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STUDYING NEUTRINO - ARGON CROSS SECTIONS

- Detector Spectrum

e Cross sections are necessary for
formulating a prior neutrino flux for

disappearance / appearance
measurements.

Detectors measure
rates

e |dentify reactions / topologies that act
as signals and backgrounds for a
MiniBooNE-like excess.
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lepton

A. Schukraft, G. Zeller

Excess lies mainly in QF
region

Wideband flux gives us e Provide a resource for studying

cross-checks in
RES and MEC jegion, adva.nced electroweak nuclear
ToTat physics:

e Short range correlations
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* Meson-Exchange currents

¢ Random Phase Approximation
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STUDYING NEUTRINO - ARGON CROSS SECTIONS

PRL 121, 221801 (2018)
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MICROBOONE DETECTOR

e 385-ton active volume Liquid argon TPC.

7 e Many advantages to LArTPC:

Liquid Argon TPC

e EXxcellent position, energy resolution.

m.i.p.ionization:
6000 e/mm

e 41T charged particle acceptance.

Plane

Cathode e Large argon nucleus give sensitivity to
i nuclear effects

Egrife ~ 500V/cm

e Many challenges with LArTPCs:

e | arge argon nucleus give
sensitivity to nuclear effects.

e Drift model requires a detailed
simulation.
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CHARGED CURRENT INCLUSIVE ANALYSIS

e Cosmic rejection cuts form the basis of a charged current inclusive analysis,
which looks for events with a neutrino induced muon and anything else.

Tracks reconstructed using the Pandora?
pattern-recognition framework from

Vi M

Muon momentum measured
I ~with MCS, allows us to analyze
exiting tracks (50%).

Single and double differential I
measurement performed in muon \\+
momentum and angle |

Ar

Hadronic energy not measured.
Analysis has no dependence on multiplicity.

1) Eur. Phys. J. C 78, no. 1, 82 (2018)
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CHARGED-CURRENT INCLUSIVE ANALYSIS
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e First double-differential result on argon.
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CHARGED-CURRENT INCLUSIVE ANALYSIS

e Majority of
Model Set tension in the
most forwarding
going bins.

GENIE v3 GENIE v3
(incorporating
NuWro 19.02.1 RPA effects)
gives the best
description.
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e Data with associated efficiency and correlation matrix
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https://arxiv.org/abs/1905.09694

UNCERTAINTY EVALUATION
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CHARGED CURRENT 11° SELECTION

e Excellent channel for benchmarking
EM shower performance.

e First ever measurement in a LArTPC
with automated shower reconstruction.

difficult to tag,
require at least one shower in ; :
. * Conversion Length
analysis. Two for mass-peak. mpact Parameter - <ooem

< 4 cm
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CHARGED CURRENT m©

. . ANL MiniBooNE MicroBooNE
MicroBooNE Preliminary 1.62e20 POT PRD 25 1161,1982 PRD 83 052009,2011 1.62 x 1020 POT
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e Similar selection as Inclusive, only
now require at least one photon Tune
Induced shower in addition to y-.

e A Scaling of FSI in GENIE
compatible across D, C and Ar.

% Error Affected Measurement

Flux 16% Background Estimation

Cross-Section 1%

Background Estimation
Efficiency Correction

Follow on analysis will have higher
efficiency and smaller errors.

Detector Modeling 21%
e Our measurement is consistent

with GENIE and NuWro.
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CROSS SECTIONS WITH PROTON FINAL STATES

e Final states with 1
proton and no mesons
arguably most important
cross section for wt '

MicroBooNE. /\\ /\\

* Future SB neutrino experiments use 1e
1p as a potential sterile signature.

Uselplpto cons:ra?\v/

1e1p

e LAr TPCS can detect and reconstruct
protons at lower momenta than
scintillator detectors (~300 MeV/c).

