Higgs boson couplings to quarks at the ATLAS experiment

Zhijun Liang
on behalf of the ATLAS Collaboration

Institute of High Energy Physics, Chinese Academy of Sciences

The 27th International Workshop on Weak Interactions and Neutrinos
The Standard Model

Describes everything experimentally confirmed before 2012

Higgs sector

Yukawa coupling with new scalar (completely new interaction type)
$t\bar{t}H, H \rightarrow b\bar{b}$ and $H \rightarrow \tau\tau$ are important!

Higgs potential $(\mu^2 \phi^2 + \lambda \phi^4)$ (to be explored by High Lumi-LHC)

Gauge boson interaction with new scalar (new for scalar, but known for fermions)
• Higgs coupling to top quarks
• Higgs coupling to bottom quarks
• Higgs coupling to charm quarks
How to Identify b quark jets in ATLAS

- Two major information to Identify b jets
 - Impact parameters
 - Secondary vertex from B decay
ATLAS Detector upgrade: Run 1 to Run 2

- Adding a new layer of pixel detector
 - IBL = New Insertable pixel B-Layer at R=33 mm

- Light jet rejection power with vertexing algorithm increased
Higgs coupling to top quarks

• Higgs coupling to top quarks
 – Associated production with a top quark pair (ttH)

• Higgs coupling to bottom quarks
 – \(V+H \rightarrow bb \), (where \(V=W/Z \))
 – Vector boson fusion (VBF) \(H \rightarrow bb \)
 – Boosted \(H \rightarrow bb \)
 – \(H \rightarrow bb \) combination

• Higgs coupling to charm quarks
 – \(Z+H \rightarrow bb \)
Why ttH?

- Explore Higgs-Fermion interactions at LHC
 - The strength of Higgs-Fermion interactions
 - Higgs-Top coupling is the largest
 - At LHC: Model dependent vs independent

Indirect detection, model dependent

direct detection in production

ttH: probably the only channel that can directly probe Higgs Yukawa coupling via production

ATLAS Preliminary

$r_s = 13$ TeV, $36.1 - 79.8$ fb$^{-1}$

$m_H = 125.09$ GeV, $|y_H| < 2.5$
How to study ttH?

- **Production**

- **Decays**

Top Pair Branching Fractions

- "alljets" 46%
- τ+jets 15%
- μ+jets 15%
- e+jets 15%
- "dileptons"
- "lepton+jets"

Hundreds of complex final states

- ~1% of total Higgs
- ~0.06% of ttbar
- ~1/10^{11} of total interaction

H decay

- bb: 58.1%
- WW: 21.5%
- ττ: 6.3%
- ZZ: 2.6%
- γγ: 0.23%

Analyzed Final states

- Jets
- τ
- Multi-leptons
- Photons
Higgs-top Yukawa coupling in run1

- Direct measurement of Higgs-Top coupling via $t\bar{t}H$ production.
- $t\bar{t}H$ signal strength ($\mu_{t\bar{t}H}$) measured in LHC Run 1
 - 4.4 sigma observed significance (ATLAS+CMS run1 combination)
 - 2.0 sigma expected significance

$$\mu = \frac{\sigma_{\text{measured}}}{\sigma_{\text{SM}}}$$

JHEP 08 (2016) 045
ttH channels

- $H \rightarrow ZZ^* \rightarrow 4\ell$
- $H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$
- $H \rightarrow \gamma\gamma$
- $H \rightarrow \tau\tau$ (multi-leptons)
- $H \rightarrow b\bar{b}$

Higher cross section x branching ratio

Higher signal purity
• Obs. (exp.) significance at 4.1σ (2.8σ)
 – ttbar background suppressed at
 • Same sign di-lepton channel
 • 3 and 4 leptons channel
 – Major syst.
 • ttH predicted cross section
 • Jet energy scale and resolution

