

Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model

<u>Thomas Rink^{1,3}</u>, Werner Rodejohann¹, Kai Schmitz²

 ¹Max-Planck-Institut für Kernphysik (MPIK), Heidelberg
 ²Dipartimento di Fisica e Astronomia, Università degli Studi di Padova; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova
 ³ RTG "Physics beyond the Standard model", Heidelberg University

The 27th International Workshop on Weak Interactions and Neutrinos, Bari (Italy) June 4th, 2019

Baryon asymmetry of the Universe (BAU)

Observations: More matter than antimatter!

• No annihilation radiation

$$p\overline{p} \to ...\pi^0 \to ...2\gamma$$

- \rightarrow exclude up to ${\sim}20\,{\rm Mpc}$
- \bullet No $\gamma\text{-rays}$ and no CMB distortions
 - \rightarrow exclude up to \sim 1Gpc

Two independent measurements:

• Light element abundance: $\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$ $\rightarrow T \lesssim 1 \ {\rm MeV}$

10⁻¹⁴-

 $\eta = (6.13 \pm 0.04) \underbrace{\cdot 10^{-10}}_{\text{[Planck 2018]}}$

• CMB anisotropies: $\eta = 274 \cdot \Omega_B h^2 \cdot 10^{-10}$ $\rightarrow T \lesssim 1 \text{ eV}$

Convenient quantity:
$$Y_{\Delta B} = rac{n_B - n_{\overline{B}}}{s}$$
 Conserved!

T. Rink

Theoretical requirements for baryogenesis

Inflation forbids fine-tuned initial conditions \rightarrow dynamical explanation

Sakharov condition:	[Sakharov, 1967]
---------------------	------------------

- 1) B violation
- 2) C and CP violation
- 3) Out of equilibrium decay
- → new sources of CP violation and modification of EWPT/thermal departure mechanism

Various scenarios on the market:

- GUT baryogenesis
- Electroweak baryogenesis
- Affleck-Dine mechanism

Within the standard model:

- 1) Triangle anomaly
 - → sphalerons

- 2) Weak interactions
 - \rightarrow CP violation, but too small
- 3) Electroweak phase transition
 - \rightarrow not sufficiently first order

- Spontaneous baryogenesis
- Leptogenesis
- Etc...

Neutrino masses and leptogenesis

Neutrino masses are first real hint for BSM physics!

- Realizations of dim-5 Weinberg operator [Weinberg, 1979]
 - Tree-level: seesaw mechanisms
 - Loop-level: scotogenic model, Zee-Babu
- New physics at higher scales could create particle asymmetry
 - New (complex) couplings
 - \rightarrow C and CP violation
 - Out of equilibrium decay of heavy states
 → expansion of the universe

 $\Delta \mathcal{L}_{\text{eff}} = \frac{1}{4} \frac{\kappa_{\alpha\beta}}{\Lambda} \left(\ell_{\alpha}^{T} i \sigma^{2} H \right) C \left(H^{T} i \sigma^{2} \ell_{\beta} \right) + \text{h.c.}$

→ natural link between neutrino mass and cosmology !

[Bonnet et al., 2012]

WIN2019, Bari, Italy

T. Rink

Type-I leptogenesis

Add ≥2 RH singlet fermions

$$\mathcal{L}_{I} \supset -\left(\frac{1}{2}M_{i}\overline{N_{R_{i}}^{c}}N_{R_{i}} + \epsilon_{\alpha\beta}Y_{\alpha i}\overline{N_{R_{i}}}l_{\alpha}^{a}H^{b} + \text{h.c.}\right) \longrightarrow m_{I} \simeq -v^{2}Y\frac{1}{M}Y^{T}$$
1) EW sphalerons
2) New complex Yukawas
3) Lifetime of N not much shorter
than age of universe
$$\epsilon_{i} = \sum_{\alpha}\epsilon_{i\alpha} = \frac{1}{8\pi}\frac{1}{(Y^{\dagger}Y)_{ii}}\sum_{j\neq i}Im\left[(Y^{\dagger}Y)_{ji}^{2}\right]g\left(\frac{M_{j}^{2}}{M_{i}^{2}}\right)$$

