# Searches for squarks and gluinos with the ATLAS detector

WIN2019 Philipp Mogg, on behalf of the ATLAS Collaboration 03.-08.06.2019

Albert-Ludwigs-Universität Freiburg





UNI FREIBURG

#### Introduction

- Supersymmetry at weak scale motivated by:
  - unification of forces
  - hierarchy problem
  - nature of Dark Matter
- Potential to discover partners for all Standard Model (SM) particles
- Light 3<sup>rd</sup> generation squarks motivated by naturalness
  - motivates also not too heavy gluinos
- High cross sections of strong production (depending on mass)



#### The ATLAS detector



doi.org/10.1140/epjc/s10052-011-1593-6

AtlasPublic/LuminosityPublicResultsRun2

- ATLAS is a multi-layer general-purpose detector at the LHC
- LHC Run 2 finished in 2018
- 139 fb<sup>-1</sup> of proton-proton collisions at a center-of-mass energy of 13 TeV ready to be analysed

### Object reconstruction





Typical SUSY signatures:

- hadronic jets initiated by quarks or gluons; *b*-jets can be identified due to long lifetime of B-mesons
- sometimes leptons (only electrons and muons in this presentation)
- missing transverse energy ( $E_{T}^{\text{miss}}$ ) as indicator for invisible particles

### Strong production search program



| Channel              | Published            | Dataset                          |
|----------------------|----------------------|----------------------------------|
| 0l + 2-4j            | PRD 97 (2018) 112001 | 36 fb <sup>-1</sup>              |
| 0l + 7-11j           | JHEP12 (2017) 034    | 36 fb <sup>-1</sup>              |
| <mark>multi-b</mark> | ATLAS-CONF-2018-041  | <mark>80 fb<sup>-1</sup></mark>  |
| 1l + 2-9j            | PRD 96 (2017) 112010 | 36 fb <sup>-1</sup>              |
| SFOS 2I              | EPJC 78 (2018) 625   | 36 fb <sup>-1</sup>              |
| SS/3L                | ATLAS-CONF-2019-015  | <mark>139 fb<sup>-1</sup></mark> |
| γ + jets             | PRD 97 (2018) 092006 | 36 fb <sup>-1</sup>              |
| τ + jets             | PRD 99 (2019) 012009 | 36 fb <sup>-1</sup>              |











+ dedicated search program for 3<sup>rd</sup> generation squarks (more later)



### Strong multi-b

ATLAS-CONF-2018-041

Decay channels:

 $\left.\begin{array}{c} \widetilde{g} \rightarrow t \, \overline{t} + \widetilde{\chi}_{1}^{0} \\ \widetilde{g} \rightarrow b \, \overline{b} + \widetilde{\chi}_{1}^{0} \end{array}\right\}$  $\widetilde{g} \rightarrow t \,\overline{b} + \widetilde{\chi}_1^0$ 

- via off-shell/on-shell 3rd generation squark
- via 3rd gen. squark & chargino
- Final state:
  - $\geq$  3 *b*-jets, up to 12 jets,  $E_{\tau}^{\text{miss}}$
  - 0 or 1 lepton
- Dominant background:  $t \bar{t}$
- Cut-and-count and multi-bin signal regions dependent on jet and lepton multiplicity
- 1-lepton control regions with low  $m_{\rm T}$  to normalise background to data (background-only fit), validation regions close to signal regions as cross check





events passing the 1-l preselection



# Strong multi-b

ATLAS-CONF-2018-041



#### on-shell stop

- No excess observed
- Interpretation based on different assumptions for  $\tilde{g}$ ,  $\tilde{t}$  /  $\tilde{b}$ ,  $\tilde{\chi}_{1}^{0}$ ,  $\tilde{\chi}_{1}^{\pm}$

squarks and gluinos @ATLAS

Exclusion limits based on multi-bin signal regions 





#### SS/3L

ATLAS-CONF-2019-015

Decay channels:

$$\begin{split} &\widetilde{b}_{1} \rightarrow t W + \widetilde{\chi}_{1}^{0} \\ &\widetilde{g} \rightarrow t \,\overline{t} + \widetilde{\chi}_{1}^{0} \\ &\widetilde{g} \rightarrow q \,\overline{q} W Z + \widetilde{\chi}_{1}^{0} \end{split}$$

