Exploring the SM EFT with diboson production

Marc Montull (postdoc at DESY)

Based on:

1810.05149 with C. Grojean and M. Riembau
190x.xxxxx with G. Durieux and M. Riembau
190x.xxxxx with F. Bishara, P. Englert, C. Grojean, G. Panico, A. Rossia

As we know, the LHC discovered the **first scalar** and elementary (?) particle consistent with the SM Higgs boson

With this discovery, the SM is complete !!

Are we done ?

No! There are still **many** things to be understood ... for instance

No! There are still **many** things to be understood ... for instance

No! There are still **many** things to be understood ... for instance

So far the LHC has not found any new physics yet... Hence, if there is NP around the EW scale it is either:

So far the LHC has not found any new physics yet... Hence, if there is NP around the EW scale it is either:

So far the LHC has not found any new physics yet... Hence, if there is NP around the EW scale it is either:

What does this mean??

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} rac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} rac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

The BSM cross section can be parametrized as

$$\sigma_{BSM} = \sigma_{SM} + \delta\sigma$$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(9)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

The BSM cross section can be parametrized as

$$\sigma_{BSM} = \sigma_{SM} + \delta\sigma$$

If the BSM part grows faster with the CM Energy than the SM one

$$\frac{\delta\sigma}{\sigma_{SM}} \sim c_i \left(\frac{E}{m_W}\right)^{\beta}$$

In this case the sensitivity to the BSM coefficients is increased with the CM Energy

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(9)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

The BSM cross section can be parametrized as

$$\sigma_{BSM} = \sigma_{SM} + \delta\sigma$$

If the BSM part grows faster with the CM Energy than the SM one

$$\frac{\delta\sigma}{\sigma_{SM}} \sim c_i \left(\frac{E}{m_W}\right)^{\beta}$$

In this case the sensitivity to the BSM coefficients is increased with the CM Energy

$$\chi^2 \sim \left(\frac{\delta\sigma}{\sigma_{SM}}\right)^2 \left(\frac{1}{\Delta}\right)^2 \lesssim 1$$
(error in %) $\Delta \equiv \sqrt{\Delta_{sys}^2 + \Delta_{stat}^2}$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

The BSM cross section can be parametrized as

$$\sigma_{BSM} = \sigma_{SM} + \delta\sigma$$

If the BSM part grows faster with the CM Energy than the SM one

$$\frac{\delta\sigma}{\sigma_{SM}} \sim C_{i} \left(\frac{E}{m_{W}}\right)^{\beta}$$
In this case the sensitivity to the BSM coefficients is increased with the CM Energy
$$\chi^{2} \sim \left(\frac{\delta\sigma}{\sigma_{SM}}\right)^{2} \left(\frac{1}{\Delta}\right)^{2} \lesssim 1$$

$$C_{i} \lesssim \Delta \left(\frac{m_{W}}{E}\right)^{\beta}$$
(error in %) $\Delta = \sqrt{\Delta_{sys}^{2} + \Delta_{stat}^{2}}$

Bound becomes stronger at large E

Diboson production at the LHC is specially interesting

In particular, the processes modified by dimension 6 operators, which are:

$$\mathcal{L} = \mathcal{L}_{ ext{sm}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$$

$$pp \to WW, \quad pp \to WZ, \quad pp \to Zh, \quad pp \to Wh$$

Why are they interesting?

I) Sensitive to BSM physics addressing the hierarchy problem

for instance: Composite Higgs models, extra dimensions, Little Higgs

2) The BSM contributions grow faster than the SM one

- In the SM each diagram grows with CM Energy but sum cancels

2) The BSM contributions grow faster than the SM one

- In the SM each diagram grows with CM Energy but sum cancels
- In the SMEFT vertices are modified, cancellation is spoiled (at dimension 6) Enhanced sensitivity!

