Outlook

Manfred Lindner

TERACTIONS 410

Outline

• Neutrinos

- A little advertisement break

- Dark Matter
- Beyond the Standard Model
- Other

Neutrinos

Directions in Neutrino Physics

The Standard 3 Neutrino Framework

<u>Mass & mixing parameters:</u> m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

The Parameters (3f)

Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni, Schwetz

Absolute limits (Mainz, Troitsk: m₁ < 2.2 eV Limits from cosmology: 0.14-0.2 eV Future:

KATRIN \rightarrow started operation \rightarrow 0.2eV Upper limit on \mathbf{m}_{v}

Project8, ...

Both T2K and NOvA prefer NO individually Inclusion of the atmospheric neutrino results further increases $\Delta \chi 2$ of IO to the 3σ level.

Empirical Observations

Quarks & charged leptons → hierarchical masses → neutrinos?

- less hierarchy in m_D or correlated hierarchy in M_R ? \rightarrow theoretically connected!
- mixing patterns: not generically large, why almost maximal and θ_{13} small?

Neutrino Masses: New Physics...

Simplest possibility: assume 3 right handed singlets (1_L)

Both v_{R} and new singlets / triplets: \rightarrow see-saw type II, III $m_v = M_I - m_D M_B^{-1} m_D^T$ Higher dimensional operators: d=5, ... $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ $\ell^g_{{ m L}c}$ $\Leftrightarrow \mathcal{L}_{\text{mass}} = \kappa \cdot \overline{\nu}_{L}^{C} \nu_{L} \Phi^{T} \Phi$ $\Rightarrow \mathbf{M}_{L} \mathbf{L} \mathbf{L} \mathbf{L}^{C}$ **Radiative neutrino mass generation** HSUSY, extra dimensions, ...

Many routes to explain what we know: a few numbers... two mass splittings, 3 mixing angles, ~ CP phase

Neutrinos as Probes of Flavour Models

Gauge unification suggests GUTs

- unified gauge group
- unified particle multiplets $\bigstar v_R$
 - → Q,L Yukawa couplings connected
 - ➔ proton decay , ...
- generations are just copies

2. 3. generation

generations related by a symmetry?

- 3 generations → representation

1.

- regularities in masses and mixings
 - → flavour symmetries: A4, S3, D5, T', ...
- ➔ predictions for each model
- \rightarrow test of models with precision v-physics
- → how precise: theory experiment

Outlook for 3 massive Neutrinos

determine masses and mixings as precisely as possible

- oscillations
- absolute mass
- 0vββ decay: Dirac or Majorana
- → Current experiments...
- → Next generations: DUNE, HyperK, JUNO, ...

Goal:

precise flavour information $\leftarrow \rightarrow$ origin of mass/flavour? lever arm to other new physics \rightarrow ! learn about sources

Question: How much precision is needed to learn something about the origin of flavor and fermion masses?

Mass Models & Renormalization

Outlook for >3 Neutrinos

 \leftarrow \rightarrow any one of them is a major discovery!

Some options

- sterile neutrinos
- extra L-violation
- NSIs
- large magnetic moments

- ...

methods: precision for → θ_{ij}, m₁, Δm_{ij}², MH, CP, 0vββ, ...
→ over-constraining the 3f picture
→ test PMNS unitarity, L/E in osc. , new interactions,...

Previous large scale experiments and overconstraining
 Dedicated projects with lower cost, but high potential
 examples: sterile neutrions, NSIs, ...

E.g. NSI Operators

Good reasons for physics beyond the SM+ (with v's)
 → expect effects beyond 3 flavours in many models
 → effective 4f interactions

$$\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{L\beta} \ \gamma^{\rho} \ \nu_{L\alpha})(\bar{f}_L \gamma_{\rho} f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli+Romanino, Bueno et al., Kopp+ML+Ota, ... many more...

