June 8, 2019 @ WIN2019 in Bari, Italy

Vinat S neImage: Second se

Physics (in WIN conferences)

- Higgs
- Neutrinos
- Flavor Physics

<<What are the main contributions (concerning the physics of interest for WIN) we can expect from your region in the coming years? >>

- Astroparticle Physics (w/ Dark Matters)
 - (Gravitational Wave and Cosmology)

This talk is based on my biased view to particle physics projects in Asia with my limited knowledge. It is NOT a fair review talk.

I listened to Geoff's talk in EPPSU2019.

How can Asian projects/ facilities impact upon **Europe's particle physics** future?

The World Economy Gross Domestic Product (GDP) by Country 2017 World's Region AFRICA HONG KONG \$0.34T 0.439 AUSTRALIA GAPORE \$0.32T 0.41% MIDDI E FAST PHILIPPINES \$0.31T 0.39 EUROPE PAKISTAN \$0.3T 0.38 ASIA CHINA NORTH AMERICA \$0.25T 0.31% \$12.24T 15.4% UNITED ISRAEL 0.44% JAPAN STATES \$4.87T 6.13% UAE 0.48 \$19.39T INDIA \$2.6T GERMANY 3.27% 24.4% \$3.68T 4.63% UNITED ITALY KINGDOM \$1.93T \$2.62T FRANCE \$1.65T 3.3% CANADA \$2.58T NIGERIA \$0.37T 0.47% \$0.64T 0.8% SOUTH AFRICA \$0.35T 0.44% COLOMBIA \$0.31T 0.399 OTHER FINLAND \$0.25T 0.32 CHILE \$0.28T 0.35 COUNTRIES EGYPT \$0.24T 0.3% \$1.321 USTRIA \$0.42T 0.52% DENMARK \$0.32T 0.419 Article and Sources: howmuch https://howmuch.net/articles/the-world-economy-2017 atabank worldbank org/data/download/GDP.pd European Strategy Geoffrey Taylor "Perspective on the European Strategy from Asia", EPPSU2019, Granada

- Characters of the Asian region in my view
 - Growth, Passion, Diversity and Curiosity!

Physics with projects in Asia (presented in WIN2019)

- Higgs
 - Many Asian scientists are working for ATLAS/CMS.
 - Higgs Factory [CepC, ILC]
- Neutrinos
 - Super-Kamiokande -> Hyper-Kamiokande
 - KamLAND -> KamLAND 2
 - Daya Bay -> JUNO
 - T2K w/ J-PARC and ND280 upgrade
 - INO
 - AMoRE
 - NEOS
 - JSNS²

- Flavor Physics
 - BES III
 - Belle II/SuperKEKB
 - J-PARC: KOTO, COMET and μ g-2
- Astroparticle Physics (w/ Dark Matters)
 - CALET
 - DAMPE
 - HERD on CSS
 - GAPS
 - PANDA-X
 - COSINE
 - SABRE on SUPL (Australia)
 - CDEX
 - NEWAGE
- (Gravitational Wave & Cosmology)
 - KAGRA (Japan)
 - Ngari Observatory (China)
 - GroundBIRD, LightBIRD

Existing Facilities

- SuperKEKB/Belle II high intensity B-factory
- SuperKamiokande (T2K) (—> HyperK and Upgraded J-parc)
- •J-parc high intensity, low energy physics COMET
- Kamioka U/G Observatory XMASS-I Direct Dark Matter Search

•China:

- Daya Bay (-> JUNO) Reactor Neutrino Physics
- •BEPC (Proposal: tau/charm factory)
- •LHAASO Very high energy cosmic ray observatory
- •Jinpin U/G laboratory PANDA-X and CDEX Direct Dark Matter Searches

• • • •

•Korea:

•RENO - Reactor neutrino physics

Geoffrey Taylor "Perspective on the European Strategy from Asia", EPPSU2019, Granada

from Geoff's talk in EPPSU2019

Fundamental Questions

Questions

- GUT: Unification of forces [and leptons and quarks]
- Origin of generations (family structure)
- Origin of neutrino mass
- Strong CP
- Baryon and anti-baryon asymmetry of our universe
- Dark Matter
- Accelerating universe
- Inflation

→ We do not know the energy scale of New Physics

THEORETICAL PHYSICS

Should look for wider energy regions

Three arrows are added by TN (neutrino, dark matter and HL-LHC)

Questions

- GUT: Unification of forces [and leptons and quarks]
- Origin of generations (family structure)
- Origin of neutrino mass
- Strong CP
- Baryon and anti-baryon asymmetry of our universe
- Dark Matter
- Accelerating universe
- Inflation

It is a good time to look over new physics with various ways in many aspects [as a purpose of WIN] Higgs

Higgs Factory

China and Japan propose a Higgs Factory as the future facility in Asia.

