## Combined Higgs boson measurements at the ATLAS experiment

#### Stefano Manzoni

on behalf of the ATLAS collaboration

Bari, Win2019





- Since the discovery of the Higgs boson in 2012 its properties have been measured with increasing precision
- $\rightarrow\,$  probing the SM predictions
  - Presenting the most recent Higgs boson combined measurements with the ATLAS detector
    - Signal strength, production mode cross-sections and branching ratios
    - Simplified template cross-sections (STXS)
    - $\kappa$ -framework

| L [fb <sup>-1</sup> ]<br>79.8 | Ref.<br>[1,2,3]                                                             |
|-------------------------------|-----------------------------------------------------------------------------|
| 79.8                          | [1,2,3]                                                                     |
| 70.0                          |                                                                             |
| 79.8                          | [4,5]                                                                       |
| 36.1                          | [6]                                                                         |
| 36.1                          | [7]                                                                         |
| 79.8                          | [8,9]                                                                       |
| 24.5 - 30.6                   | [10]                                                                        |
| 36.1                          | [11,12]                                                                     |
| 79.8                          | [13]                                                                        |
| 36.1                          | [14,15,16]                                                                  |
| 36.1                          | [17]                                                                        |
|                               | 79.8<br>36.1<br>36.1<br>79.8<br>24.5 - 30.6<br>36.1<br>79.8<br>36.1<br>36.1 |

#### Combination input analyses



# Signal strength, production mode cross-sections and branching ratios

## Global signal strength

• First parametrization used to interpret the results is signal strength:

$$\mu_{if} = \frac{\sigma_i}{\sigma_i^{\mathsf{SM}}} \times \frac{BR_f}{BR_f^{\mathsf{SM}}}$$

for SM  $\mu_{if} = 1$ 

|    |                                                                      | Uncertainty source           | $\Delta \mu / \mu$ [%] |
|----|----------------------------------------------------------------------|------------------------------|------------------------|
| _  | 8                                                                    | Statistical uncertainty      | 4.4                    |
| ù  | ATLAS Preliminary - Total                                            | Systematic uncertainties     | 6.2                    |
| 21 | 7 Vs = 13 TeV, 24.5 - 79.8 fb <sup>-1</sup> - Remove Bkg. th.        | Theory uncertainties         | 4.8                    |
|    | m <sub>H</sub> = 125.09 GeV,  y <sub>H</sub>   < 2.5 Remove Sig. th. | Signal                       | 4.2                    |
|    | P <sub>SM</sub> = 18%                                                | Background                   | 2.6                    |
|    | 5                                                                    | Experimental uncertainties   | 4.1                    |
|    |                                                                      | Luminosity                   | 2.0                    |
|    | 4                                                                    | Background modeling          | 1.6                    |
|    | 3 - 1                                                                | Jets, $E_{\rm T}^{\rm miss}$ | 1.4                    |
|    |                                                                      | Flavor tagging               | 1.1                    |
|    |                                                                      | Electrons, photons           | 2.2                    |
|    |                                                                      | Muons                        | 0.2                    |
|    |                                                                      | au-lepton                    | 0.4                    |
|    |                                                                      | Other                        | 1.6                    |
|    | 1 1.1 1.2 1.3                                                        | MC statistical uncertainty   | 1.7                    |
|    | μ                                                                    | Total uncertainty            | 7.6                    |

• Fixing scaling of  $\sigma$  and *BR* as in the SM, the global normalization  $\mu$  results  $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)} {}^{+0.05}_{-0.04} \text{ (exp.)} {}^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$ 

- Consistent with the SM with a *p*-value=18%
- Measurement limited by systematic uncertainties
- Experimental and Theory uncertainty with same magnitude => < </p>