M. Lindner, MPIK

NSIs interfere with Oscillations

<u>note:</u> interference in oscillations $\sim \epsilon \quad \bigstar \quad FCNC \text{ effects } \sim \epsilon^2$

NSI: Offset and Mismatch in θ_{13}

Double Beta Decay & L-Violation

m_{ee}: The Effective Neutrino Mass

$$m_{ee} = |m_{ee}^{(1)}| + |m_{ee}^{(2)}| \cdot e^{i\Phi_2} + |m_{ee}^{(3)}| \cdot e^{i\Phi_3}$$

$$\begin{aligned} |m_{ee}^{(1)}| &= |U_{e1}|^2 m_1 \\ |m_{ee}^{(2)}| &= |U_{e2}|^2 \sqrt{m_1^2 + \Delta m_{21}^2} \\ |m_{ee}^{(3)}| &= |U_{e3}|^2 \sqrt{m_1^2 + \Delta m_{31}^2} \end{aligned}$$

Double Beta Decay Processes

Standard Model:

\rightarrow 2 electrons + 2 neutrinos 2νββ

Majorana v-masses or other $\Delta L=2$ physics: $\rightarrow 2$ electrons d u_l uı 0νββ W e_{I}^{-} W $e_I^ \nu_L$ ν_L e_L^- W W $e_I^$ ũ uլ dc d_L d_L uL e^{-} **SM + Higgs triplet** e.g. SUSY Majorana neutrino masses important connections to LHC and LFV ... \leftrightarrow Dirac? sub eV Majorana mass $\leftarrow \rightarrow$ TeV scale physics WIN2019 - Bari M. Lindner, MPIK 20

Does 0vββ Decay imply Majorana Masses?

• <u>Schechter-Valle Theorem</u> → is misleading

Any $\Delta L=2$ operator which mediates the decay induces via loops Majorana mass terms \Rightarrow unavoidable: Majorana neutrinos...!?

$$0\nu\beta\beta$$
 some $\Delta L=2$ operator

Dürr, ML, Merle

4 loops \rightarrow enforce $\delta m_v = 10^{-25} \text{ eV} \rightarrow \text{very tiny}$ (academic interest)

→ cannot explain observed v masses and splitting's

Extreme possibility:

- $0\nu\beta\beta$ = L violation = other BSM physics
- neutrino masses = Dirac (plus very tiny Majorana corrections)
- + Dirac leptogenesis, + ...

Observation of 0\nu\beta\beta \rightarrow L-violation \rightarrow **Majorana neutrinos**??? And don't forget: We may have to reach the normal hierarchy...!

The advertisement break

The IUPAP Neutrino Panel

IUPAP has established the Neutrino Panel with the mandate:

"to promote international cooperation in the development of an experimental program to study the properties of neutrinos and to promote international collaboration in the development of future neutrino experiments to establish the properties of neutrinos."

→ A scientifically driven balanced overview of opportunities, potential of new routes, synergies with other fields, risks and challenges.

WIN

Panel members:

M. Sajjad Athar	AMU, Aligarh, India		
Steve Barwick	UCI Physics and Astronomy		
Thomas Brunner	McGill University		
Jun Cao	IHEP, Beijing		
Mikhail Danilov	Lebedev Physical Inst., Russian Acad. of Sci.		
Renata Zukanovich Funchal	University of São Paulo		
Kunio Inoue	Tohoku University		
Takaaki Kajita (+)	University of Tokyo		
Marek Kowalski	DESY		
Manfred Lindner (+)	Max Planck Institute for Nuclear Phys.		
Ken Long	Imperial College, London		
Nathalie Palanque-Delabrouille	CEA		
Heidi Schellman	Oregon State University		
Kate Scholberg	Duke University		
Seon-Hee Seo	IBS, Center for Underground Physics		
Nigel Smith (+)	SNOLAB		
Walter Winter	DESY-Zeuthen	(+) Co-chairs	
Sam Zeller	Fermilab		

Objectives of the IUPAP Neutrino Panel

Through consultation with the broad neutrino-physics community the panel will carry out a review of:

- a) The present status of the global neutrino physics programme and the development that can be expected on a 5 to 10-year timescale through a → science driven white paper
- b) R&D measures (including software development) that are required for the near-term (<10-year) and medium- to long-term (10-25-year) program to fulfil their potential

The Panel will identify opportunities within neutrino physics, mutual benefits of global connections within neutrino physics and other fields, as well as the synergies of an international programme

- report to C11 Commission of IUPAP
- final report to the IUPAP General Council by October 2020

→ Invitation to the community

Dark Matter: A long List of Evidences...

