

Searches for Higgs pair production with ATLAS

Nikos Konstantinidis (UCL) for the ATLAS Collaboration

- well-defined couplings (hence cross-section)
 - Measuring di-Higgs production is independent test for the shape of the Higgs potential
- In HH production, negative interference with box diagram

 $-\sigma(HH) = -34$ fb (~1000x smaller than $\sigma(H)$)

- $\kappa_{\lambda} = \lambda_{\text{HHH}} / \lambda_{\text{HHH}}^{\text{SM}}$
 - Deviations from $1 \rightarrow$ new physics!

Nikos Konstantinidis

New physics in Higgs pair production?

- Non-resonant di-Higgs production
 - Cross-section can deviate from SM prediction due to nonstandard couplings or new heavy states running in loops

- Resonant di-Higgs production
 - Many BSM theories predict heavy resonances decaying to a pair of Higgs bosons
 - Spin-0 (e.g. all 2HDM models: $H \rightarrow hh$)
 - Spin-2 (e.g. RS Graviton: $G \rightarrow hh$)

Di-Higgs searches in ATLAS – Overview

- Many final states, depending on decays of each Higgs boson
 - Trade-off between large branching fraction and low background
- ATLAS latest results for:

 $\begin{array}{l} \text{HH} \rightarrow \text{bbbb: JHEP 01 (2019) 030} \\ \text{HH} \rightarrow \text{bbtt:} \quad \text{PRL 121 191801 (2018)} \\ \text{HH} \rightarrow \text{bb}\gamma\gamma\text{: JHEP 11 (2018) 040} \end{array}$

HH→WWγγ: EPJC 78 (2018) 1007 HH→bbWW: JHEP 04 (2019) 092 HH→WWWW: JHEP 05 (2019)124

Di-Higgs branching fractions

In addition:

HH combination: ATLAS-CONF-2018-043 (paper about to be submitted) Indirectly via single Higgs production: ATLAS-PUB-2019-009

Nikos Konstantinidis

➢ HH→bbbb

- **UCL**
- Highest branching ratio: 1 in 3 di-Higgs events result in bbbb
 - But huge multi-jet background making analysis very challenging
 - Esp. triggers for non-res and low-mass resonances: rely on online b-tagging
- Two selections to cover the entire range of resonance masses:

\Im HH \rightarrow bbbb – "resolved" analysis

- Requires 4 b-tagged jets with p_T > 40 GeV
- Relies critically on b-jet triggers
- Background: ~90% multijet, ~10% ttbar
- Data-driven bkg model: "2-b-tag"→"4-b-tag"

Events / 100 GeV

10⁶

10⁵

10⁴

10³

10²

10

ATLAS

√s = 13 TeV. 24.3 fb⁻¹

Resolved Control Region, 2016

Data

Multijet

Hadronic tt

Semi-leptonic tt ---- Scalar (280 GeV)

SM HH ×100

G_{vv} (800 GeV, k/M_p=1)

G_{KK} (1200 GeV, k/M_{PI}=2) Stat. Uncertainty

\bigotimes HH \rightarrow bbbb – "boosted" analysis

- Requires 2 large-R jets with $p_T > 450/250$ GeV
- 3 categories(2,3,4 b-tags), based on number of b-tagged "track jets" associated with the large-R jets
- Dominant background is again multi-jets
 - Similar data-driven background model as in resolved analysis

Searches for Higgs pair production with ATLAS

(111)

Non-resonant results:

(using only resolved analysis)

Expressed in terms of μ_{HH} =0(111)/0 _{SM} (111)						
Observed	$ -2\sigma$	-1σ	Expected	$+1\sigma$	$+2\sigma$	
12.9	11.1	14.9	20.7	30.0	43.6	

Evoresed in terms of u

Resonant search results:

Resolved and boosted analyses kept orthogonal and combined

An excess with 2.3σ global significance at m_X ~ 280 GeV

Sensitivity to cross-sections down to a few fb

Nikos Konstantinidis

Two channels, based on decays of the tau leptons

 $\tau(lep)\tau(had)$ τ (had) τ (had) Single lepton (e/μ) trigger (SLT) Single hadronic τ trigger SLT + single hadronic τ trigger Double hadronic τ trigger In both channels: 2 b-tagged jets and $m_{\tau\tau} > 60 \text{ GeV}$ Events / 75 GeV Data Ge Data ATLAS ATLAS NR HH × 2000 NR HH × 200 13 TeV, 36,1 fb⁻¹ 13 TeV, 36.1 fb Events / 75 Top-quark 10⁴ Top-quark τ_{had}τ_{had} 2 b-tags SLT 2 b-tags 10⁶ jet $\rightarrow \tau_{had}$ fakes jet $\rightarrow \tau_{had}$ fakes (Multi-jets) $Z \rightarrow \tau\tau + (bb, bc, cc)$ $Z \rightarrow \tau \tau + (bb, bc, cc)$ 10⁵ 10 jet $\rightarrow \tau_{had}$ fakes (tt) SM Higgs Other 10⁴ Uncertainty SM Higgs 10² Pre-fit background Uncertainty 10³ Pre-fit background 10 10² 10 1놑 1 10-10-Data/Pred. Data/Pred 1.5 0.5 800 1000 1200 1400 800 1000 m_{HH} [GeV] m_{нн} [GeV]