S. Manzoni (NIKHEF)

• Branching ratio fixed to SM value, considering only  $\sigma_i$ 



| Process         | Value | Uncertainty [pb]   |                    |                    |                    | SM pred.           | Signi                     | ficance   |             |
|-----------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------|-----------|-------------|
| $( y_H  < 2.5)$ | [pb]  | Total              | Stat.              | Exp.               | Sig. th.           | Bkg. th.           | [pb]                      | obs.      | (exp.)      |
| ggF             | 46.5  | $\pm 4.0$          | $\pm 3.1$          | $\pm 2.2$          | $\pm 0.9$          | $\pm 1.3$          | $44.7 \pm 2.2$            | -         |             |
| VBF             | 4.25  | $^{+0.84}_{-0.77}$ | $^{+0.63}_{-0.60}$ | $^{+0.35}_{-0.32}$ | $^{+0.42}_{-0.32}$ | $^{+0.14}_{-0.11}$ | $3.515 \pm 0.075$         | 6.5(5.3)  |             |
| WH              | 1.57  | $^{+0.48}_{-0.46}$ | $^{+0.34}_{-0.33}$ | $^{+0.25}_{-0.24}$ | $^{+0.11}_{-0.07}$ | $\pm 0.20$         | $1.204 \pm 0.024$         | 3.5(2.7)  | ] = 2 (4 7) |
| ZH              | 0.84  | $^{+0.25}_{-0.23}$ | $\pm 0.19$         | $\pm 0.09$         | $^{+0.07}_{-0.04}$ | $\pm 0.10$         | $0.797^{+0.033}_{-0.026}$ | 3.6 (3.6) | 50.0 (4.7)  |
| $t\bar{t}H+tH$  | 0.71  | $^{+0.15}_{-0.14}$ | $\pm 0.10$         | $\pm 0.07$         | $^{+0.05}_{-0.04}$ | $^{+0.08}_{-0.07}$ | $0.586^{+0.034}_{-0.049}$ | 5.8(5.4)  |             |

- Consistent with the SM with a *p*-value=76%
- All main production modes have been observed (also WH and  $ZH \ge 3\sigma$ )

S. Manzoni (NIKHEF)

- Small correlation between the measured cross-sections
- $\bullet$  Correlation of -15% between ggF and VBF



• Constraint mainly from  $H \rightarrow \gamma \gamma$  (79.8 fb<sup>-1</sup>) and  $H \rightarrow WW^* \rightarrow e \nu \mu \nu$  (36.1 fb<sup>-1</sup>)

 Cross-section fixed to SM value, considering only BR<sub>f</sub> (Syst. include SM xsec unc.)



| Branching                                       | Voluo | Uncertainty        |            |                    |                    |                    |  |
|-------------------------------------------------|-------|--------------------|------------|--------------------|--------------------|--------------------|--|
| ratio                                           | value | Total              | Stat.      | Exp.               | Sig. theo.         | Bkg. theo.         |  |
| $B_{\gamma\gamma}/B_{\gamma\gamma}^{SM}$        | 1.06  | $\pm 0.12$         | $\pm 0.08$ | $^{+0.08}_{-0.07}$ | $\pm 0.05$         | $\pm 0.01$         |  |
| $\mathbf{B}_{ZZ}/\mathbf{B}_{ZZ}^{\mathrm{SM}}$ | 1.20  | $^{+0.15}_{-0.14}$ | $\pm 0.12$ | $\pm 0.05$         | $^{+0.07}_{-0.05}$ | $\pm 0.02$         |  |
| $B_{WW}/B_{WW}^{SM}$                            | 1.05  | $^{+0.17}_{-0.16}$ | $\pm 0.09$ | $\pm 0.09$         | $^{+0.06}_{-0.05}$ | $\pm 0.07$         |  |
| $B_{\tau\tau}/B_{\tau\tau}^{SM}$                | 1.10  | $^{+0.28}_{-0.26}$ | $\pm 0.18$ | $^{+0.17}_{-0.16}$ | $^{+0.12}_{-0.08}$ | $^{+0.06}_{-0.05}$ |  |
| $\mathbf{B}_{bb}/\mathbf{B}_{bb}^{\mathrm{SM}}$ | 1.17  | $^{+0.24}_{-0.23}$ | $\pm 0.15$ | $\pm 0.11$         | $^{+0.09}_{-0.06}$ | $^{+0.13}_{-0.12}$ |  |

