## General Neutrino Interactions from an Effective Field Theory perspective

Ingolf Bischer, Werner Rodejohann

WIN2019, Bari

4 June 2019



 $1.\ {\rm EFT}$  above and below the weak scale

2. (Some) GNI phenomenology

3. Leptoquarks as UV completions

# 1. EFT above and below the weak scale

## EFT above and below the weak scale

Why EFT, and if so, how many?

- Neutrino physics started off with an EFT: Fermi Theory
- Now widely used for model-independent NP searches
- Neutrino phenomenology (below the weak scale) usually refers to NSI (more rarely GNI)
- ▶ Similar spirit: WEFT, WET, HEFT, ....
- Collider phenomenology (around and above the weak scale) usually refers to SMEFT or its cousins
- Can be related by a matching of Wilson coefficients at the weak scale ("EFT ladder")

### EFT above and below the weak scale

Why EFT, and if so, how many?

General EFT expansion:

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i \sum_{n \geq 5} rac{1}{\Lambda^{n-4}} C_i \mathcal{O}_i^{(n)} \,,$$

- ► Add to known physics, e.g. Standard Model Lagrangian an expansion of all non-renormalisable operators of dimension d ≥ 5
- Λ: cutoff of the EFT, scale at which new particles are excited
   O<sup>(n)</sup><sub>i</sub> composed of all fields present in L<sub>SM</sub> and respecting its symmetries

Well-known example: Fermi Theory



$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda^2} C_i \mathcal{O}_i^{(6)}$$

•  $\mathcal{O}^{(6)}$ : four-fermion operators respecting SU(3)<sub>C</sub>×U(1)<sub>em</sub> •  $\frac{1}{\Lambda^2} = \sqrt{8}G_F = \frac{g^2}{2m_W^2}$  scale of "new physics"

Non-Standard neutrino interactions

Idea: New high-energy physics may lead to modifications of Fermi theory:

#### **NSI** Lagrangians

$$\begin{split} \mathcal{L}_{NC}^{\text{NSI}} &= -\sqrt{8} G_F \sum_{X=L,R} \epsilon_{\alpha\beta}^{\psi,X} \left( \overline{\nu}^{\alpha} \gamma^{\mu} P_L \nu^{\beta} \right) \left( \overline{\psi} \gamma_{\mu} P_X \psi \right) \\ \mathcal{L}_{CC}^{\text{NSI}} &= -\sqrt{8} G_F V_{\gamma\delta} \sum_{X=L,R} \epsilon_{\alpha\beta}^X \left( \overline{e}^{\alpha} \gamma^{\mu} P_L \nu^{\beta} \right) \left( \overline{u}^{\gamma} \gamma_{\mu} P_X d^{\delta} \right) + \text{h.c.} \end{split}$$

$$\blacktriangleright \ \epsilon \propto \frac{m_W^2}{m_{\rm NP}^2} \frac{g_{\rm NP}^2}{g^2} ?$$

current bounds 
$$\sim 10^{-3}-10^{-1}$$
 dep. on flavor

General neutrino interactions

- Idea: What is the most general Lorentz-invariant four-fermion interaction Lagrangian if we admit right-handed neutrinos?
- ► For general chiral fermions 10 terms:

General neutrino interactions

- Idea: What is the most general Lorentz-invariant four-fermion interaction Lagrangian if we admit right-handed neutrinos?
- ► For general chiral fermions 10 terms:

Five Lorentz-invariant Lagrangians constructed from four Dirac spinors  $\psi_i$ 

$$\mathcal{L}_{XY}^{S}(\psi_{1},\psi_{2},\psi_{3},\psi_{4}) = \left(\overline{\psi}_{1}P_{X}\psi_{2}\right)\left(\overline{\psi}_{3}P_{Y}\psi_{4}\right) \\ \mathcal{L}_{XY}^{V}(\psi_{1},\psi_{2},\psi_{3},\psi_{4}) = \left(\overline{\psi}_{1}\gamma^{\mu}P_{X}\psi_{2}\right)\left(\overline{\psi}_{3}\gamma_{\mu}P_{Y}\psi_{4}\right) \\ \mathcal{L}_{X}^{T}(\psi_{1},\psi_{2},\psi_{3},\psi_{4}) = \left(\overline{\psi}_{1}\sigma^{\mu\nu}P_{X}\psi_{2}\right)\left(\overline{\psi}_{3}\sigma_{\mu\nu}P_{X}\psi_{4}\right) \\ X, Y = L, R$$

General neutrino interactions

- Idea: What is the most general Lorentz-invariant four-fermion interaction Lagrangian if we admit right-handed neutrinos?
- ► For general chiral fermions 10 terms:

Five Lorentz-invariant Lagrangians constructed from four Dirac spinors  $\psi_i$ 

$$\mathcal{L}_{XY}^{S}(\psi_{1},\psi_{2},\psi_{3},\psi_{4}) = (\overline{\psi}_{1}P_{X}\psi_{2})(\overline{\psi}_{3}P_{Y}\psi_{4})$$

$$\mathsf{NSI:} \mathcal{L}_{LY}^{V}(\psi_{1},\nu_{L},\psi_{3},\psi_{4}) = (\overline{\psi}_{1}\gamma^{\mu}P_{L}\nu_{L})(\overline{\psi}_{3}\gamma_{\mu}P_{Y}\psi_{4})$$

$$\mathcal{L}_{X}^{T}(\psi_{1},\psi_{2},\psi_{3},\psi_{4}) = (\overline{\psi}_{1}\sigma^{\mu\nu}P_{X}\psi_{2})(\overline{\psi}_{3}\sigma_{\mu\nu}P_{X}\psi_{4})$$

$$X, Y = L, R$$

General neutrino interactions

Idea: What is the most general Lorentz-invariant four-fermion interaction Lagrangian if we admit right-handed neutrinos?

**GNI** Lagrangians

$$\begin{split} \mathcal{L}_{NC}^{\mathsf{GNI}} &= -\frac{G_{\mathsf{F}}}{\sqrt{2}} \sum_{j=1}^{10} \left( \epsilon^{j,\psi} \right)_{\alpha\beta\gamma\delta} \left( \overline{\nu}^{\alpha} \mathcal{O}_{j} \nu^{\beta} \right) \left( \overline{\psi}^{\gamma} \mathcal{O}_{j}^{\prime} \psi^{\delta} \right) \\ \mathcal{L}_{CC}^{\mathsf{GNI}} &= -\frac{G_{\mathsf{F}}}{\sqrt{2}} V_{\gamma\delta} \sum_{j=1}^{10} \left( \epsilon^{j,\psi} \right)_{\alpha\beta\gamma\delta} \left( \overline{e}^{\alpha} \mathcal{O}_{j} \nu^{\beta} \right) \left( \overline{u}^{\gamma} \mathcal{O}_{j}^{\prime} d^{\delta} \right) + \mathrm{h.c.} \end{split}$$

 $\psi = u, d, e$ 

- ► Ten *e*-parameters instead of two (NSI)!
- Leptonic CC interactions absorbed in NC (Fierz transformation)
- Remark: Parametrisation not unique

General neutrino interactions

| j  | $\stackrel{(\sim)}{\epsilon_j}$ | $\mathcal{O}_{j}$            | $\mathcal{O}_j'$             |
|----|---------------------------------|------------------------------|------------------------------|
| 1  | $\epsilon_L$                    | $\gamma_{\mu}(1-\gamma^{5})$ | $\gamma^{\mu}(1-\gamma^5)$   |
| 2  | $\tilde{\epsilon}_L$            | $\gamma_{\mu}(1+\gamma^5)$   | $\gamma^{\mu}(1-\gamma^{5})$ |
| 3  | $\epsilon_R$                    | $\gamma_{\mu}(1-\gamma^{5})$ | $\gamma^{\mu}(1+\gamma^5)$   |
| 4  | $\tilde{\epsilon}_R$            | $\gamma_{\mu}(1+\gamma^5)$   | $\gamma^{\mu}(1+\gamma^5)$   |
| 5  | $\epsilon_{S}$                  | $(1 - \gamma^5)$             | 1                            |
| 6  | $\tilde{\epsilon}_{S}$          | $(1 + \gamma^5)$             | 1                            |
| 7  | $-\epsilon_P$                   | $(1-\gamma^5)$               | $\gamma^5$                   |
| 8  | $-	ilde{\epsilon}_P$            | $(1+\gamma^5)$               | $\gamma^5$                   |
| 9  | $\epsilon_T$                    | $\sigma_{\mu u}(1-\gamma^5)$ | $\sigma^{\mu u}(1-\gamma^5)$ |
| 10 | $	ilde{\epsilon}_{\mathcal{T}}$ | $\sigma_{\mu u}(1+\gamma^5)$ | $\sigma^{\mu u}(1+\gamma^5)$ |

General neutrino interactions

Notable features:

- Model-independent parametrisation of new physics
- Independent of the realisation of the weak gauge symmetry in the new physics sector
- Directly testable in low-energy experiments
- Can potentially discriminate Dirac from Majorana nature of neutrinos [Rosen PRL48 1982], [Rodejohann et al. 1702.05721]
- Scalar and tensor interactions may produce a large neutrino magnetic moment [Xu 1901.00482]

General neutrino interactions

Notable features:

- Model-independent parametrisation of new physics
- Independent of the realisation of the weak gauge symmetry in the new physics sector
- Directly testable in low-energy experiments
- Can potentially discriminate Dirac from Majorana nature of neutrinos [Rosen PRL48 1982], [Rodejohann et al. 1702.05721]
- Scalar and tensor interactions may produce a large neutrino magnetic moment [Xu 1901.00482]

FAQ: But neutrinos are in a weak doublet with charged leptons! Should not gauge invariance of new physics also introduce new interactions of charged leptons which are subject to very strong constraints?