- Final state:
  - $\geq$  2 same-sign leptons,  $\geq$  6 jets, ( $E_{T}^{miss}$ )
- Challenging backgrounds: WZ + jets,  $t \bar{t} + W/Z$ 
  - high theory uncertainties
- Data-driven estimates for
  - fake/non-prompt leptons: matrix method
  - charge-flip electrons: weighted OS data





#### events passing loose preselection

squarks and gluinos @ATLAS

#### LAS

| squarks a | nd gluind | ds @Atl |
|-----------|-----------|---------|
|-----------|-----------|---------|



#### SS/3L

ATLAS-CONF-2019-015

- More channels:
  - R-parity violating:

 $\widetilde{g} \rightarrow t \, \overline{t} \, \widetilde{\chi}_1^{0,} \, \widetilde{\chi}_1^0 \rightarrow 3 \, q$  $\widetilde{g} \rightarrow q \,\overline{q} \,\widetilde{\chi}_1^{0,} \widetilde{\chi}_1^0 \rightarrow q q' l$  $\widetilde{g} \rightarrow t \widetilde{t}_{1}^{*}, \widetilde{t}_{1} \rightarrow qq'$ 

| SR        | N <sub>ℓ</sub> | $N_{b	ext{-jets}}^{(20 \text{ GeV})}$ | $N_{\rm jets}$ | $p_{\rm T}^{\rm jets}$ [GeV] | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | m <sub>eff</sub> [GeV] | $E_{ m T}^{ m miss}/m_{ m eff}$ | Targeted Model                                                                                                                                                                                                                                                                                                           |
|-----------|----------------|---------------------------------------|----------------|------------------------------|----------------------------------------|------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rpc2L1b   | ≥2             | $\geq 1$                              | ≥6             | 40                           | -                                      | -                      | > 0.25                          | $	ilde{b}_1 	o t 	ilde{\chi}_1^-$                                                                                                                                                                                                                                                                                        |
| Rpc2L2b   | ≥2             | ≥ 2                                   | ≥6             | 25                           | > 300                                  | > 1400                 | > 0.14                          | $egin{array}{l} 	ilde{b}_1  ightarrow t 	ilde{\chi}_1^- \ 	ilde{g}  ightarrow t ar{t} 	ilde{\chi}_1^0 / t ar{b} 	ilde{\chi}_1^- \end{array}$                                                                                                                                                                             |
| Rpc2L0b   | ≥2             | = 0                                   | ≥6             | 40                           | > 200                                  | > 1000                 | > 0.2                           | $	ilde{g} 	o qar{q}' 	extsf{WZ} 	ilde{\chi}_1^0$                                                                                                                                                                                                                                                                         |
| Rpc3LSS1b | ≥3 (SS)        | $\geq 1$                              | no             | cut but veto                 | $81 < m_{e^{\pm}e^{\pm}} <$            | 101 GeV                | > 0.14                          | $	ilde{t}_1 	o t {\cal W}^\pm ({\cal W}^*) 	ilde{\chi}_1^0$                                                                                                                                                                                                                                                              |
| Rpv2L     | ≥ 2            | $\geq 0$                              | $\geq$ 6       | 40                           | _                                      | > 2600                 | _                               | $egin{aligned} &	ilde{g}  ightarrow t	ilde{t}_1^*, 	ilde{t}_1^*  ightarrow qq' \; (\lambda''  eq 0) \ &	ilde{g}  ightarrow qq	ilde{\chi}_1^0, 	ilde{\chi}_1^0  ightarrow qq' \ell \; (\lambda'  eq 0) \ &	ilde{g}  ightarrow t	ilde{t}	ilde{\chi}_1^0, 	ilde{\chi}_1^0  ightarrow 3q \; (\lambda''  eq 0) \end{aligned}$ |

p $\lambda_{323}^{\prime\prime}$ 

3L:  $\widetilde{t}_1 \rightarrow t W^{\pm}(W^*) \widetilde{\chi}_1^0$ 





#### SS/3L

#### ATLAS-CONF-2019-015



- No excess observed
- Limits for multiple scenarios including also 3<sup>rd</sup> generation squarks