- + Galactic rotation curves
- + Galaxy clusters & GR lensing
- + Bullet Cluster
- + Velocity dispersions of galaxies
- + Cosmic microwave background
- + Sky Surveys and Baryon Acoustic Oscillations
- + Type la supernovae distance measurements
- + Big Bang Nucleosynthesis (BBN)
- + Lyman-alpha forest
- + Structure formation
- + ...
- Strong indirect evidence for a large dark sector
- → dynamic, static, radiation, …
- cannot be explained by ordinary matter

Li/HL

-

The cosmic Budget

Dark Matter Directions

Gravity

Matter = new Particles

MOND

simple one scale modification \rightarrow fails badly

Other GR

Other GR modifications

or

a suitable population (mass, number) of black holes **BSM**

motivated (SM problems)

- axions

- . . .

- sterile v's

- many other particles

Abundance or model motivated - various candidates

-

WIMPs combine both aspects in an attractive way + WIMP miracle

Black Holes or MACHOs as Dark Matter

Neutrinos as Dark Matter

Active neutrinos as DM:

- primordial number density $n_v = 112 \text{ cm}^{-3}$ (per flavour)
- correct dark matter abundance requires

$$\Sigma\,m_{_{
m v}}$$
 ~ 11eV

- ➔ known neutrino masses are too small
- → active v's are hot DM \leftarrow → problem: small scale structure

BUT: Neutrinos are Dark Matter even if they contribute only 0.5%

Sterile neutrinos as DM ←→simplest explanation of neutrino masses

- add 3 right-handed singlets
- ➔ see-saw mechanism

$$\left(\begin{array}{cc} \overline{\boldsymbol{v}}_L & \overline{\boldsymbol{v}}_R^{\mathbf{c}} \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M_R \end{array} \right) \left(\begin{array}{cc} \boldsymbol{v}_L^{\mathbf{c}} \\ \boldsymbol{v}_R \end{array} \right)$$

Bounds for sterile Neutrino DM

Tremaine-Gunn bound:

light v's cannot form small galaxies $\leftarrow \rightarrow$ too many required

- → violation of the Pauli exclusion principle
- → minimal mass for fermion dark matter ~ 300 400 eV

M. Lindner, MPIK

Discussion

A 3.6 keV line could come from the decay of a 7.2 keV sterile ν

parameters are in allowed window

how robust is the signal? Hitomi satelite...

M. Lindner, MPIK

Axions and the Strong CP Problem

The WIMP Miracle

inflation → many e-folds

Reheating → all particle types produced

Evolution of original plasma by:

- expansion (dilution)
- decays
- interactions \rightarrow conversion processes

Evolution of original DM density:

➔ Boltzmann equation

$$rac{dn_{\chi}}{dt} + 3H(T)n_{\chi} = -\langle \sigma v
angle (n_{\chi}^2 - n_{\chi,eq}^2)$$

→ thermal freez-out

BSM motivated physics @TeV scales: A WIMP-like particle produces automatically ~ correct abundance

Hierarchy Problem → MSSM → Vanilla WIMP

LSP=Neutralino → WIMP miracle → correct abundance

M. Lindner, MPIK

How fine-tuned are the paramaters?

• MSSM neutralino: Level of fine-tuning $\rightarrow \Delta_{tot}$

$$\Delta p_i \equiv \left| \frac{p_i}{M_Z^2} \frac{\partial M_Z^2(p_i)}{\partial p_i} \right| = \left| \frac{\partial \ln M_Z^2(p_i)}{\partial \ln p_i} \right| \qquad \Delta_{\text{tot}} \equiv \sqrt{\sum_{p_i = \mu^2, b, m_{H_u}^2, m_{H_d}^2} \{\Delta p_i\}^2}$$

Grothaus, ML, Takanishi: full MSSM, not CMSSM, pMSSM, NMSSM...

Generic WIMP Cross Section

Hunting WIMPS in different Ways

SM

Standard Model particles interact with WIMPs: assumptions...