## EFT *above* the weak scale SM(N)EFT

SMEFT expansion

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i \sum_{n \geq 5} rac{1}{\Lambda^{n-4}} C_i \mathcal{O}_i^{(n)}$$

 $\mathcal{O}_i^n$  composed of SM fields and respecting full SU(3)<sub>C</sub> × SU(2)<sub>L</sub> × U(1)<sub>Y</sub> gauge symmetry.

[Buchmüller et al. NPB268 1986]

- Cannot produce most scalar and tensor GNI up to dim-6
   We add light right-handed singlet neutrinos N
- In simplest scenario  $N_{\alpha}$  are Dirac partners of SM neutrinos

## EFT *above* the weak scale SM(N)EFT

Four-fermion SMEFT operators involving neutrinos:

| (Ē                             | $L)(\overline{L}L)$ and $(\overline{R}R)(\overline{R}R)$                                                         |                             | $(\overline{L}L)(\overline{R}R)$                                       |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|
| $\mathcal{O}_{II}$             | $(ar{l}_lpha\gamma_\mu l_eta)(ar{l}_\gamma\gamma^\mu l_\delta)$                                                  | $\mathcal{O}_{\mathit{le}}$ | $(ar{l}_lpha\gamma_\mu l_eta)(ar{e}_\gamma\gamma^\mu e_\delta)$        |
| $\mathcal{O}_{lq}^{(1)}$       | $(\overline{l}_{lpha}\gamma_{\mu}l_{eta})(\overline{\pmb{q}}_{\gamma}\gamma^{\mu}\pmb{q}_{\delta})$              | $\mathcal{O}_{Iu}$          | $(ar{l}_lpha\gamma_\mu l_eta)(\overline{u}_\gamma\gamma^\mu u_\delta)$ |
| $\mathcal{O}_{lq}^{(3)}$       | $(\overline{l}_{lpha}\gamma_{\mu}	au^{\prime}l_{eta})(\overline{q}_{\gamma}\gamma^{\mu}	au^{\prime}q_{\delta})$  | $\mathcal{O}_{\textit{Id}}$ | $(ar{l}_lpha\gamma_\mu l_eta)(\overline{d}_\gamma\gamma^\mu d_\delta)$ |
| $(\overline{R}$                | $L)(\overline{L}R)$ and $(\overline{R}L)(\overline{R}L)$                                                         |                             |                                                                        |
| $\mathcal{O}_{elqd}$           | $(\overline{e}_{lpha}l^{j}_{eta})(\overline{q}^{j}_{\gamma}d_{\delta})$                                          |                             |                                                                        |
| $\mathcal{O}_{eluq}$           | $(\overline{e}_{lpha} l^{j}_{eta}) \epsilon_{jk} (\overline{u}_{\gamma} q^{k}_{\delta})$                         |                             |                                                                        |
| $\mathcal{O}_{\textit{eluq}}'$ | $(\overline{e}_{lpha}\sigma_{\mu u}l^{j}_{eta})\epsilon_{jk}(\overline{u}_{\gamma}\sigma^{\mu u}q^{k}_{\delta})$ |                             |                                                                        |

[Grzadkowski et al. 1008.4884]

## EFT *above* the weak scale SM(N)EFT

Four-fermion operators involving SM fields and sterile neutrinos N:

| $(\overline{L}L)(\overline{L}L)$ and $(\overline{R}R)(\overline{R}R)$ |                                                                                                                             | $(\overline{L}L)(\overline{R}R)$ |                                                                                                                             |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| $\mathcal{O}_{Ne}$                                                    | $(\overline{\textit{N}}_{lpha}\gamma_{\mu}\textit{N}_{eta})(\overline{\textit{e}}_{\gamma}\gamma^{\mu}\textit{e}_{\delta})$ | $\mathcal{O}_{NI}$               | $(\overline{N}_{lpha}\gamma_{\mu}N_{eta})(\overline{l}_{\gamma}\gamma^{\mu}l_{\delta})$                                     |  |
| $\mathcal{O}_{Nu}$                                                    | $(\overline{\textit{N}}_{lpha}\gamma_{\mu}\textit{N}_{eta})(\overline{\textit{u}}_{\gamma}\gamma^{\mu}\textit{u}_{\delta})$ | $\mathcal{O}_{Nq}$               | $(\overline{\textit{N}}_{lpha}\gamma_{\mu}\textit{N}_{eta})(\overline{\textit{q}}_{\gamma}\gamma^{\mu}\textit{q}_{\delta})$ |  |
| $\mathcal{O}_{Nd}$                                                    | $(\overline{\textit{N}}_{lpha}\gamma_{\mu}\textit{N}_{eta})(\overline{\textit{d}}_{\gamma}\gamma^{\mu}\textit{d}_{\delta})$ |                                  |                                                                                                                             |  |
| $\mathcal{O}_{eNud}$                                                  | $(\overline{e}_{lpha}\gamma_{\mu}N_{eta})(\overline{u}_{\gamma}\gamma^{\mu}d_{\delta})$                                     |                                  |                                                                                                                             |  |
| $(\overline{R})$                                                      | $L)(\overline{R}L)$ and $(\overline{L}R)(\overline{L}R)$                                                                    |                                  |                                                                                                                             |  |
| $\mathcal{O}_{Nlel}$                                                  | $(\overline{\textit{N}}_{lpha}\textit{I}_{eta}^{j})\epsilon_{jk}(\overline{\textit{e}}_{\gamma}\textit{I}_{\delta}^{k})$    |                                  |                                                                                                                             |  |
| $\mathcal{O}_{\mathit{INqd}}$                                         | $(ar{l}^j_{lpha} N_eta) \epsilon_{jk} (ar{m{q}}^k_{\gamma} d_\delta)$                                                       |                                  |                                                                                                                             |  |
| $\mathcal{O}'_{\mathit{INqd}}$                                        | $(\overline{l}^{J}_{lpha}\sigma_{\mu u}N_{eta})\epsilon_{jk}(\overline{q}^{k}_{\gamma}\sigma^{\mu u}d_{\delta})$            |                                  |                                                                                                                             |  |
| $\mathcal{O}_{\mathit{INuq}}$                                         | $(\overline{l}'_{lpha} N_{eta})(\overline{u}_{\gamma} q^{j}_{\delta})$                                                      |                                  |                                                                                                                             |  |

#### [Liao et al. 1612.04527]

## EFT above *and* below the weak scale Matching

Find relations like

$$\epsilon_{R,e}^{lphaeta\gamma\delta} = -C_{le}^{lphaeta\gamma\delta}$$

SMEFT operators accompanied by charged-lepton interactions:

$$\mathcal{L} = rac{G_F}{\sqrt{2}} C_{le}^{lphaeta\gamma\delta} \left(\overline{e}_lpha (1-\gamma^5) e_eta
ight) \left(\overline{e}_\gamma\gamma^\mu (1+\gamma^5) e_\delta
ight)$$

Affects primarily (vector-like) NSI

## EFT above and below the weak scale $_{\rm Matching}$

Find relations like

$$\epsilon_{R,e}^{\alpha\beta\gamma\delta} = -C_{le}^{\alpha\beta\gamma\delta}$$

SMEFT operators accompanied by charged-lepton interactions:

$$\mathcal{L} = \frac{G_{\mathsf{F}}}{\sqrt{2}} C_{le}^{\alpha\beta\gamma\delta} \left( \overline{e}_{\alpha} (1 - \gamma^5) e_{\beta} \right) \left( \overline{e}_{\gamma} \gamma^{\mu} (1 + \gamma^5) e_{\delta} \right)$$

- Affects primarily (vector-like) NSI
- Not the case for operators involving N!
- Some operators involving N imply simultaneous NC and CC scalar and tensor interactions

[Jenkins et al. 1709.04486], [I.B. et al. 1905.08699]

based on [I.B., W. Rodejohann 1905.08699]

We consider single-parameter bounds on GNI from low-energy observables under the assumption they are induced by SM(N)EFT operators.

- Charged lepton flavour violation
- Exotic interactions in CEvNS and beta decay
- Flavour-conserving four-fermion interactions [Falkowski et al. 1706.03783]
- Reactor neutrino oscillation [Falkowski et al. 1901.04553]

We consider single-parameter bounds on GNI from low-energy observables under the assumption they are induced by SM(N)EFT operators.

- Charged lepton flavour violation
- Exotic interactions in  $CE\nu NS$  and beta decay
- Flavour-conserving four-fermion interactions [Falkowski et al. 1706.03783]
- Reactor neutrino oscillation [Falkowski et al. 1901.04553]

Disclaimer: When comparing those bounds to processes at the weak scale RG running should be taken into account. [González-Alonso et al. 1706.00410]

## 2.1 Charged lepton flavour violation

#### Charged lepton flavour violation



| $ \epsilon^{e\mu ee} $            | Direct                                                              | CLFV                                        | Operators                                |
|-----------------------------------|---------------------------------------------------------------------|---------------------------------------------|------------------------------------------|
| $\epsilon_{L,e} \ \epsilon_{R,e}$ | $\begin{array}{c} 1.3\cdot 10^{-1} \\ 1.3\cdot 10^{-1} \end{array}$ | $\frac{1.4\cdot 10^{-6}}{1.0\cdot 10^{-6}}$ | $\mathcal{O}_{II}$<br>$\mathcal{O}_{Ie}$ |