### Strong production summary plots



#### New updated summary plots coming soon! All results and summary plots on:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

## 3<sup>rd</sup> generation search program



| Channel                     | Published                                                | Dataset                                                   |
|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Stop 0I                     | JHEP 12 (2017) 085                                       | 36 fb <sup>-1</sup>                                       |
| Stop 1I                     | JHEP 06 (2018) 108 /<br><mark>ATLAS-CONF-2019-017</mark> | 36 fb <sup>-1</sup> /<br><mark>139 fb<sup>-1</sup></mark> |
| Stop 2I                     | PRD 97 (2018) 032003                                     | 36 fb <sup>-1</sup>                                       |
| Stop to charm               | JHEP 09 (2018) 050                                       | 36 fb <sup>-1</sup>                                       |
| Stop to stau                | PRD 98 (2018) 032008                                     | 36 fb <sup>-1</sup>                                       |
| <mark>Stop to Z/h</mark>    | ATLAS-CONF-2019-016                                      | <mark>139 fb</mark> -1                                    |
| Sbottom                     | EPJC 76 (2016) 547                                       | 36 fb <sup>-1</sup>                                       |
| <mark>Sbottom with h</mark> | ATLAS-CONF-2019-011                                      | <mark>139 fb</mark> -1                                    |
| DM + HF                     | EPJC 78 (2018) 18                                        | 36 fb <sup>-1</sup>                                       |
| tt spin correlation         | arXiv:1903.07570                                         | <mark>36 fb</mark> -1                                     |



**m** 









+ more dedicated searches for R-parity violating scenarios (not in this presentation)

#### Challenging region $m(\tilde{t}) \sim m(t)$ : - stop pair hardly distinguishable from top pair

Spin correlation

arXiv:1903.07570

- Top lifetime shorter than decorrelation time
  - spin correlated for top pair but not for decay products of stop pair
  - make use of angular variables between leptons







#### Sbottom with Higgs

ATLAS-CONF-2019-011

- Two scenarios considered:
  - fixed  $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \,\text{GeV}$
  - fixed  $m(\widetilde{\chi}_1^0) = 60 \,\text{GeV}$
- Final state:  $\geq$  4 jets,  $\geq$  3 *b*-jets,  $E_{\tau}^{\text{miss}}$
- Methods:
  - associate *b*-jets to Higgs candidates
  - if not possible, use  $E_{\tau}^{\text{miss}}$  significance:

new method calculating significance of  $E_{\tau}^{\text{miss}}$  with uncertainties of all objects:

ATLAS-CONF-2018-038

- Main backgrounds:  $t \bar{t}, Z+jets$ 
  - normalised to data in 1-lepton / 2-lepton control regions





(s = 13 TeV. 139 fb⁻¹

SRC, post-fit



Events

### Sbottom with Higgs

#### ATLAS-CONF-2019-011



3 signal regions

- SRA: "bulk" region, bins in m<sub>eff</sub>
- SRB: ISR selection
- SRC: bins in  $E_{T}^{miss}$  significance
- No excess observed
- New exclusion limits for both scenarios



m

# Stop to Z/h

ATLAS-CONF-2019-016

- Two scenarios considered:
- Final state:
  - ≥ 3 leptons, 2 same-flavor opposite sign with  $m_{ll} \sim m(Z)$
  - $\geq$  3 jets,  $E_{T}^{\text{miss}}$
- 2 signal regions for each scenario
  - targeting high/low  $\Delta m(\chi_2^0, \widetilde{\chi}_1^0)$  and  $\Delta m(\widetilde{t}_2, \widetilde{\chi}_1^0)$
- Main backgrounds:  $t \overline{t} + Z$ , multi-boson
  - normalised to data in low- $E_{T}^{miss}$  control regions
  - leading systematic uncertainty
- Fake and non-prompt lepton estimated with matrix method
- Validation regions for all backgrounds









