

Far-Field Monitoring of Reactor Antineutrinos for Non-Proliferation

Gary Smith

On Behalf of the AIT-WATCHMAN collaboration

WIN2019 Bari

The 27th International Workshop on Weak Interactions and Neutrinos

AIT-WATCHMAN Goal

Demonstrate nuclear reactor monitoring for non-proliferation purposes through antineutrino detection using a large, scalable technology (Gadolinium-loaded water).

AIT-WATCHMAN

Advanced Instrumentation Testbed

- Situated at Boulby Underground Laboratory (N.Yorks., UK)
- Located 26 km from two 1.5 GWth advanced gas-cooled reactors (Hartlepool)
- Test novel methods for the discovery of reactor cores

Water Cherenkov Monitor of Anti-Neutrinos

- Investigate signal efficiency and radioactive backgrounds
- Operational status recognition (on/off cycles of two reactors)
- Sensitivity for discovery of one reactor in the presence of another

19 institutions from US and UK 91 collaborators

Co-spokespersons

Adam Bernstein Mark Vagins

Anti-Neutrino Production and Detection

Produced in nuclear reactors

- \circ β -decay of fission fragments
- $\circ~2 \times 10^{20}$ anti-neutrinos per GWth
- \circ isotropic emission

Detectable via Inverse Beta Decay

- \circ low cross-section ~10⁻⁴² cm⁻²
- \circ impossible to shield

arXiv:1101.2663 [hep-ex]

Anti-Neutrino Based Reactor Monitoring

Close Proximity (up to 200 m)

- estimate fissile content and relative thermal power
- $\circ~$ high statistics operation validation

Mid- to Far-Field (200 m - 100+ km)

- low statistics regime
- o remote monitoring
- $\circ~$ reactor discovery / absence
- \circ large area coverage

Numerous experimental efforts

Very few Far-Field detectors

Advanced Instrumentation Testbed! 7

AIT-WATCHMAN Observation Principle

Load water with gadolinium sulphate

- Gd has 49,000 b neutron capture cross-section (c.f. hydrogen 0.3 b)
- Capture produces 8 MeV γ-ray cascade (4-5 MeV visible)
- Thermalisation takes ~30 μs

$$\overline{\nu}_e + p \to e^+ + n$$

Achieve ~50% detection efficiency for antineutrinos interacting in fiducial volume

Anti-neutrino heartbeat

Inverse beta decay is detectable via two flashes of light occurring within a short time interval $(\sim 100 \ \mu s)$ and in close proximity.

AIT-WATCHMAN Site STFC Boulby underground laboratory

Working polysulphate mine Second deepest mine in Europe (1.4 km)

Site choice motivation

- A 30-year record of safe science at Boulby
- longstanding cooperation with AWE
- strong University partnership
- 10⁶ reduction in cosmic ray flux vs. surface
- two-reactor site gives a stringent nonproliferation test for the new technology

AIT-WATCHMAN Baseline Design

20 m

- 6000 m³ tank
- Veto region between tank and PMTs (suppress cosmics & natural radioactivity backgrounds)
- Steel PMT support frame 3 m inside tank
 - 3600-4400 photomultiplier tubes (PMTs)
 - Low radioactivity 10" PMTs
 - 20-25% photo coverage
- I.5 m between PMTs and fiducial volume (suppress radioactivity from PMTs & support structure)
- kiloton fiducial volume (virtual)

Antineutrino Interaction Rate

- Flux information for Boulby based on the online geoneutrino map project (https://geoneutrinos.org) See arXiv:1611.01575 Steve Dye
- Hartlepool provides ~83.4% of total antineutrino flux
- This translates to around 500 interactions/year

Event Rate Breakdown

Signal / Background Source	Events per week (20% photo- coverage)
Core I	4.2
Core 2	4.2
World reactors	1.3
Accidentals	0.9
Fast neutrons*	0.6
Radionuclides	0.1
Total Signal	8.4
Total Background	2.9
Total Estimated	11.3

- The table on the left shows the expected detection rates for one detector configuration
- The effect of varying photo-coverage and volume sizes on event rates is under investigation
- Analyses can include (unblind) or ignore (blind) prior knowledge of the operation of either or both reactor/s

* Fast neutron study with FLUKA underway

Example Observation Scenarios

The WATCHMAN detector can be used to test several non-proliferation related observations!

AIT beyond WATCHMAN Future Studies

Directionality

Detection of reactors at the longest ranges necessitates the addition of directionality information

Supernovae trigger

A dedicated trigger for recording supernovae neutrino events is under study

Fast Timing Detectors (e.g. LAPPD)

AIT will provide a future platform in which to test fast timing detectors such as Large Area Picosecond Photon Detectors

Water-based Liquid Scintillator (WbLS)

A water soluble mixture with fast timing, good spectral response, tunable light yield

Far-Field Monitoring of Reactor Antineutrinos for Non-Proliferation Summary

- WATCHMAN will detect anti-neutrinos from a remote reactor using a tank of Gd-loaded water in Boulby Underground Laboratory.
- The primary goal is to monitor two nuclear reactor cores at 26 km standoff to prove the concept of a scalable monitoring system for non-proliferation
- The Advanced Instrument Testbed (AIT) aims to increase sensitivity beyond WATCHMAN
- Design and construction are underway

AIT-WATCHMAN

Far-Field Monitoring of Reactor Antineutrinos for Non-Proliferation

Thanks for your attention!

gary.smith@ed.ac.uk

WIN2019 Bari

The 27th International Workshop on Weak Interactions and Neutrinos