90% CL single-parameter bounds

[Barranco et al. 0711.0698], [Calibbi et al. 1709.00294], [SINDRUM Collaboration NPB299 (1988)],

#### Charged lepton flavour violation

|                        | μ                   | e                   |                                            |
|------------------------|---------------------|---------------------|--------------------------------------------|
|                        | Au                  | Au                  |                                            |
| $ \epsilon^{e\mu 11} $ | Direct              | CLFV                | Operators                                  |
| $\epsilon_{L,u}$       | $2.3 \cdot 10^{-2}$ | $3.3 \cdot 10^{-7}$ | $\mathcal{O}_{lq(1)}, \mathcal{O}_{lq(3)}$ |
| $\epsilon_{L,d}$       | $2.3 \cdot 10^{-2}$ | $3.3 \cdot 10^{-7}$ | $\mathcal{O}_{lq(1)}, \mathcal{O}_{lq(3)}$ |
| $\epsilon_{R,u}$       | $3.6 \cdot 10^{-2}$ | $6.0\cdot10^{-8}$   | $\mathcal{O}_{lu}$                         |
| $\epsilon_{R,d}$       | $3.6 \cdot 10^{-2}$ | $5.3 \cdot 10^{-8}$ | $\mathcal{O}_{\mathit{ld}}$                |
| $\epsilon_{L,ud}$      | $2.6 \cdot 10^{-2}$ | $6.6 \cdot 10^{-7}$ | $\mathcal{O}_{lq(3)}$                      |
| $Re(\epsilon_{S,ud})$  | $8 \cdot 10^{-3}$   | $3.0 \cdot 10^{-8}$ | $\mathcal{O}_{elqd}, \mathcal{O}_{eluq}$   |
| $Re(\epsilon_{P,ud})$  | $4 \cdot 10^{-4}$   | $3.0\cdot10^{-8}$   | $\mathcal{O}_{elqd}, \mathcal{O}_{eluq}$   |

90% CL single-parameter bounds

[Escrihuela et al. 1103.1366], [Biggio et al. 0907.0097], [Cirigliano et al. 1303.6953], [SINDRUM II Collaboration Eur. Phys. J. C47 (2006)]

Other processes:  $\mu \rightarrow e\gamma$ ,  $\tau \rightarrow \mu\mu\mu$ ,...

Charged lepton flavour violation

Conclusion: In SMEFT d = 6 framework, all the lepton flavour changing GNI are constrained at least to

• 
$$\epsilon \sim 10^{-4}$$
 for  $\tau 
ightarrow \mu$ ,  $\tau 
ightarrow e$ 

• 
$$\epsilon \sim 10^{-6}$$
 for  $\mu 
ightarrow e$ 

- Much below current neutrino experiment sensitivities
- If still detected would imply more exotic new physics that invalidate the SMEFT expansion (light mediators, non-linearly realised gauge symmetry, ...)
- Operators involving N not affected by those bounds and more attractive from heavy new physics perspective

# 2.2 Correlations of exotic interactions in CE $\nu$ NS and beta decay

Correlations of exotic interactions in  $\mathsf{CE}\nu\mathsf{NS}$  and beta decay



$$\begin{aligned} \epsilon_{S,u}^{\text{ee11}} &= -\epsilon_{P,u}^{\text{ee11}} = -V_{ud} (C_{lNuq}^{\text{ee11}})^* \\ \epsilon_{S,d}^{\text{ee11}} &= \epsilon_{P,d}^{\text{ee11}} = -(C_{lNqd}^{\text{ee11}})^* \\ \epsilon_{T,d}^{\text{ee11}} &= -(C_{lNqd}^{\prime \text{ee11}})^* \end{aligned}$$

Correlations of exotic interactions in  $\mathsf{CE}\nu\mathsf{NS}$  and beta decay





$$\begin{aligned} \epsilon_{S,u}^{\text{eell}} &= -\epsilon_{P,u}^{\text{eell}} = -V_{ud}(C_{INuq}^{\text{eell}})^* \\ \epsilon_{S,d}^{\text{eell}} &= \epsilon_{P,d}^{\text{eell}} = -(C_{INqd}^{\text{eell}})^* \\ \epsilon_{T,d}^{\text{eell}} &= -(C_{INqd}^{'\text{eell}})^* \end{aligned}$$

$$\begin{split} \widetilde{\epsilon}_{S,ud}^{\text{eell}} &= \frac{1}{V_{ud}} \left( V_{uj} C_{INqd}^{\text{eejl}} - C_{INuq}^{\text{eell}} \right) \\ \widetilde{\epsilon}_{P,ud}^{\text{eell}} &= -\frac{1}{V_{ud}} \left( V_{uj} C_{INqd}^{\text{eejl}} + C_{INuq}^{\text{eell}} \right) \\ \widetilde{\epsilon}_{T,ud}^{\text{eell}} &= \frac{V_{uj}}{V_{ud}} C_{INqd}^{\prime\alpha\betaj\delta} \end{split}$$