Evolution of lightest RH density Y_{N1} and $Y_{\Delta L}$

$$\frac{dY_{N_1}}{dz} = -D_1 \left(Y_{N_1} - Y_{N_1}^{eq} \right),$$
$$\frac{dY_{\Delta L}}{dz} = \epsilon_1 D_1 \left(Y_{N_1} - Y_{N_1}^{eq} \right) - W_1 Y_{\Delta L}$$

T. Rink

Type-II leptogenesis

Add ≥1 scalar SU(2)_L triplet(s)

 $\mathcal{L}_{II} \supset -m_{\Delta}^{2} tr \left[\Delta_{L}^{\dagger} \Delta_{L} \right] - \left(f_{ij} L_{i}^{T} C i \sigma_{2} \Delta_{L}^{\dagger} L_{j} + \mu H^{T} i \sigma_{2} \Delta^{\dagger} H + \text{h.c.} \right) \longrightarrow m_{II} = f v_{L} = f \frac{\mu v^{2}}{m_{\Delta}^{2}}$

- Sakharov conditions equivalent to type-I
- CP asymmetry: two decay channels!

Evolution describes of four quantities:

$$\frac{d\Sigma_{\Delta}}{dz} = -D\left(\Sigma_{\Delta} - \Sigma_{\Delta}^{eq}\right) - 2A\left(\Sigma_{\Delta}^{2} - \Sigma_{\Delta}^{2eq}\right)$$

$$\frac{d\Delta_{L}}{dz} = -D\epsilon_{L}\left(\Sigma_{\Delta} - \Sigma_{\Delta}^{eq}\right) + \mathcal{W}_{\mathcal{L}}^{\mathcal{D}}$$

$$\frac{d\Delta_{\Delta}}{dz} = -\frac{1}{2}\left(\mathcal{W}_{L}^{D} - \mathcal{W}_{L}^{H}\right)$$

$$\left(\frac{d\Delta_{H}}{dz} = -D\epsilon_{L}\left(\Sigma_{\Delta} - \Sigma_{\Delta}^{eq}\right) + \mathcal{W}_{\mathcal{L}}^{\mathcal{H}}\right)$$

T. Rink

Minimal model in left-right symmetric context

Assume: just one scalar triplet

- 11 quantities: f, m_{Δ} , μ
- Minimal flavor structure: m_v~f
- \bullet Mass scale set by $v_{\scriptscriptstyle L}$
- → perfect minimal model, but..

- Triplet not self-conjugate
 - \rightarrow no vertex diagram
- Self-energy diagram real
 - \rightarrow no CP violation
- More loops suppressed anyway

→minimal models in larger context!

Idea: SU(2)_L x SU(2)_R models [Mohapatra & Senjanovic, 1975]

- \bullet Natural embedding of type-I and type-II seesaw $m_
 u = m_I + m_{II}$
- Connection between RH and LH neutrino masses possible!
- Outlook: implementation into **SO(10)** GUTs
 - $\textbf{126}_{\text{S}}$ contains both $\boldsymbol{\Delta}_{\text{L}}$ and $\boldsymbol{\Delta}_{\text{R}}$
 - . $\Delta_L \gg \Delta_R$ vs. $\Delta_L \ll \Delta_R$

Type-II dominated Left-right leptogenesis

Assumptions for our model: $\Delta_L \ll \Delta_R$

- 1) LR context & type-II dominance
 - → same mass hierarchy between LH and RH particles
- 2) One $SU(2)_{L}$ triplet
 - → Triplet solely generates BAU
- 3) GUT-inspired Dirac mass hierarchy

$$m_D \simeq \operatorname{diag}(m_u, m_c, m_t) \simeq \frac{v_{EW}}{\sqrt{2}} \operatorname{diag}(0, 0, 1)$$

4) (perturbativity bound

- → maximal possible BAU)
- → **Framework**: Flavoured semi-classical Boltzmann equation [Lavignac & Schmauch, 2015]

[Joshipura, Paschos, Rodejohann, 2001]

 $SU(2)_L \times SU(2)_R \times U(1)_{\tilde{Y}}$ $\rightarrow SU(2)_L \times U(1)_Y$

$$\sqrt{\mathrm{Tr}(\mathbf{f}^{\dagger}\mathbf{f})} = \frac{\bar{m}}{v_L} \lesssim \mathcal{O}(1)$$