0.6 0.8 1 1.2 14
True Momentum of Leading Proton Caniddate[GeV]
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IDENTIFYING PROTONS

MicroBooNE preliminary. 4.411e19 POT, stats onl
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e Protons reconstructed by identifying the Bragg For Leading Proton:
peak of particles as they stop.

e Fit track’s dE/dx vs. Residual range to Bethe- Efficiency Purity
Bloch expectation for protons.

e |Improved simulation with data measured E field
will improve our modeling of this observable.
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CHARGED-CURRENT N PROTONS

WioroBooNE Preliminery, 4.811618 POT, stets onty MicroBooNE Preliminary, 4.411e19 POT, stats only
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* Proton kinematics show better shape agreement than muon kinematics.
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CHARGED-CURRENT N PROTONS

MicroBooNE preliminary. 4.411e19 POT, stats only MicroBooNE preliminary. 4.411e19 POT,
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e Caveat: Top row requires exactly two protons in final state.
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CHARGED-CURRENT 2 PROTON

e e nuclear experiments show strong
evidence for interactions off nucleon

pairs.
e Signature is two protons knocked out 1%
back to back in CM frame. B Singio nucieons 20, 7

-n-p .n-n I:lp-p

=g Searching for

[ OOFV

L St evidence of this in
MicroBooNE.

0
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Shape better
modeled by
incorporating QE
nuclear effects.

" GENIE v2.12.2+EMP MEC GENIE 1810a0211a
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verARGON CROSS-SECTION
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e First ve measurement on Argon.

e Only using one plane for PID
currently. Leads to inability to detect
vertical electrons.

e Simulation of full 3 planes underway.

MICROBOONE-NOTE-1038-PUB

|dentifying ve important for
resolving the MiniBooNE
LEE.

Use NuMI (off-axis) beam:
Ve content order of

magnitude higher than BNB.
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CONCLUSIONS

e MicroBooNE is making rapid progress in measuring cross-sections relevant for
oscillation and electroweak nuclear physics:

e CC 10 (Paper Published)

e Double-differential CClnclusive [(Paper Submitted)
e CC N proton (Paper In-Progress)

e CC 2 protons (Paner In-Progress)

e CC Inclusive ve (Paper In-Progress)

e These measurements form a springboard for resolving the MiniBooNE low
energy excess.

e Measurements will be considerable help for theorists and model builders.

* |ooking forward to measurements of more exotic processes (K*, 1r*, exclusive
Ve) as time progresses!
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References for MicroBooNE Papers and Public notes on next slide
(hitps://microhoone.fnal.gov/public-notes/}



https://microboone.fnal.gov/public-notes/

REFERENCES

e Charged-Current Inclusive double differential:
® arXiv (submitted to PRL)

e Charged-Current single production:
e Charged-Current v¢

e Charged-Current N protons:

e Pandora reconstruction:

e Multiple Coulomb Scattering:
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CosMIC MITIGATION

e 32 PMTs are used to E-Field
detect prompt scintillation
light, enables us to search

for events in a 1.6 us .\ N
. Photons ~ i~
beam window (~ns) S Wire Plane

“Neutrino + Cosmics”
I Measured Cosmic Rate (Beam-Off) S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | +4+  BNB Trigger Data (Beam-On) [4.51E18 POT]
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— : o Still a BG to contend with for overlapping events
fme fjth seepect to e FNB Trigsqr g el and beam gates with no neutrino interaction.
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CosMIC MITIGATION

¢ Remove and tag “obvious”
cosmic rays:

e Stopping muons with michel /
tagging. : :
e Downward or upwarding Beam Dir :

going thoroughgoing
particles.

e Particles which enter through
the sides: cathode or anode.

—e— Beam Flash
—+— Hypo Flash

e Compare the amount of light
observed in PMTs to the
predicted amount based on
the track’s position within a
beam spill.
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verARGON CROSS-SECTION
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e Relevant energy range (left) and expected sensitivity (right).

e Modeling of off-axis NuMI flux extremely difficult, power of this
measurement comes from being able to positively ID electrons, and
cross-check LEE signal analysis.
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NEUTRINO INDUCED KAONS

; ® Background for p* decay.

| e Candidate K+ based on similar
cuts as proton ID.

e Sill evaluating backgrounds and
systematics, planning to publish
search.

T
|

16cm Run 5147 Event 2180
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PANDORA RECONSTRUCTION

*Reconstruction begins with “hit finding:” locating hits from waveforms along the wires, and
deconvolving the signal to an (x, u, v, t) coordinate.

*Hits clustered together to form cluster objects, clusters stitched into 3D tracks and
showers.

MicroBooNE Simulation
Vy+Ar = u +p
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MULTIPLE COULOMB SCATTERING

MicroBooNE Preliminary 1.62e20 POT
0.41 ; : : : . — . .
f 2 segments removed
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Momentum resolution well-modeled

e Highland formula relates
rms of scattering to p.
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