Correlations of exotic interactions in  $CE\nu NS$  and beta decay

Scenario 1: 
$$C_{INuq}^{ee11}(\overline{l}_{e}^{j}N_{e})(\overline{u}_{R}q_{1}^{j})$$

- ► COHERENT: |\varepsilon\_{P,u}^{ee11}| ≤ 1.5 \cdot 10^{-2} ⇒ |C\_{INuq}| ≤ 1.5 \cdot 10^{-2}
   ► Pion decay: |\varepsilon\_{P,ud}^{ee11}| ≤ 4.0 \cdot 10^{-4} ⇒ |C\_{INuq}| ≤ 3.9 \cdot 10^{-4}

Correlations of exotic interactions in  $\mathsf{CE}\nu\mathsf{NS}$  and beta decay

Scenario 1: 
$$C_{INuq}^{ee11}(\overline{l}_{e}^{j}N_{e})(\overline{u}_{R}q_{1}^{j})$$

- ► COHERENT:  $|\epsilon_{P,u}^{\text{ee11}}| \le 1.5 \cdot 10^{-2} \Rightarrow |C_{INuq}| \le 1.5 \cdot 10^{-2}$
- ▶ Pion decay:  $|\tilde{\epsilon}_{P,ud}^{\text{ree11}}| \le 4.0 \cdot 10^{-4} \Rightarrow |C_{INuq}| \le 3.9 \cdot 10^{-4}$

Scenario 2: 
$$C_{INqd}^{\prime ee11}(\bar{l}_e^j \sigma^{\mu\nu} N_e) \epsilon_{jk}(\bar{q}_1^k \sigma_{\mu\nu} d_R)$$

- ► COHERENT:  $|\text{Re}(\epsilon_{T,d}^{\text{ee11}})| \le 9.8 \cdot 10^{-2} \Rightarrow |C_{INqd}^{'\text{ee11}}| \le 9.8 \cdot 10^{-2}$
- ► Beta decays:  $|\tilde{\epsilon}_{T,ud}^{ee11}| \le 2.4 \cdot 10^{-2} \Rightarrow |C_{INqd}^{'ee11}| \le 2.4 \cdot 10^{-2}$

(at 90% CL) [Aristizabal Sierra et al. 1806.07424], [Cirigliano et al. 1303.6953], [González-Alonso et al. 1803.08732]

## 3. Leptoquarks as UV completions

### Leptoquarks as UV completions

Leptoquarks can accomodate B physics anomalies, radiative neutrino masses, and naturally appear in GUT models

Example:



## Leptoquarks as UV completions

 Leptoquarks can accomodate B physics anomalies, radiative neutrino masses, and naturally appear in GUT models

Example:



$$S_1(3,1,1/3)$$
  $(Q = I_3 + Y)$   
 $R'_2(3,2,1/6)$ 

▶ Generates O<sub>INqd</sub> and O'<sub>INqd</sub> above the weak scale (m<sub>W</sub> ≪ m<sub>S1</sub>)
 ▶ Generates NC and CC scalar and tensor GNI below the weak scale

## Conclusions

- From SMEFT perspective, sizable (vector like) NSI are disfavoured due to strong constraints from charged lepton interactions, in particular in the flavour-violating case.
- Detectable (CEνNS, β) scalar and tensor type neutrino interactions on the other hand can be generated in SMEFT extended by right-handed neutrinos.
- ► Viable UV completions by leptoquarks can be constructed.

## Conclusions

- From SMEFT perspective, sizable (vector like) NSI are disfavoured due to strong constraints from charged lepton interactions, in particular in the flavour-violating case.
- Detectable (CEνNS, β) scalar and tensor type neutrino interactions on the other hand can be generated in SMEFT extended by right-handed neutrinos.
- ► Viable UV completions by leptoquarks can be constructed.
- Discussion has concentrated on low-scale physics (< 2 GeV). To connect to high-energy physics a calculation of the RG running of GNI is required.
- GNI should be included in BSM surveys of neutrino experiments.