• All consistent with the SM with a *p*-value=75%

• Considering the products  $(\sigma \times BR)_{if}$ 



- Consistent with the SM with a p-value=71%
- Different level of ggF–VBF correlation in the analyses
  - Well separated in  $H \rightarrow WW^*$  analysis



S. Manzoni (NIKHEF)

# Simplified template cross-section framework

- Simplified template cross-section framework defines fiducial regions by using:
  - production mode,  $p_{\mathbf{T}}^{H}$  ,  $N_{j}$ ,  $p_{\mathbf{T}}^{H}$  ,  $p_{\mathbf{T}}^{Hjj}$ ,  $p_{\mathbf{T}}^{V}$
  - sensitivity to BSM model
  - avoidance of large theory uncertainty in SM prediction
  - matching the experimental selection
- Measurement designed to split the events according to STXS





• Due to limited data statistics the current combined measurement is presented in a reduce splitting scheme

- $11 \rightarrow 6$  bins for ggF
- 5  $\rightarrow$  3 bins for  $qq \rightarrow Hqq$  (incl. VBF and VH)
- 11  $\rightarrow$  5 bins for V(lep)H+ggZH
  - 2 bins for WH
  - 3 bins for ZH+ggZH
- 2  $\rightarrow$  1 single bin  $t\bar{t}H + tH$



(日) (四) (三) (三)



- Due to limited data statistics the current combined measurement is presented in a reduce splitting scheme
  - $\bullet~11 \rightarrow 6$  bins for ggF
  - 5  $\rightarrow$  3 bins for  $qq \rightarrow Hqq$  (incl. VBF and VH)
  - 11  $\rightarrow$  5 bins for V(lep)H+ggZH
    - 2 bins for WH
    - 3 bins for ZH+ggZH
  - 2  $\rightarrow$  1 single bin  $t\bar{t}H + tH$



- Due to limited data statistics the current combined measurement is presented in a reduce splitting scheme
  - $11 \rightarrow 6$  bins for ggF
  - 5  $\rightarrow$  3 bins for  $qq \rightarrow Hqq$  (incl. VBF and VH) 11  $\rightarrow$  5 bins for V(lep)H+ggZH
  - - 2 bins for WH
    - 3 bins for ZH+ggZH
  - 2  $\rightarrow$  1 single bin  $t\bar{t}H + tH$



#### • Measured 19 parameters:

- cross-section in STXS region i  $\times$  branching ratio of  $H \rightarrow ZZ$
- the ratio of each branching fraction over the  $H \rightarrow ZZ$  one.

$$(\sigma \times \mathsf{B})_{if} = (\sigma \times \mathsf{B})_{i,ZZ} \cdot \left(\frac{\mathsf{B}_f}{\mathsf{B}_{ZZ}}\right)$$