### Stop to Z/h

#### ATLAS-CONF-2019-016





- Multi-bin signal regions
- No excess found
- New limits in both scenarios



2

m

Control region for background normalisation and and validation region both orthogonal in NN discriminator

#### 1 lepton -Neural network (NN) design to distinguish

Targeting region  $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) < m(t)$ 

 $\geq$  4 jets,  $\geq$  1 *b*-jet,  $E_{\tau}^{\text{miss}}$ 

3-body stop

ATLAS-CONF-2019-017

Final state:

- from background:
  - jet 4-vectors + 12 other variables
  - trained with truth-smeared signal samples for larger statistics
- Main background:  $t \bar{t}$  (di-leptonic with missed lepton)







No excess observed 

- 10-bin fit in SR
- Large improvement of exclusion limits in  $\tilde{t}_1 \tilde{\chi}_0^1$  plane





#### ATLAS-CONF-2019-017



### 3<sup>rd</sup> generation summary plots



New updated summary plots coming soon!

All results and summary plots on:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

#### Conclusion

- Broad search program for squarks and gluinos @ATLAS First results with full Run 2 dataset public!
  - updated results of previous searches
  - new scenarios in difficult phase space / longer decay-chains considered
  - new methods used
- No excess above Standard Model expectation observed
- New exclusion limits
- In simplified models, e.g.:
  - gluinos (into top/bottom pair) up to 2.2 TeV
  - sbottoms (with Higgs) up to 1.45 TeV
  - stops (3-body decay) up to 720 GeV
- And more incoming, stay tuned!





### Strong multi-b

| Gtt 1-lepton                   |                                                                             |                  |                  |                                     |                                  |                          |                |  |
|--------------------------------|-----------------------------------------------------------------------------|------------------|------------------|-------------------------------------|----------------------------------|--------------------------|----------------|--|
| Criteria con                   | Criteria common to all regions: $\geq 1$ signal lepton, $N_{b-jets} \geq 3$ |                  |                  |                                     |                                  |                          |                |  |
| Targeted kinematics            | Туре                                                                        | N <sub>jet</sub> | $m_{\mathrm{T}}$ | $m_{\mathrm{T,min}}^{b	ext{-jets}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{\rm eff}^{\rm incl}$ | $M_J^{\Sigma}$ |  |
| Region B                       | SR                                                                          | ≥ 5              | > 150            | > 120                               | > 500                            | > 2200                   | > 200          |  |
| (Boosted, Large $\Delta m$ )   | CR                                                                          | = 5              | < 150            | -                                   | > 300                            | > 1700                   | > 150          |  |
| Region M                       | SR                                                                          | ≥ 6              | > 150            | > 160                               | > 450                            | > 1800                   | > 200          |  |
| (Moderate $\Delta m$ )         | CR                                                                          | = 6              | < 150            | -                                   | > 400                            | > 1500                   | > 100          |  |
| Region C                       | SR                                                                          | ≥ 7              | > 150            | > 160                               | > 350                            | > 1000                   | _              |  |
| $(Compressed, sman  \Delta m)$ | CR                                                                          | = 7              | < 150            | -                                   | > 350                            | > 1000                   | -              |  |