Type-II dominated light neutrino masses

Assume: $\Delta_L \ll \Delta_R$

- \bullet RH neutrinos much heavier than scalar triplet $m_
 u = m_I + m_{II} \simeq m_{II}$
- RH VEV $v_{\rm R}$ induces Majorana neutrino mass

$$\rightarrow m_N = f \cdot v_R = \left(\frac{m_{II}}{v_L}\right) \cdot v_R \approx \frac{v_R}{v_L} m_\nu$$

- Diagonalizing m_v diagonalizes m_N $\rightarrow D_N \approx \frac{v_R}{v_L} D_{\nu}$
 - Heavy and light neutrinos exhibit same mass hierarchy!
 - Connected by ratio of different scales! $r\equiv rac{v_L}{v_R}$
- GUT-inspired structure for Dirac neutrino mass

$$\rightarrow \quad \bar{m}_I \equiv \sqrt{\mathrm{Tr}\left(m_I^{\dagger} m_I\right)} = \frac{r v_{\mathrm{ew}}^2}{2} \sqrt{\sum_{i,j} \frac{U_{\tau i}^2 U_{\tau j}^{2*}}{m_i m_j}} \equiv \frac{r v_{\mathrm{ew}}^2}{2\tilde{m}}$$

• Type-II mass scale:

$$\bar{m}_{II} \equiv \sqrt{\mathrm{Tr}\left(m_{II}^{\dagger}m_{II}\right)} = \lambda_{l}v_{L} \simeq \bar{m}, \text{ with } \lambda_{l} \equiv \sqrt{\mathrm{Tr}\left(f^{\dagger}f\right)}$$

Quantifying type-II dominance

Type-II dominance is realized if

$$R = \frac{\bar{m}_I}{\bar{m}_{II}} \simeq \frac{r v_{\rm ew}^2}{2\bar{m}\tilde{m}} \ll 1$$

Constraints on parameter space:

• Ratio of scales:

$$r \ll \frac{2\bar{m}\tilde{m}}{v_{\rm ew}^2} \sim 10^{-26} \left(\frac{\tilde{m}}{0.01 \text{ eV}}\right) \left(\frac{\bar{m}}{0.05 \text{ eV}}\right)$$

• LH mass scale

T. Rink

$$v_L \ll \frac{2\bar{m}\tilde{m}v_R}{v_{\rm ew}^2} \sim 0.1 \text{ eV}\left(\frac{\tilde{m}}{0.01 \text{ eV}}\right) \left(\frac{\bar{m}}{0.05 \text{ eV}}\right) \left(\frac{v_R}{10^{16} \text{ GeV}}\right)$$

• Tri-linear scalar coupling

$$\mu \ll \frac{\bar{m}\tilde{m}M_{\Delta}^2 v_R}{v_{\rm ew}^4} \sim 10^{10} \text{ GeV} \left(\frac{\tilde{m}}{0.01 \text{ eV}}\right) \left(\frac{\bar{m}}{0.05 \text{ eV}}\right) \left(\frac{M_{\Delta}}{10^{12} \text{ GeV}}\right)^2 \left(\frac{v_R}{10^{16} \text{ GeV}}\right)$$

Quantifying type-II dominance

Type-II dominance parameter R - $\delta = \frac{3}{2}\pi$, $\tau = 0$

T. Rink

Available parameter space

Low energy observables:

- Light neutrino mass scale: **m**
- CP phases of PMNS matrix: $\pmb{\delta},\,\pmb{\sigma},\,\pmb{\tau}$
- LH VEV: $v_L \rightarrow \bar{m}$ (perturb. bound)

High energy quantities:

- Triplet mass : **m**₄
- \bullet Tri-linear scalar coupling: μ
 - \rightarrow fixed by LH VEV $v_{\scriptscriptstyle L}$
- Lepton-triplet coupling matrix: f
 - \rightarrow fixed by LR symmetry and type-II dominance
- RH VEV: fixed at high value: $v_R \sim 10^{16} \text{ GeV}$

Experiments: • GERDA/Majorana, ... • KATRIN Cosmology

Constrain with correct BAU $\eta \sim 6.1 \cdot 10^{-10}$

Higher order washout effects

T. Rink

Flavour and spectator processes

→ Yukawa interactions become effective as Universe cools: Г~Н

- Yukawa interactions are sensitive to flavor → break quantum coherence!
- Corresponding density matrix elements vanish → different regimes: 1-/2-/3-flavour
- Different viewpoint: hide asymmetry from washout!
 - \rightarrow strong effect on BAU evolution: ~ **O(10)**

→ Spectator processes have indirect effects!

