Results from NOvA: long-baseline neutrino and antineutrino flavor oscillation

Denver Whittington, Syracuse University On behalf of the NOvA Collaboration

WIN2019

NOvA : NuMI Off-axis v_e Appearance

- Neutrino Mass Hierarchy
 - value and <u>sign</u> of the atmospheric mass splitting
- v_3 Flavor Symmetry
- CP symmetry violation
- Other neutrinos beyond the three active flavors?

NOvA : NuMI Off-axis v_e Appearance

- Neutrino Mass Hierarchy
 - value and <u>sign</u> of the atmospheric mass splitting
- v₃ Flavor Symmetry
- CP symmetry violation
- Other neutrinos beyond the three active flavors?

NOvA : NuMI Off-axis v_e Appearance

- Neutrino Mass Hierarchy
 value and sign of
 - the atmospheric mass splitting
- v_3 Flavor Symmetry
- CP symmetry violation
- Other neutrinos beyond the three active flavors?

NOvA : NuMI Off-axis v_e Appearance

- Neutrino Mass Hierarchy
 value and sign of
 - the atmospheric mass splitting
- v_3 Flavor Symmetry
- CP symmetry violation
- Other neutrinos beyond the three active flavors?

300 ton Near Detector underground at Fermilab 14.3 m x 4.1 m x 4.1 m, 206 alternating layers

lengths for e/pi separation

	-	
		-
		1
** **		
	88.88	

Instrumented with wavelength-shifting fibers and avalanche photodiodes

1560 cm

 $4 \text{ cm} \times 6 \text{ cm}$

300 ton Near Detector underground at Fermilab 14.3 m x 4.1 m x 4.1 m, 206 alternating layers

RI

Extruded PVC cells filled with 11 million liters of liquid scintillator

Instrumented with wavelength-shifting fibers and avalanche photodiodes

Events in the NOvA Detectors – Far Detector

RHC (antineutrino mode)

The NuMI Beam

NuMI Off-Axis \rightarrow nearly monoenergetic neutrino beam

NOvA is exploring neutrino interactions at an important low-energy region.

- High-statistics data from NOvA near detector
- Combination of quasi-elastic, resonance, and more complicated interactions
- Overlap with MiniBooNE, T2K, & MINERvA measurements
- DUNE 1st oscillation maximum
- Measurements of both neutrino and antineutrino interactions

Neutrino and Antineutrino Exposure

The NOvA neutrino dataset keeps growing.

Many thanks go to Fermilab for this amazing neutrino beam!

Inside Neutrino Events

- Identify components
 - tracks, showers, vertex, hadronic activity
- Measure properties
 - dE/dx, momenta, calibrated energy
- Reject cosmic rays and associated activity
 - muons, neutrons, etc.
- Identify the event type
 - Distinguish between CC and NC events
 - Electron, muon, or tau neutrino
 - Quasi-elastic, resonant, deep inelastic, etc.

Reconstructing and Classifying Neutrino Interactions

Events are classified using a Convolutional Neural Network

Reconstructing and Classifying Neutrino Interactions

Events are classified using a Convolutional Neural Network

Reconstructing and Classifying Neutrino Interactions

Events are classified using a Convolutional Neural Network

- Base Simulation
 - Data-Driven Prediction

Data-Driven Prediction: Reweight the underlying simulated neutrino energy spectrum using high-statistics near detector data.

Sample the neutrino spectrum in the event selection at the near detector and extrapolate to predict the spectrum at the far detector...

Multiply by the far-to-near flux ratio (shape of beam at far vs near detectors) and the oscillation probability to predict the true spectrum at the far detector.