3) Diboson errors are **small** enough to set strong bounds thanks to **E enhancement**

3) Diboson errors are **small** enough to set strong bounds thanks to **E enhancement**

Equivalent to study modifications to Zqq and aTGC

 $g_{SM}\left(1+\delta g\right)$

Z couplings to quarks

anomalous TGC

Equivalent to study modifications to Zqq and aTGC

Equivalent to study modifications to Zqq and aTGC

Summary of our work on diboson:

I) 1810.05149 with C. Grojean and M. Riembau

- I.I) Is it justified to neglect Zqq couplings @ LHC?
- I.2) Can the LHC improve the bounds on the Zqq w.r.t LEP?
- 2) <u>190x.xxxx with G. Durieux and M. Riembau</u> (ongoing)
 - 2.1) Improving the sensitivity and range with VBF
- 3) <u>190x.xxxxx with F. Bishara, P. Englert, C. Grojean, G. Panico, A. Rossia</u> (ongoing)

3.1) Detailed study of the Wh channel

Summary of our work on diboson:

I) 1810.05149 with C. Grojean and M. Riembau

- I.I) Is it justified to neglect Zqq couplings @ LHC?
- I.2) Can the LHC improve the bounds on the Zqq w.r.t LEP?
- 2) <u>190x.xxxx with G. Durieux and M. Riembau</u> (ongoing)

2.1) Improving the sensitivity and range with VBF

3) <u>190x.xxxxx with F. Bishara, P. Englert, C. Grojean, G. Panico, A. Rossia</u> (ongoing)

3.1) Detailed study of the Wh channel

I.I) Is it justified to neglect Zqq couplings @ LHC?

I.I) Is it justified to neglect Zqq couplings @ LHC?

Combine current leptonic data for WW, WZ from CMS & ATLAS

Fit to anomalouts Triple Gauge Couplings

I.I) Is it justified to neglect Zqq couplings @ LHC?

Combine current leptonic data for WW, WZ from CMS & ATLAS

Fit to anomalouts Triple Gauge Couplings

LHC NOW

- Difference between considering Zqq non-zero or zero is of order 20% (+ global fit w/ LEP)

LHC NOW

- Difference > 100% @ HL-LHC: Not Justified to Neglect Zqq!

At high energies WW, WZ only test 5 directions

Process	Higgs basis	Warsaw basis	
$\bar{f}_L f_L \to W_T^{\pm} + Z_T$	λ_{γ}	c_{3W}	
$\bar{d}_R u_L \to W_L^+ Z_L$ $\bar{u}_R d_L \to W_L^- Z_L$	$2\left(\delta g_L^{Zd} - \delta g_L^{Zu}\right) + \cos\theta_W \delta g_{1z}$	$c_{Hq}^{(3)}$	
$\bar{f}_R f_L \to W_T^+ W_T^-$	λ_{γ}	c_{3W}	
$\bar{u}_R u_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zu} - 0.69\delta g_{1z} - 0.1\delta \kappa_{\gamma}$	$c_{Hq}^{(1)} + c_{Hq}^{(3)}$	
$\bar{d}_R d_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zd} + 0.85\delta g_{1z} - 0.1\delta\kappa_{\gamma}$	$c_{Hq}^{(1)} - c_{Hq}^{(3)}$	
$\bar{u}_L u_R \to W_L^+ W_L^-$	$-2\delta g_R^{Zu} + 0.31\delta g_{1z} - 0.4\delta \kappa_{\gamma}$	c_{Hu}	
$\bar{d}_L d_R \rightarrow W_L^+ W_L^-$	$-2\delta g_R^{Zd} - 0.15\delta g_{1z} + 0.2\delta \kappa_\gamma$	c_{Hd}	