Prospect in Accelerators by S. Guiducci @ WIN2019

00568

What else do we learn from Higgs?

κ_V	κ_3	κ_{g}	κ_{γ}	λ_{hhh}	σ_{hZ}	$\mathrm{BR}_{\mathrm{inv}}$	$\mathrm{BR}_{\mathrm{und}}$	κ_ℓ	μ_{4f}	$\mathrm{BR}_{\tau\mu}$	Γ_h
+	+			+	+				+		+
+	+	+	+		+						
+	+					+	+		+		+
		+	+	+	+				+		
	+(CP)										
						+	+	+	+		+
	+							+		+	
	κ _V + +	$\kappa_V \kappa_3$ + + + + + + + + + (CP)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Many problems of particle physics today relate to Higgs observables

from "Summary: Electroweak Session" in EPPSU2019

- We all understand the importance of a Higgs factory in the world.
 - In addition, we also know it is an expensive (and very long-term) facility.
- I think that the support of the international community is essential to realize the Higgs factory.
 - It will be the international facility (not only Asia).

Neutrinos

Successful History (in Asia)

- Kamiokande, Super-Kamiokande, K2K/T2K, KamLAND, OPERA
- Daya Bay
- RENO

Kam-Biu Luk and the Daya Bay Collaboration

<u>Yifang Wang and the</u> <u>Daya Bay Collaboration</u>

Arthur B. McDonald and the SNO Collaboration

Takaaki Kajita and the Super K Collaboration

Koichiro Nishikawa and the K2K and T2K Collaboration

Yoichiro Suzuki and the

Super K Collaboration

Atsuto Suzuki and the KamLAND Collaboration

20 Years of Super-Kamiokande and Gd New Era by M. Nakahata @ WIN2019

C. Riccio @ WIN2019

New Era by M. Nakahata @ WIN2019

Next Step

2019-2020:

- Electronics production starts
 Civil work and lab preparation Completed
 Detector constructing

Physics prospects of JUNO by J. P. A. M. André @WIN2019

Hyper-Kamiokande

Hyper-Kamiokande by J. Łagoda @WIN2019

INTERACTIONS.ORG

Physics Hubs

🗵 💟 🖂

A communication resource from the world's particle physics laboratories

Hyper-Kamiokande Experiment to Begin Construction in April 2020

Kavil Institute for the Physics and Mathematics of the University

Next Step

J-PARC sends neutrinos to Super-K (Hyper K)

Upgrade of T2K Near Detector ND280 by Y. Kudenko @ WIN2019

"Power Upgrade in 2020-2028" Prospect in Accelerators by S. Guiducci @ WIN2019

Check anomalies (eV sterile neutrinos)!

- JSNS²: Data taking will start in 2019.
- NEOS: Under data taking toward the new results in 2020.

Search for the Majorana particle

Limit on Majorana eff. mass

Supernova Relic Neutrinos

 $\frac{dN_{v_e}}{dE'_{v_e}} = \frac{E_v^{tot}}{6} \frac{120}{7\pi^4} \frac{{E'}^2}{T_{v_e}^2} e^{-\frac{120}{7\pi^4}}$

Flavor Physics

Hints of New Physics!

 $\mathcal{O}(10^5 \text{TeV})$: K^0

2

K (ε'/ε) : 2.8 σ deviation from SM

c.f. meson mixing

New Physics implication from Kaon physics by K. Yamamoto @WIN2019

CPV in D : 5.3 σ $\Delta A_{CP} = (-15.4 \pm 2.9) \cdot 10^{-4}$

μ g-2: 3.7 σ deviation from SM

$R_{D(*)}$ in B : 3.1 σ deviation from SM

BESIII

Recent BESIII results in open charm by K. Ravindran + other BESIII talks @WIN2019

- Rich physics as a tau&charm factory
- Various interesting results coming

B-Factory: Belle II/SuperKEKB Super Belle II detector collision point **Positron ring Electron rinc Electron-Positron** linear accelerator Positron damping ring -50 Exp 7 Run 920 Physics data taking with the full Êvt

detector just started in March 2019.

• Many interesting results are expected in the coming years.

J-PARC: K and µ

- KOTO (KL $\rightarrow \pi^{0} \nu \nu$) experiment starts new data taking after the upgrade.
- COMET ($\mu \rightarrow e$ conversion) and muon g-2 experiments are under preparation.

Astroparticle Physics (and Dark Matter)

Search for Dark Matters annihilation in Space DAMPE CALET

- AMS is a pioneer to search for Dark Matter annihilation in Space and to observe the positron and antiproton excess.
- There are more observations coming from DAMPE and CALET.