ATLAS

\[\sqrt{s} = 13 \text{ TeV}, \ 36.1 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th></th>
<th>Tot.</th>
<th>Stat.</th>
<th>(Stat., Syst.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2\ell OS + 1τ_{had}</td>
<td>1.7</td>
<td>+2.1</td>
<td>+1.1, -1.5</td>
</tr>
<tr>
<td>1\ell + 2τ_{had}</td>
<td>-0.6</td>
<td>-1.9</td>
<td>-0.8, -1.3</td>
</tr>
<tr>
<td>4\ell</td>
<td>-0.5</td>
<td>+1.3</td>
<td>-0.8, +0.2</td>
</tr>
<tr>
<td>3\ell + 1τ_{had}</td>
<td>1.6</td>
<td>-0.9</td>
<td>+1.7, -1.3</td>
</tr>
<tr>
<td>2\ell SS + 1τ_{had}</td>
<td>3.5</td>
<td>-1.3</td>
<td>+1.5, -1.2</td>
</tr>
<tr>
<td>3\ell</td>
<td>1.8</td>
<td>-0.9</td>
<td>+0.6, -0.6</td>
</tr>
<tr>
<td>2\ell SS</td>
<td>1.5</td>
<td>-0.7</td>
<td>+0.4, -0.4</td>
</tr>
<tr>
<td>combined</td>
<td>1.6</td>
<td>0.5</td>
<td>+0.3, +0.4</td>
</tr>
</tbody>
</table>

Best-fit \(\mu_{ttH} \) for \(m_{H} = 125 \text{ GeV} \)

Signal Fraction [%]

- H → other
- H → ττ
- H → ZZ
- H → WW

Simulation

\[\sqrt{s} = 13 \text{ TeV} \]
- Suffers from large QCD background from tt+bjets
- Combined fit to all 19 regions (with control region)
 - Reduce background systematics
 - Observed(expected) significance at 1.4σ (1.6σ)
Use photons to tag the Higgs Boson

Use jets (b-jets), leptons, and E_T^{miss} to capture the characteristics of top quarks

Directly use properties of the objects in the event to train a multivariate discriminant
The signal strength (observed/predicted) is measured to be:

$$\mu_{t\bar{t}H} = 1.38^{+0.41}_{-0.36} = 1.38^{+0.33}_{-0.31} \text{ (stat.)}^{+0.13}_{-0.11} \text{ (exp.)}^{+0.22}_{-0.14} \text{ (theo.)}$$

Significance: 4.9σ observed (4.2σ expected.)
• Observation of ttH production!
 – \(ttH \rightarrow \gamma \gamma \) is still dominated by statistics unc.

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1} \)

- \(ttH (b\bar{b}) \)

 \[
 0.79 \pm 0.61^{+0.29}_{-0.28}, \pm 0.53
 \]

- \(ttH (\text{multilepton}) \)

 \[
 1.56 \pm 0.42^{+0.30}_{-0.29}, \pm 0.30
 \]

- \(ttH (\gamma\gamma) \)

 \[
 1.39 \pm 0.48^{+0.42}_{-0.38}, \pm 0.23
 \]

- \(ttH (Z\bar{Z}) \)

 \(<1.77 \text{ at } 68\% \text{ CL}\)

- Combined

 \[
 1.32 \pm 0.28^{+0.18}_{-0.26}, \pm 0.21
 \]
Higgs coupling to bottom quarks

- Higgs coupling to top quarks
 - Associated production with a top quark pair (ttH)

- Higgs coupling to bottom quarks
 - $V+H \rightarrow bb$, (where $V=W/Z$)
 - Vector boson fusion (VBF) $H \rightarrow bb$
 - Boosted $H \rightarrow bb$
 - $H \rightarrow bb$ combination

- Higgs coupling to charm quarks
 - $Z+H \rightarrow bb$
Higgs decay

- **H→bb is the Dominant Decay mode of Higgs Boson (58%)**
- **Motivation:** Search H→bb decay mode in VBF final state

ZZ, γγ: Good mass resolution channels; mass and precise differential measurements

WW: High BR, poor mass resolution

μμ: Very small BR, but access to coupling to 2nd generation fermions

bb, tt: High BR, but low S/B; important to directly probe Higgs boson coupling to fermions
Road to discovery of $H \rightarrow bb$

- Started in LEP era, developed in Tevatron, found at LHC
 - $H \rightarrow bb$ observation in middle of 2018 by ATLAS and CMS
H → bb searches in different channels

- **H→bb is hadronic final state**
 - Need a clear signature for trigger in ATLAS