- Modify particle densities that influence washout terms
 - \rightarrow re-express lepton and Higgs doublet densities
 - in terms of relevant quantities
- Equilibrium regimes are well understood, transitions more subtle ...

Generating BAU in the early Universe

WIN2019, Bari, Italy

A detailed example:

→ Overview of relevant quantities (assume NO, 3-flavor description)

Lightest neutrino m _o	0.01eV			
Dirac phase δ	1.5π			
Majorana phase σ	0.5π			
Majorana phase τ	0.0			
Triplet mass m_{Δ}	1.492*10 ¹³ GeV			
Neutrino mass quantities				
Neutrino mass scale	m 0.054 eV			
Eff. Majorana mass $m_{_{\beta\beta}}$	0.002 eV			
β -decay mass m _{ee}	0.013 eV			
Sum of all masses	0.074 eV			

Relevant quantities for leptogenesis

- R parameter: 0.013
- RH VEV: $v_R \sim 10^{16} \text{ GeV}$
- LH VEV: V_L <<0.83 eV
- Tri-linear coupling: $\mu << 1.85^{*}10^{13}\,\text{GeV}$
- $\mathbf{B}_{L} = 0.9998 \text{ vs. } B_{H} = 0.0002$

Baryon-to-photon ratios η [10⁻¹⁰]:

- Full washout: 6.16
- Just lepton-Higgs: 6.15
- 4lepton & lepton-triplet: 6.71
- No 2→2 washout: 6.71 (assuming thermal initial abundance for triplet)

[1-Flavor approximation: 9.35 (full) vs. 9.78 (none)]

T. Rink

Influence of experimental uncertainties

		-	Normal Ord	lering (best fit)
→ Vary experimental inputs with	thin error i	regions	bfp $\pm 1\sigma$	3σ range
$(\Delta m_{ii}^2 \sin^2 \theta_{ii})$		-	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
$(\Delta m_{ij}, Sm o_{ij})$			$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
Variation of CP phases - $m = 10^{-3}$ eV, r	$m_{\Delta} = 4.23 \cdot 10^{12} \text{ Ge}$	eV (NO)	$0.580^{+0.017}_{-0.021}$	$0.418 \rightarrow 0.627$
		- Dirac phase δ	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$
20 -		- Majorana phase σ	$0.02241^{+0.00065}_{-0.00065}$	$0.02045 \to 0.02439$
15-		- Majorana phase t	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$
			215^{+40}_{-29}	$125 \rightarrow 392$
			$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$
La ration			$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$
	<u>۱</u>		Inverted Orde	ering $(\Delta \chi^2 = 4.7)$
Yd .	<u>۱</u>		bfp $\pm 1\sigma$	3σ range
¢ -5]	<u>۱</u>		$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
	\ \		$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
E10			$0.584^{+0.016}_{-0.020}$	$0.423 \rightarrow 0.629$
-15 -			$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$
			$0.02264^{+0.00066}_{-0.00066}$	$0.02068 \to 0.02463$
-20 -			$8.65^{+0.13}_{-0.13}$	$8.27 \rightarrow 9.03$
			284^{+27}_{-29}	$196 \to 360$
0.0 0.25 0.5 0.75 1.0 CP phase $[\pi]$	1.25 1.5	1.75 2.0	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$
		[Esteban et al., 2018]	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$

T. Rink

WIN2019, Bari, Italy

Constraining parameter space with correct BAU

Full parameter scan - $\eta = 6.13 \cdot 10^{-10}$: $\sigma = \frac{\pi}{2}, \tau = 0$

T. Rink

Conclusion

- Leptogenesis allows natural connection to neutrino masses
- LR symmetric models incorporate type-I and type-II seesaw mechanism
 → minimal type-II leptogenesis scenario valid again!
- Our minimal predictive model: type-II dominated LR-symmetric seesaw
 - Type-II dominance
 - LR-symmetry
 - GUT-inspired neutrino Dirac mass
- Separation of parameter space:

- Future neutrino experiments will determine low-E parameters
 - \rightarrow potential window into high-energy regions!

Stay tuned !

Thank you for your attention!

Type-II dominated CP asymmetry

→ Single flavour CP asymmetry with top Yukawa dominated Dirac mass

1-flavour vs. 3-flavour description

22