SM

indirect detection

FERMI, PAMELA, AMS, HESS, IceCube, ... astro. uncertainties... → DM signal w/o doubt?

example: keV lines ←→ atomic physics

colliders

may detect new particles, but is it DM (lifetime, abundance)?

So far nothing seen...

- \rightarrow impact on theory...
- \rightarrow SUSY \rightarrow higher scale
- → other SB motivated WIMPs
- → new ideas/candidates

M. Lindner, MPIK

Direct Detection of WIMPs

SI limits on WIMPs:

XENON1T stopped 12/2018

- ➔ modifications for XENONnT
- ➔ operations ~fall/winter 2019
- → x20 improvement expected

In addition: LZ, PandaX, DarkSide, CRESST, DAMA/Libra, And other results...

Going beyond XENONnT: DARWIN

DARWIN Conceptual Design

JCAP 11, 017 (2016) DARWIN

www.darwin-observatory.org

Baseline: 50t LXE

- 40t LXe TPC, aim at 200 t*yr
- TPC dimension 2.6m x 2.6m
 - ~1800 * 3" PMTs (or ~1000 4" PMTs)
 - Low-background cryostat
- PTFE reflector panels
- Copper E-field shaping rings
- Water Cherenkov shield (~14m diameter)
- Liquid scintillator neutron veto under study
- Possible location LNGS
- aim at sensitivity of a few 10⁻⁴⁹ cm², limited by irreducible v-backgrounds
- R&D and initial design now
- Timescale: after XENONnT
- Cost effective:
 - use existing Xe gas; buy more & re-sell
 - no enrichment (also faster)

M. Lindner, MPIK

The DARWIN Collaboration

France:

- Subatech
- LAL
- LPNHE

Germany:

- University of Münster
- MPIK, Heidelberg
- University of Freiburg
- KIT, Karlsruhe
- University of Mainz
- TU Dresden
- Heidelberg University

Great Britain:

- Imperial College LondonItaly:
- INFN, Sezione LNGS
- INFN, Sezione di Bologna

Expertise of XENON + new groups

Seed funding exists

Israel:

Weizmann Institute of Science

The Netherlands:

Nikhef, Amsterdam

Portugal:

University of Coimbra

Sweden:

- Stockholm University Switzerland:
- University of Zürich

USA:

- Columbia University
- UCLA
- Arizona State University
- Purdue University
- Rice University
- UCSD
- University of Chicago
- Rensselaer Polytechnic Institute
 Abu Dhabi:
- New York UniversityAbu Dhabi

Spin Independent (SI) WIMP Interaction

Neutrino Physics with DARWIN

- → Coherent Neutrino-Nucleus Scattering (CNNS) 200 t*yr → ca. 200 (25) events for > 3 (4) keV_{NR}
- → Low energy solar neutrino signal: pp, ⁷Be JCAP 01, 044 (2014) ~1% statistical uncertainty for 100 t*yr → solar models & v properties

real-time measurement of the solar neutrino flux:

- \rightarrow 7.2 events/day from pp
- \rightarrow 0.9 events/day from 7Be

➔ Supernova neutrinos:

→ 5σ sensitivity for a $27M_{\odot}$ SN progenitor at 10 kpc (~700 events) → flavor-insensitive neutrino energy measurement **Phys. Rev. D 94 (2016)**

Axions and ALPS

measurement via axio-electric effect (ER channel)

JCAP 11, 017 (2016)

- expect mono-energetic peak at the particle mass
- moderate sensitivity to axions (weak dependence of the coupling on the exposure: $g_{Ae}^{solar} \propto (MT)^{-1/8}$
- sensitivity to ALPs two orders of magnitude better than current limits $(g_{Ae}^{ALP} \propto (MT)^{-1/4})$
- dominant backgrounds: solar neutrinos and $2\nu\beta\beta$ of 136Xe

$0\nu\beta\beta$ with ¹³⁶Xe

8.9% natural abundance \rightarrow 3.5 t ¹³⁶Xe in 40t without any enrichment $Q_{\beta\beta} = (2458.7 \pm 0.6) \text{ keV}$