- Largest cross section
- Huge multi-jet (MJ) background
- Two forward jets
- Large MJ
- Leptonic signature
- Better triggering
- Better MJ suppression
- Leptonic signature
- Also top quark coupling
V+H(→ bb) : event selection

0-Lepton

E_{T}^{miss} trigger
Veto leptons $p_{T}>7$ GeV
$p_{T}(E_{T}^{\text{miss}}) > 150$GeV
Angular cuts to remove MJ

1-Lepton

Single-electron or E_{T}^{miss} trigger
Exactly one isolated lepton
$p_{T}>25$ (27)GeV for muon (electron)
$p_{T}^{W}(l,\nu) > 150$GeV
$E_{T}^{\text{miss}}>30$ GeV in electron channel

2-Lepton

Single-lepton trigger
2 electrons or muons $p_{T}>27$ (7) GeV
$p_{T}^{Z}(l,l) [75-150$GeV$] \text{ or } >150$GeV
$81 < m_{ll} < 101$ GeV

VH → bb: strategy

- Harder p_T^V spectrum for signal
 - $V=\text{W or Z}$
 - Higher S/B ratio in high p_T region

- 8 signal categories:
 - Number of lepton (0,1,2-lepton)
 - $75 < p_T^V < 150 \text{ GeV (2-lepton)}, p_T^V > 150 \text{ GeV}$
 - Number of jets (2jet or 3 jets)

- Main discriminant variables
 - m_{bb}, p_T^V and ΔR_{bb}
 - m_{bb} resolution extremely important!
 - Correction to m_{bb}
 - taking into account $p_T(\mu)$ in b-jets
 - for ν's and out-of-cone energy in decay
 - kinematic fit in 2-lepton channel

\[\Delta R_{bb} \]
V+H (\rightarrow bb): background

- **0-lepton**
 - Data
 - VH, H → bb ($\mu = 1.16$)
 - Diboson
 - tt
 - Single top
 - W+jets
 - Z+jets
 - Uncertainty
 - Pre-fit background
 - VH, H → bb × 5

- **1-lepton**
 - Data
 - VH, H → bb ($\mu = 1.16$)
 - Diboson
 - tt
 - Single top
 - W+jets
 - Z+jets
 - Uncertainty
 - Pre-fit background
 - VH, H → bb × 5

- **2-lepton**
 - Data
 - VH, H → bb ($\mu = 1.16$)
 - Diboson
 - Z+jets
 - tt
 - Single top
 - Uncertainty
 - Pre-fit background
 - VH, H → bb × 5

- **Z+bjets** dominates in 0, 2 lepton channels
- **Top quark and W+jets** in 1 lepton channel
- **Multi-jet background**
 - Negligible in 0/2 lepton channels after anti-QCD cuts
 - Data-driven estimate in 1 lepton channel
VH → bb: Result

Fit to BDT distributions (8 SRs)

\[\mu = \frac{\text{observed signal yield}}{\text{signal yield from theory}} \]

\[\mu_{bb}^{VH} = 1.16^{+0.27}_{-0.25} = 1.16 \pm 0.16 \text{(stat.)}^{+0.21}_{-0.19} \text{(syst.)} \]

corresponding to \(4.9\sigma\) (4.3\(\sigma\) exp.)

Fit to \(m_{bb}\) distributions (14 SRs)

\[\mu_{bb}^{VH} = 1.06^{+0.36}_{-0.33} = 1.06 \pm 0.20 \text{(stat.)}^{+0.30}_{-0.26} \text{(syst.)} \]

corresponding to \(3.6\sigma\) (3.5\(\sigma\) exp.)
Higgs coupling to bottom quarks

- Higgs coupling to top quarks
 - Associated production with a top quark pair (ttH)
- Higgs coupling to bottom quarks
 - $V+H \rightarrow bb$, (where $V=W/Z$)
 - Vector boson fusion (VBF) $H \rightarrow bb$
 - Boosted $H \rightarrow bb$
 - $H \rightarrow bb$ combination
- Higgs coupling to charm quarks
 - $Z+H \rightarrow bb$
VBF H \rightarrow bb analysis

- Search for H-\rightarrowbb in VBF events with/without photons
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background