but depend on 7 parameters: 4 Zqq couplings and 3 aTGC

At high energies WW, WZ only test 5 directions

Process	Higgs basis	Warsaw basis	
$\bar{f}_L f_L \to W_T^{\pm} + Z_T$	λ_{γ}	c_{3W}	
$ \bar{d}_R u_L \to W_L^+ Z_L \bar{u}_R d_L \to W_L^- Z_L $	$2\left(\delta g_L^{Zd} - \delta g_L^{Zu}\right) + \cos\theta_W \delta g_{1z}$	$c_{Hq}^{(3)}$	
$\bar{f}_R f_L \to W_T^+ W_T^-$	λ_{γ}	c_{3W}	
$\bar{u}_R u_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zu} - 0.69\delta g_{1z} - 0.1\delta\kappa_{\gamma}$	$c_{Hq}^{(1)} + c_{Hq}^{(3)}$	
$\bar{d}_R d_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zd} + 0.85\delta g_{1z} - 0.1\delta\kappa_\gamma$	$c_{Hq}^{(1)} - c_{Hq}^{(3)}$	
$\bar{u}_L u_R \to W_L^+ W_L^-$	$-2\delta g_R^{Zu} + 0.31\delta g_{1z} - 0.4\delta \kappa_{\gamma}$	c_{Hu}	
$\bar{d}_L d_R \to W_L^+ W_L^-$	$-2\delta g_R^{Zd} - 0.15\delta g_{1z} + 0.2\delta \kappa_{\gamma}$	c_{Hd}	

but depend on 7 parameters: 4 Zqq couplings and 3 aTGC

At high energies WW, WZ only test 5 directions

Process	Higgs basis	Warsaw basis	
$\bar{f}_L f_L \to W_T^{\pm} + Z_T$	λ_{γ}	c_{3W}	
$ \bar{d}_R u_L \to W_L^+ Z_L \bar{u}_R d_L \to W_L^- Z_L $	$2\left(\delta g_L^{Zd} - \delta g_L^{Zu}\right) + \cos\theta_W \delta g_{1z}$	$c_{Hq}^{(3)}$	
$\bar{f}_R f_L \to W_T^+ W_T^-$	λ_{γ}	c_{3W}	
$\bar{u}_R u_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zu} - 0.69\delta g_{1z} - 0.1\delta\kappa_\gamma$	$c_{Hq}^{(1)} + c_{Hq}^{(3)}$	
$\bar{d}_R d_L \to W_L^+ W_L^-$	$-2\delta g_L^{Zd} + 0.85\delta g_{1z} - 0.1\delta\kappa_\gamma$	$c_{Hq}^{(1)} - c_{Hq}^{(3)}$	
$\bar{u}_L u_R \to W_L^+ W_L^-$	$-2\delta g_R^{Zu} + 0.31\delta g_{1z} - 0.4\delta \kappa_{\gamma}$	c_{Hu}	
$\bar{d}_L d_R \to W_L^+ W_L^-$	$-2\delta g_R^{Zd} - 0.15\delta g_{1z} + 0.2\delta \kappa_{\gamma}$	c_{Hd}	

but depend on 7 parameters: 4 Zqq couplings and 3 aTGC

Combine current leptonic data for WW, WZ from CMS & ATLAS

Fit to Zqq vertex corrections

Z to **down** type q

Combine current leptonic data for WW, WZ from CMS & ATLAS

Fit to Zqq vertex corrections

Z to **down** type q

Combine current leptonic data for WW, WZ from CMS & ATLAS

Fit to Zqq vertex corrections

- Current data is competitive with LEP setting bounds to Zqq down type q!

LHC

NOW

Z to **down** type q

- For the up type corrections, the LHC is still not competitive with LEP

LHC

NOW

Z to **down** type q

- WV @ HL-LHC may improve the bounds on all the Zqq vertices w.r.t LEP!

Interpreting the bounds

Our LHC bounds on the BSM parameters are only valid for large BSM masses

In our case this means that we can only constrain theories where $g_{\star} > g_{SM}$

Interpreting the bounds

Our LHC bounds on the BSM parameters are only valid for large BSM masses

In our case this means that we can only constrain theories where $g_{\star} > g_{SM}$

Increase the Sensitivity (constrain weakly coupled theories)
 Lower the cutoff (increase range of the bounds)

Many work done on diboson to improve the bounds, e.g.