 All consistent with the SM with a p-value=89%

| ATLAS Preliminary<br>$\sqrt{s} = 13$ TeV, 36.1 - 79.8 fb <sup>-1</sup><br>$m_{H} = 125.09$ GeV, $ y'_{H}  < 2.5$<br>$p_{SM} = 89\%$<br>→ Total Stat.<br>Syst. SM                                                                                                                                                                                                                                                                                                                  | B <sub>γγ</sub> /B <sub>Z</sub><br>B <sub>bb</sub> /B <sub>Z</sub><br>B <sub>WW</sub> /B<br>B <sub>τ<sup>+</sup>τ</sub> /B | z E<br>z E<br>zz E<br>zz E | 2         | 0.86<br>0.63<br>0.86<br>0.87                 | Total<br>+0.14<br>-0.12 (<br>+0.35<br>-0.28 (<br>+0.18<br>-0.16 (<br>+0.29<br>-0.24 (                             | Stat.<br>+0.12<br>-0.11,<br>+0.22<br>-0.18,<br>+0.13<br>-0.11,<br>+0.22<br>-0.19,<br>6                                       | Syst.<br>+0.07<br>-0.06<br>+0.27<br>-0.22<br>+0.12<br>-0.11<br>+0.19<br>-0.14<br>8                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| $gg \rightarrow H, 0 \text{-jet} \times B_{ZZ}$<br>$gg \rightarrow H, 1 \text{-jet}, p_{i}^{H} < 60 \text{ GeV} \times B_{ZZ}$<br>$gg \rightarrow H, 1 \text{-jet}, 60 \leq p_{i}^{H} < 120 \text{ GeV} \times B_{J}$<br>$gg \rightarrow H, 1 \text{-jet}, 120 \leq p_{i}^{H} < 200 \text{ GeV} \times B_{ZZ}$<br>$gg \rightarrow H, 2 \text{-jet}, p_{i}^{H} \geq 200 \text{ GeV} \times B_{ZZ}$<br>$gg \rightarrow H, 2 \text{-jet}, p_{i}^{H} < 200 \text{ GeV} \times B_{ZZ}$ | z E<br>Szz E                                                                                                               |                            |           | 1.29<br>0.57<br>0.87<br>1.30<br>2.05<br>1.11 | Total<br>+0.18<br>-0.17<br>+0.43<br>-0.41<br>+0.38<br>-0.34<br>+0.81<br>-0.72<br>+0.84<br>-0.72<br>+0.56<br>-0.51 | Stat.<br>+0.16<br>-0.15,<br>+0.37<br>(-0.35,<br>+0.33<br>(-0.31,<br>+0.71<br>(-0.65,<br>+0.73<br>(-0.64,<br>+0.73<br>(-0.44, | Syst.<br>+0.09<br>-0.08)<br>+0.23<br>-0.22)<br>+0.18<br>-0.15)<br>+0.39<br>-0.30)<br>+0.43<br>-0.32)<br>+0.43<br>-0.32)<br>+0.232<br>-0.26 |
| $qq \rightarrow Hqq$ , VBF topo + Rest × $B_{ZZ}$<br>$qq \rightarrow Hqq$ , VH topo × $B_{ZZ}$<br>$qq \rightarrow Hqq$ , $p'_{T} \ge 200 \text{ GeV} \times B_{ZZ}$                                                                                                                                                                                                                                                                                                               |                                                                                                                            | •••••                      |           | 1.57<br>-0.12<br>-0.95                       | +0.45<br>-0.38<br>+1.35<br>-1.13<br>+1.51<br>-1.48                                                                | (+0.36<br>-0.32,<br>+1.31<br>(-1.11,<br>+1.34<br>(-1.29,                                                                     | +0.27<br>-0.21)<br>+0.32<br>-0.24)<br>+0.69<br>-0.72)                                                                                      |
| $qq \rightarrow Hlv, p_{T}^{\vee} < 250 \text{ GeV} \times B_{ZZ}$<br>$qq \rightarrow Hlv, p_{T}^{\vee} \ge 250 \text{ GeV} \times B_{ZZ}$                                                                                                                                                                                                                                                                                                                                        | ŀ                                                                                                                          | ••••                       | 4         | 2.28<br>1.91                                 | +1.24<br>-1.01<br>+2.32<br>-1.19                                                                                  | ( +1.02<br>-0.85,<br>( +1.44<br>( -1.00,                                                                                     | +0.71<br>-0.55)<br>+1.81<br>-0.66)                                                                                                         |
| $\begin{array}{l} gg/qq \rightarrow Hll, \ p_{\gamma}^{\vee} < 150 \ {\rm GeV} \times B_{ZZ} \\ gg/qq \rightarrow Hll, \ 150 \leq p_{\gamma}^{\vee} < 250 \ {\rm GeV} \times B_{2} \\ gg/qq \rightarrow Hll, \ p_{\gamma}^{\vee} \geq 250 \ {\rm GeV} \times B_{ZZ} \end{array}$                                                                                                                                                                                                  | r 🗖                                                                                                                        |                            | -         | 0.85<br>0.86<br>⊣2.92                        | +1.26<br>-1.57<br>+1.29<br>-1.13<br>+3.03<br>-1.50                                                                | (+1.01<br>(-0.98,<br>+1.02<br>(-0.90,<br>+1.87<br>(-1.33,                                                                    | +0.76<br>-1.22)<br>+0.79<br>-0.70)<br>+2.38<br>-0.71)                                                                                      |
| <i>ttH</i> + <i>tH</i> × <i>B</i> <sub>22</sub><br>                                                                                                                                                                                                                                                                                                                                                                                                                               | I<br>0                                                                                                                     | Para                       | 5<br>mete | 1.44                                         | +0.39<br>-0.33<br>1<br>nalize                                                                                     | (+0.30<br>(-0.27,<br>0<br>d to SI                                                                                            | +0.24<br>-0.19)<br>1<br>1 value                                                                                                            |