Gtt 0-lepton

| Targeted kinematics                | Туре | N <sub>lepton</sub> | N <sub>b-jets</sub> | Njet     | $\Delta \phi_{ m min}^{ m 4j}$ | $m_{\mathrm{T}}$ | $m_{\mathrm{T,min}}^{b	ext{-jets}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{ m eff}^{ m incl}$ | $M_J^{\Sigma}$ |
|------------------------------------|------|---------------------|---------------------|----------|--------------------------------|------------------|-------------------------------------|----------------------------------|------------------------|----------------|
| Region B                           | SR   | = 0                 | ≥ 3                 | ≥ 7      | > 0.4                          | -                | > 60                                | > 350                            | > 2600                 | > 300          |
| (Boosted, Large $\Delta m$ )       | CR   | = 1                 | ≥ 3                 | ≥ 6      | -                              | < 150            | -                                   | > 275                            | > 1800                 | > 300          |
| Region M                           | SR   | = 0                 | ≥ 3                 | ≥ 7      | > 0.4                          | -                | > 120                               | > 500                            | > 1800                 | > 200          |
| (Moderate $\Delta m$ )             | CR   | = 1                 | ≥ 3                 | $\geq 6$ | -                              | < 150            | -                                   | > 400                            | > 1700                 | > 200          |
| Region C                           | SR   | = 0                 | ≥ 4                 | ≥ 8      | > 0.4                          | -                | > 120                               | > 250                            | > 1000                 | > 100          |
| (Compressed, moderate $\Delta m$ ) | CR   | = 1                 | ≥ 4                 | ≥ 7      | -                              | < 150            | -                                   | > 250                            | > 1000                 | > 100          |
|                                    |      |                     |                     |          | Chb                            |                  |                                     |                                  |                        |                |

|                                                           |      |                     |                     |                                | Gbb              |                                     |                                  |               |                                  |
|-----------------------------------------------------------|------|---------------------|---------------------|--------------------------------|------------------|-------------------------------------|----------------------------------|---------------|----------------------------------|
|                                                           |      | (                   | Criteria c          | ommon t                        | o all regio      | ons: N <sub>jet</sub>               | ≥ 4                              |               |                                  |
| Targeted kinematics                                       | Туре | N <sub>lepton</sub> | N <sub>b-jets</sub> | $\Delta \phi_{ m min}^{ m 4j}$ | $m_{\mathrm{T}}$ | $m^{b	ext{-jets}}_{\mathrm{T,min}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{\rm eff}$ | Others                           |
| Region B                                                  | SR   | = 0                 | ≥ 3                 | > 0.4                          | _                | -                                   | > 400                            | > 2800        | -                                |
| (Boosted, Large $\Delta m$ )                              | CR   | = 1                 | ≥ 3                 | -                              | < 150            | -                                   | > 400                            | > 2500        | -                                |
| Region M (Moderate $\Delta m$ )                           | SR   | = 0                 | ≥ 4                 | > 0.4                          | _                | > 90                                | > 450                            | > 1600        | -                                |
|                                                           | CR   | = 1                 | $\geq 4$            | -                              | < 150            | -                                   | > 300                            | > 1600        | -                                |
| Region C                                                  | SR   | = 0                 | ≥ 4                 | > 0.4                          | -                | > 155                               | > 450                            | -             | -                                |
| (Compressed, small $\Delta m$ )                           | CR   | = 1                 | $\geq 4$            | -                              | < 150            | -                                   | > 375                            | -             | -                                |
| Region VC<br>(Very Compressed,<br>very small $\Delta m$ ) | SR   | = 0                 | ≥ 3                 | > 0.4                          | -                | > 100                               | > 600                            | -             | $p_{T}^{j_1} > 400, j_1 \neq b,$ |
|                                                           | CR   | = 1                 | ≥ 3                 | -                              | < 150            | -                                   | > 600                            | -             | $\Delta \phi^{j_1} > 2.5$        |

Dominant systematic uncertainties varying in each signal bin:

- Jet energy scale: 0.5% 15%
- Jet energy resolution: 1% 19%
- b-tagging efficiency / misstagging rate: 1% - 7%
- single-top modelling uncertainties: 4-35%
- W/Z+jets factorisation and renormalisation: 0-50%

2

#### Strong multi-b – exclusions







 Different visualisation methods in multi-parameter phase space m

#### SS/3L





#### 05.06.2019

Systematics: - cross section uncertainty of VV,  $t\bar{t}+W/Z/H$  processes

- factorisation and renormalisation scales from generator-provided up/down weights
- modelling uncertainties obtained by comparing with alternative generators/same generator with different event tune
- overall: 35-45%  $t \bar{t} + W$ , 25-45%  $t \bar{t} + Z$ , 40-45% W Z
- Matrix method:

SS/3L

- F/NP leptons usually filtered out by lepton isolation criteria
- Loosen criteria, measure how many leptons pass this and the nominal (tight) lepton selection
- Obtain probabilities from MC events
- 30-80% uncertainty on probability

$$\begin{pmatrix} N^{tt} \\ N^{t\bar{t}} \\ N^{t\bar{t}} \\ N^{\bar{t}\bar{t}} \\ N^{\bar{t}\bar{t}} \end{pmatrix} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 \tilde{r}_2 & r_1 \tilde{f}_2 & f_1 \tilde{r}_2 & f_1 \tilde{f}_2 \\ \tilde{r}_1 r_2 & \tilde{r}_1 f_2 & \tilde{f}_1 r_2 & \tilde{f}_1 f_2 \\ \tilde{r}_1 \tilde{r}_2 & \tilde{r}_1 \tilde{f}_2 & \tilde{f}_1 \tilde{r}_2 & \tilde{f}_1 \tilde{f}_2 \end{pmatrix} \begin{pmatrix} N^{tt}_{rr} / (r_1 r_2) \\ N^{tt}_{rf} / (r_1 f_2) \\ N^{tt}_{fr} / (f_1 r_2) \\ N^{tt}_{ff} / (f_1 r_2) \end{pmatrix}$$

t: passes tight criteria, $\overline{t}$ : does not pass tight criteriar: real lepton,f: fake lepton



### Spin correlation

- Selection:
  - inclusive: 2 OFOS leptons,  $\geq$  2 jets,  $\geq$  1 b-jet
- Unfolding procedure: Background-substracted data are corrected for detector acceptance and resolution effects.
- Systematic uncertainties:
  - t t modelling: matrix-element generator, hadronisation and parton-shower model, amount of ISR/FSR, choice of PDF set
  - normalisation of other backgrounds
  - only small detector uncertainties





### Sbottom with Higgs

Decay hierarchy predicted in MSSM, when: is lightest neutral boson, LSP is bino-like,  $\tilde{\chi}_{2}^{0}$  is wino-higgsino mixture

SRB Target



- "bulk" region
- all objects high p<sub>τ</sub> and resolved
- *max-min* method: remove bjets most likely from sbottoms (pair with max  $\Delta R$ ), then find Higgs candidate (pair with min  $\Delta R$ )
- use lower bound on invariant mass of Higgs candidate



- soft b-jets from sbottoms
- use ISR-like selection
- reconstruct two Higgs candidates with high  $\Delta R$

p-iets from  $ilde{b}_1$  decays

p-jets from h decays

use mass window around Higgs mass for avg. cand. mass



- "compressed" region, small  $\Delta m(\widetilde{b}_1, \widetilde{\chi}_2^0)$ ,  $m(\widetilde{\chi}_1^0)=60 \,\text{GeV}$
- soft b-jets from sbottoms
- require lower b-multiplicity
- visible and invisible hemisphere
- more Z+jets background



### Sbottom with Higgs

- Dominating systematic uncertainties:
  - experimental: jet energy scale & jet energy resolution, b-tagging efficiency and mis-tagging (dominant in SRC)
  - theoretical: top quark pair and Z+jets modelling

| Region                                                                         | SRA                                                                       | SRB                                                                         | SRC                                                                      |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Total background expectation                                                   | 17.1                                                                      | 3.3                                                                         | 37.9                                                                     |
| Total background error                                                         | 2.8~(16%)                                                                 | 0.9~(27%)                                                                   | 6.2~(16%)                                                                |
| Systematic, experimental<br>Systematic, theoretical<br>Statistical, MC samples | $\begin{array}{c} 1.4 \ (8\%) \\ 2.3 \ (13\%) \\ 0.7 \ (4\%) \end{array}$ | $\begin{array}{c} 0.3 \ (10\%) \\ 0.6 \ (18\%) \\ 0.4 \ (12\%) \end{array}$ | $\begin{array}{c} 3.0 \ (8\%) \\ 3.2 \ (8\%) \\ 2.0 \ (5\%) \end{array}$ |