Falkowski et al. (1609.06312) Azatov et. al (1707.08060) Panico et al. (1708.07823) Franceschini et al. (1712.01310) Bellazzini et al. (1806.09640) Azatov et. al (1901.04821) Banerjee et. al (1905.02728) + ...

(ongoing work with G. Durieux and M. Riembau)

2.1) Improving the sensitivity and range with VBF?

Why study VBF?

I) Analytic simplification is possible via Equivalent EW bosons

Rattazzi et al. 1202.1904

The process factorises into a:

soft scale (radiated W)
hard scale (2->2 scattering)

Why study VBF?

I) Analytic simplification is possible via Equivalent EW bosons

Rattazzi et al. 1202.1904

The process factorises into a: - soft scale (radiated W) - hard scale (2->2 scattering)

2) VBF is sensitive to the same operators as diboson

Diboson has the same diagrams as the 2->2 channel rotated 90 degrees

Why study VBF?

I) Analytic simplification is possible via Equivalent EW bosons

Rattazzi et al. 1202.1904

The process factorises into a: - soft scale (radiated W) - hard scale (2->2 scattering)

2) VBF is sensitive to the same operators as diboson

Diboson has the same diagrams as the 2->2 channel rotated 90 degrees

3) It is possible to completely reconstruct final state

Implement cuts on CM Energy + cuts to increase sensitivity (angular distr)

First naive attempt: Separating of soft vs hard processes

We can define a jet imbalance variable given by:

$$\mathcal{I}p_{T,jj} = \frac{|p_{T,j_1} - p_{T,j_2}|}{p_{T,j_1} + p_{T,j_2}}$$

which we checked has a good discriminating power between signal and bkg

Comparing to other works with cuts that increase sensitivity

Wilson coefficient in the Warsaw basis

Comparing to other works with cuts that increase sensitivity

Wilson coefficient in the Warsaw basis

- Simple analysis already very powerful

Increased sensitivity and range to lower scales

- Possibility to further improve it with angular distributions, BDT

Conclusions

I) CMS and ATLAS aTGC fits will need to include Zqq corrections soon

- At least under the MFV or FU assumptions

2) Diboson @ LHC can improve the LEP bounds on the Zqq corrections

- Need of further study with other channels and more sensitive cuts
- Would be interesting if CMS and ATLAS would try to do it

3) New possibilities to test diboson operators with VBF

- Results hopefully coming soon

Thanks

We studied WW, WZ channels using the same cuts as CMS/ATLAS

Possible to improve bounds with other cuts/channels

- Wh hasn't been studied in detail yet.
- Preliminary results seem competitive (ongoing work)

Used MadGraph5_aMC@NLO to get BSM cross section and fit

- BSMC package Fuks et al

We did a simple analysis

- Leading order
- No Pythia (we checked didn't affect much)
- No correlation between bins

Cross check with CMS and ATLAS is OK, e.g.

Interpreting the bounds

In these fits, the quadratic pieces are non-negligible $|\mathcal{M}|^2 \sim |\mathcal{M}_{SM}|^2 + \mathcal{M}_{SM} \mathcal{M}_6 + |\mathcal{M}_6|^2$

so they are of the same order as dim 8

$$|\mathcal{M}_6|^2 \sim rac{1}{\Lambda^4} \sim \mathcal{M}_{SM} \, \mathcal{M}_8$$

Need of power counting to ensure:

I) dimension 8 are negligible

2) physical mass larger than Energy events

At dimension six

$$\mathcal{L} = \mathcal{L}_{ ext{sm}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$$

59 operators (Flavour Universality)