VBF H \rightarrow bb

VBF H \rightarrow bb + γ
VBF $H \rightarrow bb$ result

- 1.9σ (0.7σ) Observed (Expected) significance
 - By combing all VBF $H \rightarrow bb$ channels

VBF $H \rightarrow bb$

Background uncertainty is the major systematics uncertainty

VBF $H \rightarrow bb + \gamma$

Statistics uncertainty dominated

Higgs coupling to bottom quarks

- Higgs coupling to top quarks
 - Associated production with a top quark pair (ttH)

- Higgs coupling to bottom quarks
 - $V+H \rightarrow bb$, (where $V=W/Z$)
 - Vector boson fusion (VBF) $H \rightarrow bb$
 - Boosted $H \rightarrow bb$
 - $H \rightarrow bb$ combination

- Higgs coupling to charm quarks
 - $Z+H \rightarrow bb$
- Looking for a high p_T large radius jet with two b-tags
 - Leading jet ($R=1.0$) $p_T>480\text{GeV}$, sub-leading jet $p_T>250\text{GeV}$
 - Two b tagged track jets in leading jet
 - $\mu_H=5.8\pm3.1(\text{stat.})\pm1.9(\text{syst.})\pm1.7(\text{th.})$
 - 1.6 σ observed significance

signal = ggF + VBF + VH
Higgs coupling to bottom quarks

- Higgs coupling to top quarks
 - Associated production with a top quark pair (ttH)

- Higgs coupling to bottom quarks
 - $V+H \rightarrow bb$, (where $V=W/Z$)
 - Vector boson fusion (VBF) $H \rightarrow bb$
 - Boosted $H \rightarrow bb$
 - $H \rightarrow bb$ combination

- Higgs coupling to charm quarks
 - $Z+H \rightarrow bb$
Observation of $H \rightarrow bb$

- **VH $\rightarrow bb$ in Run 2:**
 - Observed (expected) of 4.9σ (4.3σ)
- **Adding VH $\rightarrow bb$ in Run1**
 - Observed (expected) of 4.9σ (5.1σ)
- **Adding VBF and ttH**
 - Observed (expected) of 5.4σ (5.5σ)
 - Observation of $H \rightarrow bb$ decay

- **Adding $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$:**
 - Observed (expected) of 5.4σ (5.5σ)
 - Observation of VH production
VH → bb: Differential cross section

- Differential cross section measurements for W/Z boson p_T
 - In the ‘simplified template cross-section’ framework.
 - Constraint to new physics in Higgs Effective Lagrangian (HEL)

![ATLAS VH, H→bb, V→leptons cross-sections: Observed, Total unc., Statistical unc., SM, Theoretical unc.](image)

ATLAS Simulation

- $\bar{c}_{HW} = 0.004$
- $\bar{c}_{HB} = 0.024$
- $\bar{c}_W - \bar{c}_B = 0.008$
- $\bar{c}_d = 0.5$

JHEP 05 (2019) 141
Higgs coupling to charm quarks

- Higgs coupling to top quarks
 - Associated production with a top quark pair (ttH)

- Higgs coupling to bottom quarks
 - $V+H \rightarrow bb$, (where $V=W/Z$)
 - Vector boson fusion (VBF) $H \rightarrow bb$
 - Boosted $H \rightarrow bb$
 - $H \rightarrow bb$ combination

- Higgs coupling to charm quarks
 - $Z+H \rightarrow bb$
Search for $H \rightarrow cc$

- Charm jet tagging performance is the key.

Cross check with diboson
- $ZZ \rightarrow llcc$ and $WZ \rightarrow (cs/cd)ll$
- Run2 36.1 fb$^{-1}$ result:
 - Obs.(exp.) significance: 1.4 (2.2) σ

2 Leptons: $ZH \rightarrow llcc$
- $p_T^Z > 75$ GeV
- $81 < m_\ell < 101$ GeV

<table>
<thead>
<tr>
<th>0 Lepton: $ZH \rightarrow \ell\nu\ell\nu$</th>
<th>1 Lepton: $WH \rightarrow \ell\nu\ell\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>as $VH, H \rightarrow bb$</td>
<td>as $VH, H \rightarrow bb$</td>
</tr>
</tbody>
</table>

