

ANNIE

WIN conference 06/03/2019-06/08/2019

Michael Nieslony on behalf of the ANNIE collaboration JOHANNES GUTENBERG UNIVERSITÄT MAINZ

ANNIE

The Accelerator Neutrino Neutron Interaction Experiment

- **Gd-loaded water Cherenkov detector** placed 100m downstream from target of the Booster Neutrino Beam (BNB) at Fermilab
- measurement: final state neutron multiplicity & CCQE cross-section in water
- test of **new technologies** in the fields of fast photosensors and detection media

Fermilab Accelerator Complex 2012

ANNIE - Location

Physics motivation

- knowledge of cross-section important for long-baseline neutrino oscillation studies
- distinguishing between elastic & inelastic processes is important for correct energy reconstruction (minimize bias)
- neutron presence indicative of inelastic process \rightarrow measurement of multiplicity

Physics motivation

20 cm x 20 cm imaging detector with intrinsic position resolution (mm-cm scale)

microchannel plate structure with resistive & emissive coating microstrip anode readout

LAPPD: Large Area Picosecond Photo Detector

fast detection capabilities (time resolution ~60 ps)

- 25 ps single-PE differential resolution \rightarrow **5 mm horizontal** position resolution
- < 1 cm vertical position resolution (charge centroid)

ANNIE LAPPDs

ANNIE

Importance for reconstruction capabilities

Both angular and spatial resolution profit substantially from using **5 LAPPDs**:

- 68th percentile vertex resolution: **38 cm** → **12 cm** (factor 3 improvement)
- 68th percentile angular resolution: $11^{\circ} \rightarrow 5^{\circ}$ (factor 2 improvement)

Timeline

Phase I - Backgrounds measurement

Phase II measurement: v_{μ} CCQE event

- 1. a) muon gets created in CC-interactionb) vertex reconstruction by LAPPDsc) muon momentum reconstructed in MRD
- 2. neutron(s) travel, scatter around the detector
- 3. neutron capture 1, detection by PMTs
- 4. neutron capture 2, detection by PMTs

side view

MRD

- Subdetector consisting of sandwiched scintillator paddles and 2" iron layers
 - 6 horizontal layers (156 paddles)
 - 5 vertical layers (154 paddles)
- inherited from the SciBooNE experiment
- fully refurbished & operational
- capable of muon direction and energy reconstruction

954

reconstruction example (simulation)

plot by Marcus O'Flaherty (University of Sheffield)

Vertex & energy reconstruction

plots by Jingbo Wang (UC Davis) & Evangelia Drakopoulou (University of Edinborough)

Detector construction - current events

mounting PMTs on side panels

mounting top PMTs

teflon wrapping structure

bottom PMTs mounted

PMT characterisation

+ waterproofing

Detector construction - current events

Current status of other subsystems SC WERTHING !! 3/2016 Side panels partly tank deployment at mounted on the ANNIE hall Inner Structure Water filtration system MRD fully refurbished ready for water fill & operational planned ~ June 2019

Detector calibration

PMT timing and single-p.e. calibration: LED fibers with attached diffuser tip

LAPPD timing calibration: 405nm picosecond laser + diffuser ball calibration strategy

Neutron calibration: AmBe source, tag neutron events by using coincidentally emitted gamma 100 μ s detection window 100 μ Ci source \rightarrow 100 tagged neutrons/second (<1% pile up)

$$\alpha + {}^{9}Be \rightarrow {}^{13}C^{(*)} \rightarrow {}^{12}C + \gamma(4.4MeV) + n$$

pictures & design by Robert Svoboda, UC Davis

Timeline - Next steps

Phase II - LAPPD Upgrade

Additional LAPPD reconstruction possibilities

- additional LAPPD coverage would probably enable ANNIE to do topological reconstruction via time-reversal imaging techniques
- multi-track event reconstruction would broaden ANNIE's physics program

Phase III - Water-based LS

micelle structure

- Best of both worlds:
 - Directionality & kinematic reconstruction (Cherenkov)
 - High light yield & calorimetric reconstruction (scintillation)
 - High transparency + low cost of water
- Tunable liquid scintillator concentration, isotope loading
- ullet Charged particle detection below Cherenkov threshold ightarrow enables detection of protons
- Need surfactant to bind liquid scintillator oil in water