Muon Neutrino Disappearance

Measured and simulated neutrino spectra at the NOvA Near Detector

Predicted and measured neutrino spectra at the NOvA Far Detector

Electron Neutrino Appearance

Electron Neutrino Appearance

Neutrino beam (FHC): We observe 58 events and expect 15 background interactions 11 beam, 3 cosmics, and < 1 antineutrino

Antineutrino beam (RHC): We observe 18 events and expect 5.3 background interactions 3.5 beam, < 1 cosmic, and 1 neutrino

> 4 σ evidence of electron antineutrino appearance!

Electron Neutrino Appearance

NOvA : NuMI Off-axis v_e Appearance

- Neutrino Mass Hierarchy
 - value and <u>sign</u> of the atmospheric mass splitting
- v_3 Flavor Symmetry
- CP symmetry violation

NOvA Preliminary

- The leading systematics are detector calibration, neutrino/antineutrino cross section uncertainties, and contributions from neutron response.
- Our upcoming testbeam program will address many of these contributions.

Results of Combined v_{μ} Disappearance and v_{a} Appearance Analysis

Best Fit Point: Normal Hierarchy, $\delta_{CP} = 0.17 \ \pi$ sin²θ₂₃ = 0.58 ± 0.03 (Upper Octant), $\Delta m_{32}^2 = (2.51 + 0.12 - 0.08) \times 10^{-3} \text{ eV}^2$

Prefer Normal Hierarchy by 1.8 σ | Exclude $\delta_{CP} = \pi/2$ in Inverted Hierarchy at >3 σ

Coming Soon

Analysis Update

- Top-Up with 78% more antineutrino (RHC) data!
- See talk by Jeremy Wolcott at the 52nd Annual Fermilab Users Meeting
 - June 12-13, 2019 at Fermi National Accelerator Laboratory

52nd Annual Fermilab Users Meeting

Coming Soon

Testbeam Detector

- Scaled-down version of NOvA detector at Fermilab Test Beam Facility
- Exposed to a new tertiary beam of pions, protons, muons, and electrons with known energies.
- Address energy-related and detector response systematics.
- Build a database of single particle topologies to tune reconstruction and train future convolutional neural networks for particle ID.
- Constructed and beginning data-taking operations soon!

- NOvA neutrino (8.85 × 10²⁰ POT) and antineutrino data (6.9 × 10²⁰ POT) analyzed.
 Analysis with additional antineutrino data to be released <u>next week</u>!
- We observe > 4σ evidence of electron antineutrino appearance.
- A joint appearance and disappearance analysis for these data:
 Prefers Normal Hierarchy at 1.8 σ and excludes δ_{CP} = π/2 at > 3σ.
 Rejects maximal mixing at 1.8 σ and the lower extent at a similar low
 - \circ Rejects maximal mixing at 1.8 σ and the lower octant at a similar level.
- Running planned through 2024, with proposed accelerator improvement projects and a test beam program to enhance ultimate reach.

Backup

Neutrino Interactions at NOvA

NOvA is sensitive to challenging intranuclear processes.

- \rightarrow Under active investigation in the 1-2 GeV neutrino energy range
- \rightarrow Data-driven tune of GENIE MEC model

Neutrino Interactions at NOvA

Measurements of neutrino interaction cross sections and nuclear effects are underway.

Reconstructing and Classifying Neutrino Interactions

Muon Neutrino Disappearance

Predicted and measured neutrino spectra at the NOvA Far Detector Extrapolated and fit in subsets by hadronic energy fraction

NOvA Prospects

- Running 50% neutrino / 50% antineutrino going forward.
- Extended running through 2024, with proposed accelerator improvements and a testbeam program to enhance reach.
- Anticipate 3σ sensitivity to hierarchy (if NH and $\delta_{CP} = 3\pi/2$) for allowed range of θ_{23} by 2020.
- Anticipate 3σ sensitivity for 30-50% of δ_{CP} range (depending on octant) by 2024.
- Expect > 2σ sensitivity for CP violation in both hierarchies at $\delta_{CP} = 3\pi/2$ or $\delta_{CP} = \pi/2$ (assuming unknown hierarchy) by 2024.