- ≥ 2 jets, with 1 or 2 c-tags
- $p_T(c1) > 45$ GeV

ATLAS Simulation
- $\sqrt{s} = 13$ TeV, tt

ATLAS Simulation
- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - 2 c-tags, $p_T^Z \geq 150$ GeV

Flavour composition
- $\ell\ell$, cl, cc, bl, bc, bb

75 GeV $< p_T^Z < 150$ GeV $\rightarrow \Delta R < 2.2$

150 GeV $< p_T^Z < 200$ GeV $\rightarrow \Delta R < 1.5$

$p_T^Z > 200$ GeV $\rightarrow \Delta R < 1.3$
Search for $H \to cc$: result

- $Z(\ell\ell)H(\rightarrow cc)$ has been studied in run2 with 36.1 fb^{-1}.
 - $H \rightarrow \J/\psi\gamma$ search on ATLAS gives similar precision.
- Also extrapolated to 3000 fb^{-1}.

$\mu_{ZH(cc)} < 110 \quad 36.1 \text{ fb}^{-1}$

$\mu_{ZH(cc)} < 6.3^{+2.5}_{-1.8} \quad 3000 \text{ fb}^{-1}$

ATLAS Simulation Preliminary
$\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$
2 c-tags, $p_T^Z \geq 150 \text{ GeV}$
Summary

- **With the large LHC Run 2 dataset,**
 - the coupling of the Higgs boson to quarks can be determined with unprecedented precision
 - **Confirmation of coupling to 3rd generation fermions**
 - Recent observation bottom and top quark Higgs coupling were presented
 - Observation of VH and ttH production shown

- **All measurements of the Higgs boson are compatible with the Standard Model**
VBF H \rightarrow bb: Event Selection

<table>
<thead>
<tr>
<th></th>
<th>Two central</th>
<th>Four central</th>
<th>Photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \text{ b-jet})</td>
<td>(p_T > 95 \text{GeV}) (p_T > 70 \text{GeV})</td>
<td>(p_T > 55 \text{GeV})</td>
<td>(p_T > 40 \text{GeV})</td>
</tr>
<tr>
<td>(2 \text{ VBF jets})</td>
<td>(p_T > 60 \text{GeV}, 3.2 <</td>
<td>\eta</td>
<td>< 4.4) (p_T > 20 \text{GeV},</td>
</tr>
<tr>
<td>Photon</td>
<td></td>
<td></td>
<td>(E_T > 30 \text{GeV})</td>
</tr>
<tr>
<td>Event topology</td>
<td>(p_T(\text{bb}) > 160 \text{GeV})</td>
<td>(p_T(\text{bb}) > 150 \text{GeV})</td>
<td>(p_T(\text{bb}) > 80 \text{GeV}) M(jj) > 800 \text{GeV}</td>
</tr>
</tbody>
</table>

Inclusive analysis veto data events in photon channel orthogonality between different channels
- Select events based on $m_{\gamma\gamma} + b$-jets
 - Significance: 4.1σ (3.7σ exp.)
Boosted Decision Tree (BDT) Analysis

- 11 variables used in BDT analysis

\[\text{centrality}(\gamma) = \left| \frac{y_\gamma - \frac{y_{j1} + y_{j2}}{2}}{y_{j1} - y_{j2}} \right| \]

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV} \)
VBF H\(\rightarrow \text{bb, photon channel} \)

<table>
<thead>
<tr>
<th>VBF H(bb) Inclusive</th>
<th>VBF H(bb)+Photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/q separation</td>
<td>Ntrk(j1), Ntrk(j2)</td>
</tr>
<tr>
<td></td>
<td>(\min \Delta R(J1), \min \Delta R(J2))</td>
</tr>
<tr>
<td>VBF jets</td>
<td>(p_{(JJ)}, M(JJ), \Delta M(JJ))</td>
</tr>
<tr>
<td></td>
<td>(\max(\eta(J1), \eta(J2)))</td>
</tr>
<tr>
<td>Color connection</td>
<td>(p_{\text{balance}})</td>
</tr>
<tr>
<td></td>
<td>(\eta^\gamma) (Higgs centrality)</td>
</tr>
<tr>
<td>Angular</td>
<td>(\cos \theta(bb,jj))</td>
</tr>
</tbody>
</table>
ATLAS