Nikos Konstantinidis

Boosted Decision Trees (BDT) used

HH→bbττ

Variable

 m_{HH}

 m_{bb} $\Delta R(\tau, \tau)$

 $m_{\tau\tau}^{\rm MMC}$

 $\Delta R(b, b)$ $E_{\rm T}^{\rm miss}$

 $E_{\rm T}^{\rm miss}$

 m_{T}^W $\Delta\phi(H,H)$ $\Delta p_{\rm T}({\rm lep}, \tau_{\rm had-vis})$

Searches for Higgs pair production with ATLAS

Non-resonant search results:

This is currently the single most sensitive channel for non-resonant HH production

		Observed	-1σ	$\operatorname{Expected}$	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$7 \mathrm{lep}^{7} \mathrm{had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$^{7}\mathrm{had}^{7}\mathrm{had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

- Requires 2 "tight", isolated photons
- Two event categories, based on number of b-tagged jets (1,2)
- Loose/tight selection for resonance mass below/above 500 GeV
- Bkg: 80-90% "diphoton+jets"

Using the Higgs mass constraint for m_{bb} , improves significantly the sensitivity for the resonant search

Nikos Konstantinidis

Combination – resonant HH production

Spin-2

 \checkmark

 \checkmark

Spin-0

Cross section limits combination for spin-0 and spin-2 resonances

Channel

bbbb

bbττ

bbγγ

bbWW

Range (GeV)

260-3000

260-1000

260-1000

500-3000

HH production cross-section

Higgs self-coupling

Constraints on κ_{λ} : (-5.0, 12.0) (obs) (-5.8, 12.0) (exp)

Nikos Konstantinidis

Searches for Higgs pair production with ATLAS

H self-coupling from single Higgs production

 Single Higgs production cross-sections can provide info on Higgs selfcoupling!

Results assuming only effect of new physics is in κ_{λ} :

Constraints on κ_{λ} : (-3.2, 11.9) (at 95% CL)

Looser constraints on κ_{λ} if κ_{F} or κ_{V} are allowed to float:

Nikos Konstantinidis

Future prospects

- Current results use only ¼ of full Run-2 dataset (~140 fb⁻¹)
 - => A factor ~2 improvement in σ (HH) sensitivity (ATLAS < μ_{HH} >~5)
 - Another factor ~2 improvement with Run-3 data and ATLAS+CMS
 - With analysis improvements, likely to reach $<\mu_{HH}>\sim2$ by start of HL-LHC
- HL-LHC to deliver ~3000 fb⁻¹ by late 2030's

Nikos Konstantinidis

HL-LHC projections for HH

- Sensitivity projections and combination of $bb\gamma\gamma$, $bb\tau\tau$ and bbbb
 - Assumed improvements in reconstruction algorithms will mitigate impact from increased pile-up
 - For $bb\tau\tau$ and bbbb, pure extrapolation of Run-2 analyses, i.e. not considering improvements that may be achieved
 - An MVA-based analysis for bbγγ, with improved sensitivity wrt Run-2

Nikos Konstantinidis

HL-LHC projections for HH - results

With 3000fb⁻¹

ATL-PHYS-PUB-2018-053

Significance for observing SM HH:

Channel	Statistical-only	Statistical + Systematic
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	0.61
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	2.5	2.1
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	2.0
Combined	3.5	3.0

Similar projections and sensitivity by CMS. ATLAS+CMS combined would reach 4σ .

CERN-LPCC-2018-04

Self-coupling constraints:

Nikos Konstantinidis

Assuming $\kappa_1 = 1$ (SM):	Scenario		σCI	$2\sigma \ \mathrm{CI}$		
	Statistical uncertainties only	$0.4 \le \kappa_\lambda \le 1.7 -$		$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$		
	Systematic uncertainties	$0.25 \le \kappa_{\lambda} \le 1.9 \qquad -$		-0	$0.4 \le \kappa_\lambda \le 7.3$	
	Scenario		10	τCI	2σ CI	
Assuming $\kappa_{2}=0$:	Statistical uncertainties only		$-0.5 \le \kappa_\lambda \le 0.5$		$-0.9 \le \kappa_{\lambda} \le 1.1$	
$(\sigma_{\rm m})$ larger for $\kappa = 0$	Systematic uncertainties		$-0.6 \le \kappa_\lambda \le 0.7$		$-1.3 \le \kappa_\lambda \le 1.5$	
$(0_{\text{HH}} \text{ larger for } k_{\lambda}^2 = 0)$						

- Search for Higgs pair production exciting but challenging
 - Test of the SM and a window for new physics
- Current ATLAS expected sensitivity for non-resonant HH production is $10x\sigma_{SM}$
 - Could reach $5x\sigma_{\text{SM}}$ with full Run-2 dataset
- The road to $>3\sigma$ on the SM HH production will require the full HL-LHC luminosity
 - But there is always a chance for exciting new physics along the way!