## $\kappa$ -framework

メロト メロト メヨト

#### $\kappa$ -framework: vector boson-fermions, loops coupling

• LO-approximated framework introducing coupling strength modifiers  $\kappa$ 

$$\sigma_i imes \mathsf{BR}^f = rac{\sigma_i(\kappa) imes \Gamma^f(\kappa)}{\Gamma_H}, \quad \text{with} \quad \kappa_j^2 = rac{\sigma_j}{\sigma_j^{\mathsf{SM}}} \quad \text{and} \quad \kappa_j^2 = rac{\Gamma^j}{\Gamma_{\mathsf{SM}}^j}.$$

- $\Gamma_H$  modified by a factor  $\kappa_H$ , defined as  $\kappa_H^2 = \sum_j BR_{SM}^f \kappa_j^2$ , with no additional BSM new particle contribution
  - vector boson: κ<sub>V</sub> = κ<sub>W</sub> = κ<sub>Z</sub>
  - fermions:  $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$



- $\kappa_V = 1.05 \pm 0.04$   $\kappa_F = 1.05^{+0.09}_{-0.08}$
- p-value=41% w.r.t SM

- Probing contributions of new particles either in loops or in new final states
- Effective coupling modifiers  $\kappa_g$  and  $\kappa_\gamma$



- · Generic parametrization assuming no new particles in loops and decays
- coupling strengths to W, Z, t, b, au and  $\mu$  are treated independently
- including  $H \rightarrow \mu \mu$  (79.8 fb<sup>-1</sup>)

| Parameter      | Result                          |
|----------------|---------------------------------|
| κ <sub>Z</sub> | $1.11\substack{+0.08\\-0.08}$   |
| $\kappa_W$     | $1.05\pm0.08$                   |
| $\kappa_b$     | $1.05\substack{+0.19 \\ -0.18}$ |
| $\kappa_t$     | $1.02^{+0.11}_{-0.10}$          |
| $\kappa_{	au}$ | $1.06\substack{+0.16\\-0.15}$   |
| $\kappa_{\mu}$ | < 1.49 at 95% CL.               |

• p-value of SM = 72%



## $\kappa\text{-}\mathsf{framework}:$ additional contributions to Higgs width



 Including a Higgs boson branching fraction to invisible or undetected decays, the Higgs boson width is expressed as

$$\Gamma_{H}(\kappa_{j}, B_{\text{inv}}, B_{\text{undet}}) = \frac{\kappa_{H}^{2}(\kappa_{j})}{(1 - B_{\text{inv}} - B_{\text{undet}})} \Gamma_{H}^{\text{SM}}.$$