Future detectors

ANNIE → **WATCHMAN** → **Theia**

Summary

- **ANNIE** is a **Gd-loaded water Cherenkov detector** (26 tons mass) located in the BNB at Fermilab
- Testbed for **new technologies**:
 - LAPPDs (phase II)
 - First Gd-loaded water Cherenkov detector in a beam (phase II)
 - Water-based Liquid Scintillators (phase III)
- Last preparations for phase II taken at the moment:
 - Mounting the last PMTs onto the Inner Structure
 - Transport and installation of tank into ANNIE hall
 - Finalization of LAPPD deployment structure
 - Development & integration of calibration systems
- Commissioning and first physics data starting mid June 2019

- Jannie
- Brookhaven National Laboratory
- Fermi National Accelerator Laboratory
- Iowa State University
- Johannes Gutenberg University Mainz
- Lawrence Livermore National Laboratory
- Ohio State University

- Queen Mary University
- The University of Hamburg
- The University of Sheffield
- University of California, Davis
- University of California, Irvine
- University of Chicago
- University of Edinburgh

THANK YOU! ... ANY QUESTIONS?

Backup - BNB

Backup - Neutron production

Backup - Inelastic processes

 \rightarrow move to event topologies (1 μ + 1/0 π + Xn + Yp) instead of MC generator-based categories

- neutrons as possible signs of inelasticity
- final state **neutron multiplicity** measurement \rightarrow ANNIE

Backup - Inelastic processes

dotted: multi-nucleon contributions to energy reconstruction bias

Backup - Neutron detection efficiency

 Neutron detection efficiency as a function of the interaction position in X (the transverse direction) and Z (the beam direction)

- The detector is large enough to fully contain neutrons
- Requested PMT coverage is sufficient to efficiently detect neutrons.

Backup - DSNB & Proton decay

improve signal-to-background discrimination by better models of atmospheric neutron yield

Backup - Super-K neutron multiplicity

- Super-K measurement of neutron multiplicity only as a function of the visible energy, since precise information about the initial particle conditions are missing
- ANNIE will provide a complimentary measurement since the beam properties like neutrino energy, angle, flavor and the interaction type are much better known

Backup - PMT types

Origin	LBNE R&D	LUX	Watchboy	New	WATCHMAN
Туре	D784KFLB	r7081	r7081	r5912	r7081
"Name"	LBNE (LB)	LUX (LX)	Watchboy (WB)	New (HM)	Watchman (WM)
Size	11"	10"	10"	8"	10"
HQE?	Yes?	No	No	Yes	Yes
Quantity	22	20	45	40	10

Backup - DAQ

- ANNIE will have a **dual readout design** to accommodate deep-buffered PMT signals (neutron capture) alongside ultra-fast LAPPD digitization
- PMTs: VME-based data acquisition system (500 MHz), global trigger for all PMTs
- LAPPDs: ACDC card hosting 5 PSEC sampling ASICs with multi-channel readout (10 GHz), independent triggers for every single LAPPD
- DAQ processes interfaced by **ANNIE central card** (8 nodes)

photo: Jonathan Eisch, Iowa State University

test setup for communication of ANNIE central card & ACDC card

Backup - LAPPDs

A. Lyashenko et. al, "Performance of Large Area Picosecond Photo-Detectors (LAPPD)"

plot by M. Wetstein

Backup - LAPPDs

Dark Count Rate:

Backup - Gen-II LAPPDs

- new method developed at University of Chicago for photocathode production, eliminate need for vacuum transfer procedure
- use ceramic body with capacitive coupling to external anode
- enabling faster production cycles for LAPPDs, compatible with high rate applications

Next generation prototype

Next generation anode readout

Backup - Gd compatibility tests

- Gd₂(SO₄)₃ not corrosive, but reactions with different materials possible
- need to make sure that Gadolinium loaded water does not degrade tank materials
- at the same time tank materials should not degrade water transparency
 - ▶ all materials put in 1% Gd solution
 - reasonably low absorption lengths after an extended period of time required for all materials

materials in Gd-loaded water

Backup - Water filtration

- combination of different subsystems to obtain filtered Gd-loaded and ultrapure water
 - **pumps:** transport water
 - **UV lamps**: microbes, biological contamination
 - ► TOC lamp: plastic (carbon) compounds
 - microfilters: bacteria, sediments, microbes
 (5 μm & 0.2 μm version)
 - ultrafilters: iron removal (30nm pore size)
 - anion resin: nitrates and TOC lamp products

Vincent Fischer, UC Davis

Backup - Gd sulfate vs. chloride

~52 kg of sulfate required for one detector loading

compatibility:

- known problematic materials: nylon, copper, steel
- known "safe" materials: PTFE, polypropylene, acrylic, 304/316 stainless steel