Assume:

- 6t fiducial
- energy resolution at $Q_{\beta\beta} \simeq 1\%$

Sensitivity @ 95% CL: $30 t^*yr \rightarrow T_{1/2} > 5.6 \times 10^{-1}$

- 30 t*yr \rightarrow T_{1/2} > 5.6 × 10²⁶ yr - 140 t*yr \rightarrow T_{1/2} > 8.5 × 10²⁷ yr

Xenon= commodity, no enrichment

Dark Matter Production at Colliders

DM particles do not interact via electromagnetic interaction

➔ no DM tracks in a detector

DM particles carry energy & momentum →missing energy

two approaches at colliders for DM search: 1) direct production of DM particles annihilation of standard model particles into a pair of DM particles

2) indirect production of DM particles

search for dedicated decay chains with DM-like particles using a dedicated model (e.g. SUSY)

Drawbacks:

- a signal does not guarantee a long life-time
- unrelated to DM density in the Universe

missing energy

EFT Interpretation

For q << mediator mass M_{med} → M_{med}, g_{DM} and m_{DM}

type of interaction \rightarrow different operators

	Name	Initial state	Type	Operator
most	D1	qq	scalar	$rac{m_q}{M^3}ar\chi\chiar q q$
common:	D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$
	D8	qq	axial-vector	$\frac{1}{M_*^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^\mu q$
	D9	qq	tensor	$\frac{1}{M_*^2} \bar{\chi} \sigma^{\mu u} \chi \bar{q} \sigma_{\mu u} q$
	D11	gg	scalar	$\frac{1}{4M_*^3}\bar{\chi}\chi\alpha_s(G^s_{\mu u})^2$

D1, D5, D11 spin independent (SI), D8, D9 = SD

Mediator induces also SM→SM processes

→ LHC sets limits on g²_{SM}/M²_{med} (mod. m_{DM})
 → Unless g_{SM} is tiny TeV-ish limits on M_{med}.

g_{DM} =1 is an assumption → could be tiny → weaker DM limits *or* a full model → more signatures/effects & constraints

WIN2019 - Bari

 $\bar{\chi}$

DM motivated Extensions have other Consequences

- More particles...
- All existing particles produced in Big Bang and later (decays, ...)
- Some particles may be stable
- Very long-lived due to small parameters → natural?
- Effects of unstable states +/ → on the early Universe
 → on collider physics

Warning: Your DM model may affect many other known things!

M. Lindner, MPIK

Dark Matter at the LHC

- Generic kinematics: weak dependence on WIMP mass for m_{DM} << beam energy

• Life is more complex...

- many conceivable candidates
- detection efficiencies, ...
- → EFT or simplified models

=parametrizion – not always appropriate

- g_{DM} = assumptions *or* full model +...
- LHC:
 - can exclude a DM candidate
 - can establish a candidate
 - does not test if it is DM in Univ.: long lived? abundance?

What if...

...during the coming years we close in on the expected ranges and none of the leading DM candidates shows up?

Beyond the Standard Model

SM: success of renormalizable QFTs in d=4 with local symmetries

QED \rightarrow QCD \rightarrow SMU(1)_{em}SU(3)_CSU(3)_C x SU(2)_L x U(1)_Y

Symmetry, renormalizability, no anomalies → particle content (representations)

gauge sector – fixed by gauge group scalar sector – must break EW symmetry, $\sim 2_L$ fermions – anomaly free combinations

- various conceptual ingredients = questions:

quantum fields chiral fermions, anomaly free combinations gauge group, d=4, three generations = copies

- unexplained parameters...

→ impressive progress

Elementary Particles

Reasons to go Beyond the Standard Model

Theoretical:

SM does not exist without cutoff (triviality, vacuum stability) Gauge hierarchy problem Gauge unification, charge quantization Strong CP problem Unification with gravity Global symmetries & GR anomalies Why: 3 generations, representations, d=4, fields, many parameters, ...

Experimental facts:

- Electro-weak scale << Planck scale
- Gauge couplings almost unify
- Neutrino masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Inflation
- Dark energy

BSM Routes...

