

Measurement of the neutron capture cross section on argon with ACED

Luca Pagani on behalf of the ACED collaboration, UC Davis - Ipagani@ucdavis.edu

Neutron captures in argon

- Argon is widely used for particle detection in
 - low-background dark matter searches (e.g. DarkSide)
 - high-energy neutrino experiment (*e.g.* DUNE)
- Neutron captures are both a source of background and a product of signal events (*e.g.* neutrino-induced neutrons)
- It is of paramount importance to better understand the thermal neutron capture cross section since it is poorly understood

Where? At Los Alamos

- The DANCE detector is located on Flight Path 14 at Lujan Neutron Scattering Center (20.25m flight path, 800MeV proton beam)
- We performed neutron irradiation on a 30mg natural argon target
- Gammas are detected by a 4π calorimeter composed of 160 BaF₂ crystals coupled to PMTs

(existing measurements show significant disagreement)

- → The Argon Capture Experiment at DANCE (ACED):
 - measure do/dE using a time-of-flight (TOF) neutron beam

How to calculate the cross section

$\sigma = \mathbf{a} \mathbf{G} / (\mathbf{\varepsilon} \mathbf{N}) - \zeta$

- $\mathbf{a} \rightarrow {}^{40}\text{Ar}$ properties (e.g. natural abundance) and target parameters (*e.g.* pressure and temperature)
- $G \rightarrow$ number of neutron captures
- e → efficiency to see the ⁴¹Ar gamma cascade after applying the selection cuts
- $N \rightarrow$ number of neutrons seen by the beam monitors
- ζ is a theoretical correction (~1%) to account for the presence of ³⁶Ar (³⁸Ar is negligible) in natural argon
- TOF technique allows to precisely select neutron energy

Background subtraction

- Quality cuts efficiency is 75%
- Cluster multiplicity cut: #_{cl} >1 (to see cascade)
- Q-value cut: total energy between [5.2,6.6] MeV
- Different datasets are used:
 - 1. Beam on argon target (A)
 - $\mathbf{D}^{\mathbf{A}} = \mathbf{T}_{0}^{\mathbf{A}} \mathbf{R} + \mathbf{\Phi}^{\mathbf{A}} \sigma_{\mathbf{b}} + \mathbf{\Phi}^{\mathbf{A}} \sigma_{\mathbf{a}}$
 - 2. No beam on argon target (S) $D^{s} = T_{0}^{s} R$
 - 3. Beam on evacuated target (V) $D^{V} = T_0 V R + \Phi^{V} \sigma_{b}$
- Argon contribution:
 - $\boldsymbol{\Phi}^{A}\boldsymbol{\sigma}_{a} = \mathbf{D}^{A} T_{0}^{A}/T_{0}^{S} \mathbf{D}^{S}$ $\boldsymbol{\Phi}^{A}/\boldsymbol{\Phi}^{V} (\mathbf{D}^{V} T_{0}^{V}/T_{0}^{S} \mathbf{D}^{S})$

Gamma cascade detection

- Detailed Geant4-based simulation of apparatus
- Model crystal response (energy resolution and the minimum detectable energy deposit) on a crystal-by-crystal basis
- ⁴¹Ar gamma cascade and uncertainties are assumed from literature <u>PhysScr 1, 85 (1970)</u>
- Include Q-value and cluster multiplicity cuts
- $\epsilon = 98.9 \pm 0.3_{stat} \pm 0.9_{sys} \%$
- Next steps: assess the validity of the gamma cascade and reduce the uncertainty of relative intensities of γ-lines using DICEBOX
 - paper in preparation

BaF2 crystals BaF2 crystals Neutrons Beam pipe

Neutron monitor calibration

- The absolute neutron flux is obtained by a sodium control sample
 - has single stable isotope (²³Na)
 - its product, ²⁴Na, has $t_{\frac{1}{2}} = 14.997$ h which is convenient for counting
 - has no resonances <500eV
 - cross section is known to within 1%
- Activated sodium is measured by HPGe
- Deduce # of thermal neutrons to a
 ±5% level. This is used to normalize the
 ⁶Li and ³He monitors

Method published in <u>NIM A 929, 97 (2019) 10⁻¹⁶ 10⁻¹⁶
</u>

	1			_
400	——● Data		ENDF/B-VIII.0	

- For a 1/v-absorber: $\sigma(v) = \sigma_{mp} v_{mp} / v$, where $v_{mp} = (2kT/m)^{\frac{1}{2}}$
- Fitting in 0.015-0.15eV neutron energy region yields
 - T = 294±36K and σ_{mp} = 670 ±26_{stat} ±43_{sys} mb
- Total systematic error dominated by uncertainties in # of neutrons (calibration 5%, beam stability 3%, and monitors consistency 2%)
- Correcting for average temperature (of the moderator and target) gives: σ²²⁰⁰ = 673±26_{stat}±59_{sys}mb for thermal neutron cross section
- Results published in PhysRevD 99, 103021 (2019)

Acknowledgements: This material is based upon work supported by the U.S.Department of Energy (DOE) Office of Science under Award. No. DESC0009999, and by DOE National Nuclear Security Administration through the Nuclear Science and Security Consortium under Grant No. DE-NA0003180

(qm)