	$1: X^{3}$	$2: H^{6}$			$3: H^4D^2$			$5: \psi^2 H^3 + h.c.$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_H ($H^{\dagger}H)^{3}$	$Q_{H_{1}}$) (H [†]	$H)\Box(H^{\dagger}H)$	r)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$			Q_{HI}	$D = (H^{\dagger}D_{\mu})$	H) [*] ($H^{\dagger}I$	$D_{\mu}H$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				-			Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$4:X^2H^2$	6	$\psi^2 X H$	(+ h.c.			7	$:\psi^2H^2$	D
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	e_{τ}) $\tau^{I} H$	$W^{I}_{\mu\nu}$	$Q_{Hl}^{(1)}$		$(H^{\dagger}i\overleftarrow{1}$	$\vec{\mathcal{O}}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^\mu$	$\nu e_{\tau})H$	$B_{\mu\nu}$	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A u_r)$	$\widetilde{H}G^{A}_{\mu u}$	Q_{He}		$(H^{\dagger}i\overleftarrow{L})$	$\vec{\delta}_{\mu}H)(\bar{e}_p\gamma^{\mu}e_r)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu})$	$u_{\tau} \tau^{I} \hat{h}$	$\tilde{I} W^{I}_{\mu\nu}$	$Q_{Hq}^{\left(1 ight)}$		$(H^{\dagger}i\overleftarrow{L}$	$\vec{p}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$
Q_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^\mu)$	$\nu u_{\tau})\tilde{H}$	$B_{\mu\nu}$	$Q_{Hq}^{\left(3 ight) }$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A d_r)I$	$G^A_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu})$	$d_r)\tau^I H$	$W^{I}_{\mu u}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{D}$	$(\bar{d}_p \gamma^\mu d_r)$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^\mu$	$\nu d_r)H$	$B_{\mu u}$	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}D)$	$(\bar{u}_p \gamma^\mu d_r)$
	$8:(ar{L}L)(ar{L}L)$		8 : (4	$\bar{R}R)(\bar{R}$	R)		8:($\bar{L}L)(\bar{R}H)$	2)
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	(\bar{e}_j)	$_p \gamma_\mu e_r)$	$(ar{e}_s \gamma^\mu e_t)$	Q_{le}	(Ī	$(\bar{e}_p \gamma_\mu l_r)(\bar{e}_p \gamma_\mu l_r)$	$_{s}\gamma^{\mu}e_{t})$
$Q_{qq}^{\left(1 ight)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(ū,	$\gamma_{\mu}u_{r})$	$(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	(\bar{l}_{j})	$_{p}\gamma_{\mu}l_{r})(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$
$Q_{qq}^{\left(3 ight)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	(<i>d</i> ₁	$\gamma_{\mu}d_{r})$	$(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	(\bar{l}_{j})	$(\bar{d}_p \gamma_\mu l_r)(\bar{d}_p)$	$s\gamma^{\mu}d_{t})$
$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_{j}$	$_{p}\gamma_{\mu}e_{r})($	$(ar{u}_s\gamma^\mu u_t)$	Q_{qe}	$(\bar{q}$	$_{p}\gamma_{\mu}q_{r})(\bar{e}$	$e_s \gamma^\mu e_t)$
$Q_{lq}^{\left(3 ight)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	(ē,	$_{p}\gamma_{\mu}e_{r})($	$(ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_j$	$_p\gamma_\mu q_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$
		$Q_{ud}^{(1)}$	(ū,	$_p\gamma_\mu u_r)$	$(ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p\gamma_\mu$	$T^A q_r)(\bar{u}$	$s_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)$	$(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	(\bar{q})	$p\gamma_{\mu}q_{\tau})(d$	$(\bar{l}_s \gamma^\mu d_t)$
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu$	$T^A q_r)(d$	$ar{l}_s \gamma^\mu T^A d_t)$
$8:(\bar{L}R)(\bar{R}L)+ ext{h.c.}$ $8:(\bar{L}R)(\bar{L}R)+ ext{h.c.}$									
	Q_{ledg} (\overline{l}	$(\bar{d}_s q)$	(j) G	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_j$	$_{jk}(\bar{q}_s^k d_t)$			
			ς	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_\tau) \epsilon_j$	$_{jk}(\bar{q}_s^kT^Ad_t$)		
			4	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_j$	$_{ik}(\bar{q}_s^k u_t)$			
			4	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_j$	$_{ik}(\bar{q}_s^k\sigma^{\mu u}u_t$)		

Toy Model to get more intuition

A simple toy model: $SU(2)_R$ triplet so that respects custodial.