Note: GR non-renormalizable... maybe good: QFT's cannot explain scales→other concepts

Indications pointing to SUSY + GUTs

A remarkable Coincidence

→ SM is a renormalizable QFT like QED w/o hierarchy problem

 \rightarrow Cutoff " Λ " has no meaning \rightarrow triviality, vacuum stability

Experimental values point to metastability. Is it fully established?

→ we need to include DM, neutrino masses, ...? are all errors (EX+TH) fully included?

- → be cautious about claiming that metastability is established
- → May be a very important observation:
- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- remarkable interplay between gauge, Higgs and top loops (log divergences not Λ^2)

Is there a Message?

- λ(M_{Planck}) ~ 0 → implies big log cancellations
 M_{planck}, M_{weak}, gauge, Higgs & Yukawa couplings are unrelated
- remember: μ is the only single scale of the SM \rightarrow special role
 - consider $\mu^2 = 0 \Rightarrow V(M_{Planck}) \simeq 0$
 - flat Mexican hat (<1%) at the Planck scale! -> a message?

→ conformal (or shift) symmetry as solution to the HP?
 → combined conformal & EW symmetry breaking (models...)
 → realizations vie Higgs portals: λ (φ⁺φ)(Φ⁺Φ) -> λ <φ⁺φ_>(Φ⁺Φ)
 → implications for neutrino masses and DM μ² ≠ 0

Example: Consequences for Neutrino Masses

Conformal symmetry: explicit Majoran or Dirac masses forbidden
 → all masses must arise from suitable VEV * Yukawa coupling

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

 $SM + v_R + singlet$ $\langle \phi \rangle \approx TeV$ $\langle H \rangle \approx 1/4 \text{ TeV}$

→ generically one would expect a TeV seesaw BUT: y_M can be tiny

wide range of sterile masses → including pseudo-Dirac case
 suppressed 0vββ

More Consequences

- BSM physics → less easy to find at LHC
- Modified neutrino physics

 many more options
- New dark matter candidates
- Important conceptual consequences...

The general situation from no new particles @LHC:

- Keep looking
- SUSY models with little hierachy
- New ideas: conformal,

There must be some new physics!

A new Player: GR Waves

Gravitational waves from merging super massive objects: BH, NS, ...

Characteristic down-spiral:

- increasing frequency & amplitude
- → distance, masses, size, ...

1st detection: Sep. 14, 2015 Today: ~1 merger/week → many events...

Some mergers have jet-like processes

- → jets → occasionally pointing towards us
- → GR waves + light + neutrinos
- → multi-messenger observations @ Mpc
- → enormous lever arm (c, mass dispersion, sources)

Q: BH population ←→ primordial BHs, ←→ early U ←→ BSM, DM, v's, ... NS-mergers ←→ nucleosynthesis ←→ SN ←→ v's, BSM, DM ...other connections...

Supernova Neutrinos

2 possibilities:

Supernovae & Gravitational Waves

- → additional information about galactic SN
- → global fits: optical + neutrinos + gravitational waves
- → neutrino properties + SN explosion dynamics
- → SN1987A: strongest constraints on large extra dimensions

further topics: failed supernovae, hidden SN, v self-interactions (split, cohernece)

Supernova Pointing

Distance vs. pointing accuracy

Another method: Hansen, ML, Scholer
→ Timing of the v-burst (typ. 10kpc)

v's + BH formation \rightarrow dispersion

➔ neutrino mass down to 0.28 eV

Conclusions

- Neutrinos:
 - 3v or more? $\leftarrow \rightarrow$ big and small experiments
- **DM**:
 - how many components? particles $\leftarrow \rightarrow$ gravity/BHs
 - what if none of the prime candidates is found?
- BSM:
 - Higgs! → SM reigns this is a tremendous success!
 - two surprises: no BSM particle, $m_H \leftarrow \rightarrow$ stability
 - BSM may still pop up $\leftarrow \rightarrow$ new ideas: conformal, ...
- Other:
 - GR waves, B-physics, coherent v-scattering, ...
 - growing inter-connectivity: v-BSM-DM-GR waves+...
- very interesting options! Allow for them in road maps