## Thank you!

## Backup slides

|                                                      | e                                                                                                         | u                                                                                                              | d                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $-\epsilon_{L,f}^{lphaeta\gamma\delta}$              | $C_{II}^{\alpha\beta\gamma\delta}+C_{II}^{\gamma\delta\alpha\beta}$                                       | $V_{\gamma\mu}V_{\nu\delta}^{\dagger}\left(C_{lq(1)}^{\alpha\beta\mu\nu}+C_{lq(3)}^{\alpha\beta\mu\nu}\right)$ | $C_{lq(1)}^{lphaeta\gamma\delta}-C_{lq(3)}^{lphaeta\gamma\delta}$ |
| $- \tilde{\epsilon}^{\alpha\beta\gamma\delta}_{L,f}$ | $C_{NI}^{lphaeta\gamma\delta}$                                                                            | $V_{\gamma\mu}V^{\dagger}_{ u\delta}C^{lphaeta\mu u}_{Nq}$                                                     | $C_{Nq}^{lphaeta\gamma\delta}$                                    |
| $-\epsilon_{R,f}^{\alpha\beta\gamma\delta}$          | $C_{le}^{lphaeta\gamma\delta}$                                                                            | $C_{lu}^{lphaeta\gamma\delta}$                                                                                 | $C_{ld}^{lphaeta\gamma\delta}$                                    |
| $- \tilde{\epsilon}^{\alpha\beta\gamma\delta}_{R,f}$ | $C_{Ne}^{lphaeta\gamma\delta}$                                                                            | $C_{Nu}^{lphaeta\gamma\delta}$                                                                                 | $C_{Nd}^{lphaeta\gamma\delta}$                                    |
| $-\epsilon_{{\cal S},f}^{\alpha\beta\gamma\delta}$   | $rac{1}{2}C_{\textit{Nlel}}^{lphaeta\gamma\delta}+rac{1}{4}C_{\textit{Nlel}}^{\gammaetalpha\delta}$     | $V_{\gamma  u} (C^{eta lpha \delta  u}_{INuq})^{*}$                                                            | $(C^{\beta\alpha\delta\gamma}_{INqd})^*$                          |
| $-\epsilon_{P,f}^{\alpha\beta\gamma\delta}$          | $rac{1}{2} C_{\textit{Nlel}}^{lphaeta\gamma\delta} + rac{1}{4} C_{\textit{Nlel}}^{\gammaetalpha\delta}$ | $-V_{\gamma\nu}(C^{\betalpha\delta u}_{INuq})^*$                                                               | $(C^{\beta\alpha\delta\gamma}_{lNqd})^*$                          |
| $-\epsilon^{lphaeta\gamma\delta}_{T,f}$              | $\frac{1}{8}C_{Nlel}^{\gamma\betalpha\delta}$                                                             | 0                                                                                                              | $(C_{INqd}^{\prime\beta\alpha\delta\gamma})^{*}$                  |

| $-\epsilon^{lphaeta\gamma\delta}_{L,ud}$              | $rac{V_{\gamma u}}{V_{\gamma\delta}} 2C^{lphaeta u\delta}_{lq(3)}$                                                       | $-\widetilde{\epsilon}_{L,\mathit{ud}}^{lphaeta\gamma\delta}$ | 0                                                                                                                                                  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $-\epsilon_{R,ud}^{lphaeta\gamma\delta}$              | 0                                                                                                                         | $-\widetilde{\epsilon}_{R,\mathit{ud}}^{lphaeta\gamma\delta}$ | $rac{1}{V_{\gamma\delta}} {\cal C}_{eNud}^{lphaeta\gamma\delta}$                                                                                  |
| $-\epsilon^{lphaeta\gamma\delta}_{{\cal S},{\it ud}}$ | $rac{1}{V_{\gamma\delta}}\left(V_{\gamma u}C_{elqd}^{lphaeta u\delta}+C_{eluq}^{lphaeta\gamma\delta} ight)$              | $-\widetilde{\epsilon}^{lphaeta\gamma\delta}_{S,\mathit{ud}}$ | $rac{1}{V_{\gamma\delta}}\left(\mathcal{C}_{\mathit{INuq}}^{lphaeta\gamma\delta}-V_{\gamma u}\mathcal{C}_{\mathit{INqd}}^{lphaeta u\delta} ight)$ |
| $-\epsilon_{P,ud}^{lphaeta\gamma\delta}$              | $\frac{1}{V_{\gamma\delta}}\left(-V_{\gamma\nu}C_{elqd}^{\alpha\beta\nu\delta}+C_{eluq}^{\alpha\beta\gamma\delta}\right)$ | $-\widetilde{\epsilon}_{P,\mathit{ud}}^{lphaeta\gamma\delta}$ | $rac{1}{V_{\gamma\delta}}\left(\mathcal{C}_{\mathit{INuq}}^{lphaeta\gamma\delta}+V_{\gamma u}\mathcal{C}_{\mathit{INqd}}^{lphaeta u\delta} ight)$ |
| $-\epsilon^{lphaeta\gamma\delta}_{T,\mathit{ud}}$     | $rac{1}{V_{\gamma\delta}} C_{eluq}^{\primelphaeta\gamma\delta}$                                                          | $-\widetilde{\epsilon}^{lphaeta\gamma\delta}_{T,\mathit{ud}}$ | $-rac{V_{\gamma u}}{V_{\gamma\delta}}C_{INqd}^{\primelphaeta u\delta}$                                                                            |