- No BSM contributions to the total width  $(B_{inv} = B_{undet} = 0).$
- Both B<sub>inv</sub> and B<sub>undet</sub> are added as free parameters to the model.
  - Including  $H \rightarrow \text{invisible} (36.1 \text{ fb}^{-1})$
  - $\kappa_W \leq 1$  and  $\kappa_Z \leq 1$
- Additional single free parameter  $B_{\text{BSM}} = B_{\text{inv}} = B_{\text{undet}}$  is added to the model.
  - Including Off-shell  $H \to ZZ^* \to 4\ell$  and  $H \to ZZ^* \to 2\ell 2\nu$  (36.1 fb<sup>-1</sup>)

- Scale factors expressed as ratios of scale factors that can be measured independent of any assumptions on the Higgs boson total width
- Most model-independent determination of coupling-strength in the  $\kappa$ -framework.

| Davamatar            | Definition in terms            |
|----------------------|--------------------------------|
| Parameter            | of $\kappa$ modifiers          |
| $\kappa_{gZ}$        | $\kappa_g \kappa_Z / \kappa_H$ |
| $\lambda_{tg}$       | $\kappa_t/\kappa_g$            |
| $\lambda_{Zg}$       | $\kappa_Z/\kappa_g$            |
| $\lambda_{WZ}$       | $\kappa_W/\kappa_Z$            |
| $\lambda_{\gamma Z}$ | $\kappa_{\gamma}/\kappa_{Z}$   |
| $\lambda_{\tau Z}$   | $\kappa_{\tau}/\kappa_{Z}$     |
| $\lambda_{bZ}$       | $\kappa_b/\kappa_Z$            |

- $\lambda_{\gamma Z}$  sensitive to new charged particles contributing to the  $H \rightarrow \gamma \gamma$  loop in w.r.t to  $H \rightarrow ZZ^*$  decays.
- $\lambda_{tg}$  sensitive to new coloured particles contributing through the ggF loop as compared to ttH
- All compatible with SM, p-value = 85%



# Higgs Self-Coupling

Image: A math a math

- Single Higgs production does not depend on trilinear-coupling  $\lambda_3$  at LO
- $\bullet\,$  Two types of NLO EW corrections that depend on  $\lambda_3$ 
  - one universal  $O(\lambda_3^2)$  due to Higgs loops



• one linear  $O(\lambda_3)$  that is both process and kinematics dependent



#### Higgs Self-coupling

• To study this possible modifications we can introduce a coupling modifier  $\kappa_{\lambda}$ , defined as

$$\lambda_{\mathbf{3}} = \kappa_{\lambda} \lambda_{\mathbf{3}}^{SM}$$

• Parametrizing the fit with

$$\mu_i^f(\kappa_\lambda) \equiv \mu_i(\kappa_\lambda) \times \mu^f(\kappa_\lambda)$$



• Not only global normalization but also differential distribution affected

 $\rightarrow$  exploiting full STXS informations for VH and VBF production modes

S. Manzoni (NIKHEF)



 $\kappa_{\lambda} = 4.0^{+4.3}_{-4.1} = 4.0^{+3.7}_{-3.6} \, (\text{stat.})^{+1.6}_{-1.5} \, (\text{exp.})^{+1.3}_{-0.9} \, (\text{sig. th.})^{+0.8}_{-0.9} \, (\text{bkg. th.})^{+0.8}_{-0.9} \, (\text{bkg. th.})^{-0.9}_{-0.9} \, (\text{bkg. th.})^{-0.9}_{-$ 

- strong assumption: BSM only affecting  $\kappa_{\lambda}$
- 95% C.L. :  $-3.2 < \kappa_{\lambda} < 11.9$  (observed),  $-6.2 < \kappa_{\lambda} < 14.4$  (expected)
- complementary to the limit from ATLAS *HH* 36.1  $fb^{-1}$  combination:
  - $-5.0 < \kappa_\lambda < 12.1$  (observed)
  - $-5.8 < \kappa_{\lambda} < 12.0$  (expected)