$$S^{2} = 2 \ln \left( \frac{\max_{\boldsymbol{p}_{T}^{\text{inv}} \neq \boldsymbol{o}} \mathcal{L}(\boldsymbol{E}_{T}^{\text{miss}} | \boldsymbol{p}_{T}^{\text{inv}})}{\max_{\boldsymbol{p}_{T}^{\text{inv}} = \boldsymbol{o}} \mathcal{L}(\boldsymbol{E}_{T}^{\text{miss}} | \boldsymbol{p}_{T}^{\text{inv}})} \right)$$



### Stop to Z/h





|                                           | $SR_{1A}$ | SR <sub>1B</sub> | SR <sub>2A</sub> | SR <sub>2E</sub> |
|-------------------------------------------|-----------|------------------|------------------|------------------|
| Total systematic uncertainty (%)          | 13        | 13               | 29               | 15               |
| Diboson theoretical uncertainties (%)     | 2         | 3                | 11               | 5                |
| $t\bar{t}Z$ theoretical uncertainties (%) | 3         | 6                | 4                | 5                |
| Other theoretical uncertainties (%)       | 6         | 9                | 2                | ç                |
| MC and FNP statistical uncertainties (%)  | 6         | <1               | 14               | 7                |
| Diboson fitted normalisation (%)          | 2         | 3                | 11               | 6                |
| $t\bar{t}Z$ fitted normalisation (%)      | 5         | 9                | 2                | 7                |
| Fake/non-prompt leptons efficiency (%)    | 4         | <1               | 14               | 2                |
| Jet energy resolution (%)                 | 4         | 3                | 2                | 2                |
| Jet energy scale (%)                      | 1         | 4                | <1               | 1                |
| b-tagging (%)                             | 3         | 5                | 1                | 4                |



Recurrent neural network

#### 6%)

| Sominant systematic uncertainty: $t t$ hadronisation/fragmentation (16) |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

|                                                                                                       | (RNN)                                                                                                |                                 |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|
| Input variable                                                                                        | Description                                                                                          |                                 |
| $\begin{bmatrix} E_{\rm T}^{\rm miss} \\ \phi(\vec{p}_{\rm rr}^{\rm miss}) \end{bmatrix}$             | Missing transverse energy Azimuthal angle of the $\vec{n}_{m}^{miss}$                                | A Shallow heura<br>a network NN |
| $\begin{pmatrix} \varphi(p_{\Gamma}) \\ m_{T} \\ \Delta \phi(\ell, \vec{p}_{T}^{miss}) \end{pmatrix}$ | Transverse mass<br>Azimuthal angle between $\vec{p}_{T}^{miss}$ and lepton                           | - Hethert bw                    |
| $\begin{bmatrix} -\varphi(0, p_1) \\ m_{\text{bl}} \\ n^{b_{jet}} \end{bmatrix}$                      | Invariant mass of leading b-tagged jet and lepton<br>Transverse momentum of the leading b-tagged jet |                                 |
| $\begin{array}{c} P_{\mathrm{T}} \\ n_{\mathrm{jet}} \\ m \end{array}$                                | Jet multiplicity<br>Number of $h$ togged jet $@.77\%$                                                |                                 |
| $ \begin{array}{c} n_{b-\text{tag}} \\ p_{\mathrm{T}}(\ell) \\ \end{array} $                          | Transverse momentum of lepton                                                                        |                                 |
| $\left \begin{array}{c}\eta(\ell)\\\phi(\ell)\end{array}\right $                                      | Azimuthal angle of lepton                                                                            |                                 |
| $E(\ell)$                                                                                             | Energy of lepton                                                                                     |                                 |

►

# 3-body stop

Jet 4-vectors (up to 8)