DAMPE space mission and recent results by Z. Wang @ WIN2019

Underground lab in Asia for Dark Matter Search

CJPL – Deepest underground lab in the world

Panda X Dark Matter and Neutrinoless Double Beta Decay Programs by HAN Ke @14th Rencontres Du Vietnam "International Symposium on Neutrino Frontiers" in 2018

There are activities of underground lab in India and Australia

(Gravitational Waves & Cosmology)

KAGRA in Kamioka

- "Status of KAGRA: the underground- and cryogenic gravitational-wave detectors" by K. Kokeyama at the 5th Kagara International Workshop/ The 1st Kagra-Virgo-3G Detectors Workshop in Perugia, Italy.
 - Almost ready to join O3!

Gravitational Wave Telescope in China

- We hear the big investment on the Gravitational Wave Telescope in China.
- It is very interesting to follow how the project is going.
 - I am not the expert of this subject, and I just find the following news on the web.

#NgariObservatory: Construction of gravitational wave telescopes in #Tibet under way

People's Daily | March 15, 2018

China is under smooth progress towards the world's highest altitude gravitational wave telescopes in Tibet Autonomous Region to detect the faintest echoes resonating from the universe, a project insider disclosed, writes Bai Yang of People's Daily.

CMB

Big Bang Expansion 13.7 bil

News & Topics

http://litebird.jp/eng/

M. Hazumi

ISAS selects LiteBIRD as the strategic large mission #2!

2019-05-21

ISAS has confirmed that LiteBIRD completed activities planned during Prephase-A2 (previously called as Phase-A1) and has selected LiteBIRD as the strategic large mission #2.

Conten:s

News & Topics

LiteBIRD

Cosmology Present and Future by P. de Bernardis @WIN2019

CMB -GroundBIRD-

37

1000

Multipole I

Proton Decay

Hyper-Kamiokande program

People from Asia

Participation from Asia

Participation in HEP

- Japan
- China
- India
- Korea
- Taiwan
- Hong Kong
- Australia
- Thailand, Vietnam, Indonesia ...

Considerable contributions to European and US programs

Geoffrey Taylor "Perspective on the European Strategy from Asia", EPPSU2019, Granada

8

Vietnam Neutrino Group launched in July 17, 2017

MERVANOM CENTER ROK A TEADSCORUMARY SOLINE AND EDUCATION (ICS) LÊ VHCÎ DÊNISA XĂ XY KÊT BLÊN BĂN GHI NHCÎ OUTRIS CENTRUT HA MEMORADUM A UNDERTURMS SOLINE OUTRIS CENTRUT HA MEMORADUM A UNDERTURMS SOLINE OUTRIS CENTRUT HA MEMORADUM A UNDERTURMS SOLINE

> A project of bulding a neutrino group at IFIRSE, Quy Nhon, Viet Nam

Nguyen Thi Hong Van

Institute of Physics (IOP), Vietnam Academy of Science and Technology, Ha Noi & Institute for Interdisciplinary Research in Science and Education (IFIRSE), Quy Nhon

October 28, 2016

Where to build the group?

ICISE - International Center for Interdisciplinary Science and Education

- Location : Quy Nhon, Binh Dinh, Vietnam (20 hectares site between mountains and sea),
- Founders : Tran Thanh Van and Le Kim Ngoc
- Activities : → 10-12 high level international scientific conferences a year → welcome more than 1000 scientists over the world every year.

 \rightarrow International schools on specific subjects.

Nguyen Thi Hong Van A project of building a neutrino group at IFIRSE, Quy Nhon, Viet Nam Where to build the group? (2)

- IFIRSE, beside ICISE, is created to promote scientific research and education in Quy Nhon and Vietnam.
- IFIRSE is surposed to become an Institute of high level with an international environment and collaboration.
- Director: Tran Thanh Van

IFIRSE - Institute For Interdisciplinary Research in Science and Education

Theoretical Physics Group

- Le Duc Ninh (got PhD in France, spent postdoc in Germany)
- Dao Thi Nhung (got PhD in Germany, spent postdoc in Germany)
- more people are welcome

Experimental Physics Group

EORETICAL PHYSICS (Nhóm vật lý lý thuy

- Tsuyoshi Nakaya (*Prof. at Kyoto univ., Japan*)
- Cao Van Son (got PhD in US, postdoc at Kyoto univ. & KEK, Japan)
- N. T. Hong Van (got PhD in France, working at IOP)

42

A project of bulding a neutrino group at IFIRSE, Quy Nhon, Viet Nan

Summary

- Many new results are coming in the next few years.
- Several new experiments will be online. The decision on the new facility will occur in the near future.
- The WIN conferences will grow including more projects in Asia.
- We pursue particle physics research with
 - Growth, Passion, Diversity and Curiosity!

Backup

- The mass of the detector with the wide energy coverage is the Key to probe new physics.
- It is an only unique choice to search for the proton decay up to 10³⁵ years.