Figure 9: 95% CL exclusion regions in the (γ_H, γ_Q) plane for various values of the resonance masses. In blue, the projected constraints from diboson data at HL-LHC, using our projections (dark shade) or the refined analysis strategy of Ref. 12. The other constraints come from a recast of the studies in Refs. 21,60–63 and are commented in detail in the text.

Sensitivity enhancement already used to expand previous LEP bounds

I) Drell-Yan

Farina et al 1609.08157

Improving LEP bounds on Universal Parameters W, Y

2) Diboson production

Butter et al 1604.03105 Azatov et al 1707.08060

Improving LEP-2 bounds on anomalous Triple Gauge Couplings

Bounds on Zff anomalous couplins (from LEP)

Flavour Universality

$$[\delta g_R^{Zu}]_{ij} = A \,\delta_{ij}$$

δg_L^{Zu}	=	-0.0017	\pm	0.002
δg_R^{Zu}	=	-0.0023	\pm	0.005
δg_L^{Zd}	=	0.0028	\pm	0.0015
δg_R^{Zd}	=	0.019	\pm	0.008

MFV

$$[\delta g_R^{Zu}]_{ij} = \left(A + B\frac{m_i}{m_3}\right)\delta_{ij}$$

δg_L^{Zu}	=	-0.002	\pm	0.003
δg_R^{Zu}	=	-0.003	\pm	0.005
δg_L^{Zd}	=	0.002	\pm	0.005
δg_R^{Zd}	=	0.016	\pm	0.027

Falkowski et al. 1503.07872

Bounds on aTGC

	LHC I	Run I	LEI	P
	$68~\%~{ m CL}$	Correlations	$68~\%~{ m CL}$	Correlations
Δg_1^Z	0.010 ± 0.008	$1.00 0.19 \ -0.06$	$0.051\substack{+0.031\\-0.032}$	$1.00 \ 0.23 \ -0.30$
$\Delta \kappa_{\gamma}$	0.017 ± 0.028	$0.19 1.00 \ -0.01$	$-0.067\substack{+0.061\\-0.057}$	$0.23 \ 1.00 \ -0.27$
λ	0.0029 ± 0.0057	$-0.06 \ -0.01 \ 1.00$	$-0.067\substack{+0.036\\-0.038}$	$-0.30 \ 0.27 \ 1.00$

Butter, et al. 1604.03105

I) Data used

We chose the most significant leptonic channels

Detector	$\mathcal{L}[ext{fb}^{-1}]$	\sqrt{s}	Process	Obs.	Ref.
ATLAS	4.6	$7 \mathrm{TeV}$	$WW \to \ell \nu \ell \nu$	$p_{T\ell}^{(1)}$	[5]
ATLAS	20.3	$8 \mathrm{TeV}$	$WW \to \ell \nu \ell \nu$	$p_{T\ell}^{(1)}$	[6]
CMS	19.4	$8 \mathrm{TeV}$	$WW \to \ell \nu \ell \nu$	$m_{\ell\ell}$	[7]
ATLAS	20.3	8 TeV	$WZ \to \ell \nu \ell \ell$	p_{TZ}	[8]
CMS	19.6	8 TeV	$WZ \to \ell \nu \ell \ell$	p_{TZ}	[9]
ATLAS	13	$13 \mathrm{TeV}$	$WZ \to \ell \nu \ell \ell$	m_{WZ}	[10]