### MC samples

| Process                                                          | $\begin{array}{c} \text{Generator} \\ + \text{ fragmentation/hadronization} \end{array}$ | Tune        | PDF set  | Cross-section<br>order      |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------|----------|-----------------------------|
| Gbb/Gtb/Gtt                                                      | MadGraph5_aMC@NLO-2.2.2<br>+ Pythia v8.186                                               | A14         | NNPDF2.3 | NLO+NLL [30,31,32,33,34,35] |
| $tar{t}$                                                         | Роwнед-Вох v2<br>+ Рүтніа-8.230                                                          | A14         | NNPDF3.0 | NNLO+NNLL [36]              |
| Single top<br>Wt-channel $(s/t)$                                 | Powheg-Box v1 (v2)<br>+ Pythia-6.428 (-8.230)                                            | PERUGIA2012 | CT10     | NNLO+NNLL [37,38,39]        |
| $tar{t}W/tar{t}Z$                                                | MadGraph5_aMC@NLO-2.2.2<br>+ Pythia-8.186                                                | A14         | NNPDF2.3 | NLO [40]                    |
| $4	ext{-tops}$                                                   | MadGraph-2.2.2<br>+ Pythia-8.186                                                         | A14         | NNPDF2.3 | NLO [40]                    |
| $t ar{t} H$                                                      | MadGraph5_aMC@NLO-2.2.1<br>+ Herwig++-2.7.1                                              | UEEE5       | CT10     | NLO [41]                    |
| $\begin{array}{c} \mathbf{Dibosons} \\ WW,  WZ,  ZZ \end{array}$ | Sherpa-2.2.1                                                                             | Default     | NNPDF3.0 | NLO [42,43]                 |
| $W/Z{+ m jets}$                                                  | Sherpa-2.2.1                                                                             | Default     | NNPDF3.0 | NNLO [44]                   |

strong multi-b

REIBURG

| Physics process                 | Generator              | Parton shower     | Cross-section              | PDF set           | Tune           |
|---------------------------------|------------------------|-------------------|----------------------------|-------------------|----------------|
|                                 |                        |                   | normalisation              |                   |                |
| SUSY Signals                    | MG5_AMC@NLO 2.6.2 [31] | Pythia 8.212 [32] | NNLO+NNLL [33,34,35,36,37] | NNPDF2.3LO [38]   | A14 [39]       |
| $t\bar{t}Z/\gamma^*, t\bar{t}W$ | MG5_AMC@NLO 2.3.3      | Pythia 8.210      | NLO [31]                   | NNPDF2.3LO        | A14            |
| Diboson                         | Sherpa 2.2.2 [40]      | Sherpa 2.2.2      | Generator NLO              | NNPDF3.0NNLO [41] | Sherpa default |
| $t\bar{t}h$                     | Powheg v2 [42]         | Pythia 8.230      | NLO [43]                   | NNPDF2.3LO        | A14            |
| Wh, Zh                          | Pythia 8.186 [44]      | Pythia 8.186      | NLO [43]                   | NNPDF2.3LO        | A14            |
| $t\bar{t}WW, t\bar{t}t\bar{t}$  | MG5_AMC@NLO 2.2.2      | Pythia 8.186      | NLO [31]                   | NNPDF2.3LO        | A14            |
| $t\bar{t}t$                     | MG5_AMC@NLO 2.2.2      | Pythia 8.186      | LO                         | NNPDF2.3LO        | A14            |
| tZ                              | MG5_AMC@NLO 2.3.3      | Pythia 8.186      | LO                         | NNPDF2.3LO        | A14            |
| tWZ                             | MG5_AMC@NLO 2.3.3      | Pythia 8.212      | Generator NLO              | NNPDF2.3LO        | A14            |
| Triboson                        | Sherpa 2.2.2           | Sherpa 2.2.2      | Generator NLO              | NNPDF3.0NNLO      | Sherpa default |

#### stop with Z

#### Detector uncertainties





- Jet energy scale (top left), jet energy resolution (top right) and btagging efficiencies.
- JETM-2018-006, JETM-2018-005, ATLAS-CONF-2018-045

m