S. Manzoni (NIKHEF)

## HL-LHC

S. Manzoni (NIKHEF)

・ロト ・四ト ・ヨト ・ヨト



- Higgs measurement projection to 3000 fb $^{-1}$  and  $\sqrt{s} = 14$  TeV
- Same Run 2 detector performance considered (improved performance of ATLAS will compensate for higher pileup)
- Two scenarios for systematic uncertainties:
  - S1: same values of current Run 2 analyses
    - unc. on the modeling of the continuum background and MC statistics negligible (also for S2)
  - S2: reduced sys. reflecting the situation expected at the end of the HL-LHC
    - all theory uncertainties for signal and background are halved
    - ${\ensuremath{\,\circ\,}}$  unc. on integrated luminosity is set to 1%
- Only S2 results shown

• Comparison between exp. 3000  $fb^{-1}$  and obs. 80  $fb^{-1}$  measurements



- Cross-sections dominated by systematic uncertainties (except for ZH)
- $\bullet\,$  Precision improved by  $\sim$  3–5 times

• Comparison between exp. 3000  $fb^{-1}$  and obs. 80  $fb^{-1}$  measurements



- Sensitive to branching ratio of rarer process  $Z\gamma$  and  $\mu\mu$  (expected to be observed)
- $\bullet\,$  Precision improved by  $\sim$  3–7 times



• Uncertainties at the level of  $\sim 2-4\%$  and systematic limited (except for  $\kappa_{\mu}$  and  $\kappa_{Z\gamma}$ )

- Most recent combined Higgs measurements with the ATLAS detector have been presented
- Input analyses with an integrated luminosity up to 80  ${\rm fb^{-1}}$ 
  - $\rightarrow$  stay tuned for the full Run 2/legacy analyses with L= 140 fb<sup>-1</sup>
- The measurements presented agree well with the SM expectation
- Also new constraint of the Higgs self coupling using single Higgs production mode have been presented.
  - 95% C.L.  $-3.2 < \kappa_\lambda < 11.9$
- At HL-LHC expected:
  - cross-section measurement at 5% accuracy
  - observation of Higgs rare decays

## Thank you for your attention

# Back-up

メロト メロト メヨト

#### ATL-PHYS-PUB-2019-009

#### Higgs Self-coupling

| POIs                           | Granularity | $\kappa_F + 1\sigma = 1\sigma$                                                        | $\kappa_V + 1\sigma_{-1\sigma}$                    | $\kappa_{\lambda} + 1\sigma_{-1\sigma}$           | $\kappa_{\lambda}$ [95% C.L.] |
|--------------------------------|-------------|---------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------------|
| $\kappa_{\lambda}, \kappa_{V}$ | STXS        | 1                                                                                     | ${}^{1.04^{+0.05}_{-0.04}}_{1.00^{+0.05}_{-0.04}}$ | $\substack{4.8^{+7.4}_{-6.7}\\1.0^{+9.9}_{-6.1}}$ | [-6.7, 18.4]<br>[-9.4, 18.9]  |
| $\kappa_{\lambda}, \kappa_F$   | STXS        | $\begin{array}{r}0.99\substack{+0.08\\-0.08}\\1.00\substack{+0.08\\-0.08}\end{array}$ | 1                                                  | ${}^{4.1^{+4.3}_{-4.1}}_{1.0^{+8.8}_{-4.4}}$      | [-3.2, 11.9]<br>[-6.3, 14.4]  |



• Fitting  $\kappa_{\lambda} - \kappa_{V} - \kappa_{F}$  or fitting  $\kappa_{\lambda} - \kappa_{H} = \kappa_{V} = \kappa_{F}$  results in nearly no sensitivity to  $\kappa_{\lambda}$  (for  $|\kappa_{\lambda}| < 20$ )

S. Manzoni (NIKHEF)