|                                              | Dirac | Majorana | CP-invariant | Majorana +<br>CP-invariant |
|----------------------------------------------|-------|----------|--------------|----------------------------|
| All indices<br>free                          | 810   | 432      | 423          | 225                        |
| $\gamma = \delta = $ fixed<br>Flavour-       | 90    | 48       | 51           | 27                         |
| diagonal and<br>$\gamma = \delta =$<br>fixed | 30    | 18       | 21           | 12                         |

Number of free parameters in the general neutral-current Lagrangian.

### General neutrino interactions

Remark on Dirac or Majorana nature

GNI NC Lagrangian (in flavor basis)

$$\mathcal{L}_{NC}^{\text{GNI}} = -\frac{G_{\text{F}}}{\sqrt{2}} \sum_{\alpha,\beta} \sum_{j=1}^{10} \left( \epsilon^{j,\psi} \right)_{\alpha\beta} \left( \overline{\nu}^{\alpha} \mathcal{O}_{j} \nu^{\beta} \right) \left( \overline{\psi} \mathcal{O}_{j}^{\prime} \psi \right)$$

▶ In Dirac case (3 flavors), realness of *L* implies:

$$\begin{split} \epsilon^{L}_{\alpha\beta} &= \epsilon^{L*}_{\beta\alpha} \,, \qquad \widetilde{\epsilon}^{L}_{\alpha\beta} = \widetilde{\epsilon}^{L*}_{\beta\alpha} \,, \qquad \epsilon^{R}_{\alpha\beta} = \epsilon^{R*}_{\beta\alpha} \,, \qquad \widetilde{\epsilon}^{R}_{\alpha\beta} = \widetilde{\epsilon}^{R*}_{\beta\alpha} \,, \\ \epsilon^{S}_{\alpha\beta} &= \widetilde{\epsilon}^{S*}_{\beta\alpha} \,, \qquad \epsilon^{P}_{\alpha\beta} = -\widetilde{\epsilon}^{P*}_{\beta\alpha} \,, \qquad \epsilon^{T}_{\alpha\beta} = \widetilde{\epsilon}^{T*}_{\beta\alpha} \,, \end{split}$$

which amounts to 90 free parameters.

## General neutrino interactions

Remark on Dirac or Majorana nature

GNI NC Lagrangian (in flavor basis)

$$\mathcal{L}_{NC}^{\mathsf{GNI}} = -\frac{G_{\mathsf{F}}}{\sqrt{2}} \sum_{\alpha,\beta} \sum_{j=1}^{10} \left( \epsilon^{j,\psi} \right)_{\alpha\beta} \left( \overline{\nu}^{\alpha} \mathcal{O}_{j} \nu^{\beta} \right) \left( \overline{\psi} \mathcal{O}_{j}^{\prime} \psi \right)$$

▶ In Dirac case (3 flavors), realness of *L* implies:

$$\begin{split} \epsilon^{L}_{\alpha\beta} &= \epsilon^{L*}_{\beta\alpha} \,, \qquad \widetilde{\epsilon}^{L}_{\alpha\beta} = \widetilde{\epsilon}^{L*}_{\beta\alpha} \,, \qquad \epsilon^{R}_{\alpha\beta} = \epsilon^{R*}_{\beta\alpha} \,, \qquad \widetilde{\epsilon}^{R}_{\alpha\beta} = \widetilde{\epsilon}^{R*}_{\beta\alpha} \,, \\ \epsilon^{S}_{\alpha\beta} &= \widetilde{\epsilon}^{S*}_{\beta\alpha} \,, \qquad \epsilon^{P}_{\alpha\beta} = -\widetilde{\epsilon}^{P*}_{\beta\alpha} \,, \qquad \epsilon^{T}_{\alpha\beta} = \widetilde{\epsilon}^{T*}_{\beta\alpha} \,, \end{split}$$

which amounts to 90 free parameters.

In Majorana case one finds additionally:

$$\epsilon^{L/R}_{\alpha\beta} = -\widetilde{\epsilon}^{L/R}_{\beta\alpha}\,,\quad \epsilon^{S/P}_{\alpha\beta} = \epsilon^{S/P}_{\beta\alpha}\,,\quad \epsilon^{T}_{\alpha\beta} = -\epsilon^{T}_{\beta\alpha}\,.$$

which reduces the set to 48 free parameters.