\(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)

\(m_H = 125 \text{ GeV} \)

tot (stat syst)

Dilepton (two-\(\mu \) combined fit)

-0.24

\(+1.02 \) \(+0.54 \) \(+0.87 \)

\(-1.05 \) \(-0.52 \) \(-0.91 \)

Single Lepton (two-\(\mu \) combined fit)

0.95

\(+0.65 \) \(+0.31 \) \(+0.57 \)

\(-0.62 \) \(-0.31 \) \(-0.54 \)

Combined

0.84

\(+0.64 \) \(+0.29 \) \(+0.57 \)

\(-0.61 \) \(-0.29 \) \(-0.54 \)

Best fit \(\mu = \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}^{\text{SM}} \)
ttH multilepton

Number of τ_{had}

2

1

0

Number of light leptons

1

2

3

4

$1\ell+2\tau_{\text{had}}$

$2\ell_{\text{SS}}+1\tau_{\text{had}}$

$2\ell_{\text{OS}}+1\tau_{\text{had}}$

$3\ell+1\tau_{\text{had}}$

$2\ell_{\text{SS}}$

3ℓ

4ℓ
ATLAS Detector upgrade: Run 1 to Run 2

- Adding a new layer of pixel detector
- IBL = New Insertable pixel B-Layer at R=33 mm
B tagging performance Improvement

- Light jet rejection power with vertexing algorithm increased
 - Benefitting from IBL detector
VH → bb: Multivariate Analysis (MVA)

- **MVA setup**
 - Use simple and robust **Boosted Decision Tree (BDT)**
 - Input variables and training parameters tuned to yield best sensitivity

- **Inputs Variables**
 - Kinematic variables, some specific to 3-jet regions
 - m_{bb}, ΔR_{bb}, p_T^V most important ones

Table: Variables and Sensitivity

<table>
<thead>
<tr>
<th>Variable</th>
<th>0-lepton</th>
<th>1-lepton</th>
<th>2-lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^V</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{miss}</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>p_T^T</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>m_{bb}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b_1, b_2)$</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[\Delta \eta(b_1, b_2)]$</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi(V, bb)$</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[\Delta \eta(V, bb)]$</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>m_{eff}</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$\min[\Delta \phi(\ell, b)]$</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>m_W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_T</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>m_{ℓ}</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$E_{miss}/\sqrt{S_T}$</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>m_{op}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[\Delta Y(V, bb)]$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only in 3-jet events:

- $p_T^{jet_3}$
- m_{bbj}
7 signal regions (categories) are used.

- Di-photon mass resolution is slightly different in different categories.
ttH combination

Observation of ttH production!

ATLAS (up to 80 fb-1)
Run-2: 5.8σ (4.9σ exp.)
Run-1+Run-2: 6.3σ (5.1σ exp.)

Compute signal strength $\sigma_{ttH}/\sigma_{ttH}$ from profile likelihood fit over all channels. Correlate systematic uncertainties were appropriate.

Sensitivity limited by theory uncertainties on signal and background modelling.

$ttH \rightarrow \gamma \gamma$ is still dominated by statistics unc.

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$\Delta \sigma_{ttH}/\sigma_{ttH}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory uncertainties (modelling)</td>
<td>11.9</td>
</tr>
<tr>
<td>$t\bar{t}$ + heavy flavour</td>
<td>9.9</td>
</tr>
<tr>
<td>$t\bar{t}H$</td>
<td>6.0</td>
</tr>
<tr>
<td>Non-$t\bar{t}H$ Higgs boson production</td>
<td>1.5</td>
</tr>
<tr>
<td>Other background processes</td>
<td>2.2</td>
</tr>
<tr>
<td>Experimental uncertainties</td>
<td></td>
</tr>
<tr>
<td>Fake leptons</td>
<td>5.2</td>
</tr>
<tr>
<td>Jets, E_T^{miss}</td>
<td>4.9</td>
</tr>
<tr>
<td>Electrons, photons</td>
<td>3.2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.0</td>
</tr>
<tr>
<td>τ-leptons</td>
<td>2.5</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>1.8</td>
</tr>
<tr>
<td>MC statistical uncertainties</td>
<td>4.4</td>
</tr>
</tbody>
</table>