first (check HV doesn't interfere with LV electronics
- It's useful to test integration issues (power delivery, crosstalk...)

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- > Delays in high resistivity delivery
- Thin wafers broke at backside metaisation and dicing stage
- A MPW runs per year, ~4 month process time
- HR backside metalised diced chips delivered last week
- > HV tested to work upto target 300V

Test setups

- DAQ software and firmware has already been developed
- UNIVERSITÄT BERN
- AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- Continued to to be improved
- Additional power module for the each Tower control FPGA board has been completed
- Top left: Prototype-0 (red PCB) being tested at Bern
- Probe station used to characterize monolithic chips before being mounted on PCB's for testing (R&D)

Now that Prototype-0 HR has been delivered

- ToF / coincidence measurements will be performed in the coming weeks at Bern cyclotron using custom F18 phantom's
- ToF measurements using cyclotron 18 MeV proton beam
- CFRP support + protective skin going through final revisions

>Na22 ToF at Geneva University shortly

➢Final monolithic design submission expected Sept/October 2018

Thank You

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

Questions?

dforshaw@cern.ch

 u^{b}

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Backup

Why use Time-of-Flight?

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Conventional PET

TOF PET

Time resolution

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

> Detector time resolution depends mostly on the amplifier performance.

$$\sigma_t = \frac{\sigma_V}{\frac{dV}{dt}} \cong \frac{t_{rise}}{Signal/_{Noise}}$$

Time-over-Threshold

 $\propto TOT_1$

∝E₁↑

Preamplificator

Discriminator

Counter

 $\propto TOT_2$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

AEC

Event Rate and Data Pressure

 \boldsymbol{u}^{b}

UNIVERSITÄT BERN AEC

ALBERT EINSTEIN CENTER

> Hit rate for a 50 MBq point source is still < 25kHz per layer

Geant4 Simulation

UNIVERSITÄT BERN

Ú

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

dforshaw@cern.ch