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 Coherent elastic neutrino nucleus scattering (CEνNS)

● Freedman (1974): weak neutral current, flavor-blind!

Promising new neutrino channel, but ...
● COHERENT (2017): first detection with π-DAR source

So far consistent with SM!
● CONUS (2018): start of operation and first indication

The channel:
● Observable = nuclear recoil energy TN

● Coherence = enhancement ~ N2

● Hard to detect: 
● TN~N-1 

● quenching

For Germanium:
Emax <50 MeV
Full coherence 
regime< 30MeV

Cross section σ vs. nuclear recoil TN 

[Lindner, Maneschg, TR]
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Two complementary paths

Π-decay at rest neutrinos:

● Pulsed GeV-proton beam hitting heavy         
  target → multiple ν-flavors

● Time correlation between prompt and          
  delayed events → strong background            
  suppression 103 to 104

● Higher ν-energies → larger x-section, but      
  lack of coherence & neutrino-induced           
  neutrons (NINs)

Reactor antineutrinos:

● β-decays in nuclear reaction chains          
 → only electron antineutrinos νe  

● Strongest neutrino source on earth:    
~1020  νe’s/GW/s

● ν-energies up to 10 MeV 

→ fully coherent regime!

● Safety restrictions close to core

 → no cryogenic liquids

CEνNS at reactor site as high statistic NS at reactor site as high statistic 
baseline for multi-target and 

multi-flavored beam investigations!

→ COHERENT       
    experiment

→ CONUS

[Kerman et al., 2016] [Maneschg, 2017]
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Experimental requirements at reactor site

Several obstacles to overcome:

1) Beat 1/R2 factor 

→ strong (= commercial) power plant but    
safety restrictions inside building

2) Compensate quenching (Erecoil → Eion)

→ lowest possible detection threshold

3) Low background outside lab conditions

→ moderate overburden & limited      
       shielding capacities  

Goal: Detecting CEνNS with high accuracy! 

increase CEνNS 
signal Reduce 

background 
level

lower 
detection 
threshold

[Scholz et al. 2016]

[Lindner, Maneschg, TR]
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The CONUS collaboration

Collaboration:

A. Bonhomme, C. Buck, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink,               
T. Schierhuber, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Scientific cooperation:

M. Reginatto, M. Zboril, A. Zimbal - Physikalisch-Technische Bundesanstalt (PTB), Braunschweig



WIN2019, Bari, Italy 6T. Rink

Nuclear power plant in Brokdorf

Alois Staudacher [CC BY-SA 3.0 
(http://creativecommons.org/licenses/by-sa/3.0/)
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Antineutrinos from nuclear reactions

Antineutrino emission in β-decays of fuel reaction chain

● Mainly from 235U, 238U, 239Pu, 241Pu  >99%→  

●  ~ 6-7 ν’s/fission up to 10MeVs/fission up to 10MeV

● Spectral distribution

Knowledge about a reactors emission spectra

● Summation methods   
→ summing β-branches of all fission fragments

● Conversion methods
→ measure β-decay electron spectrum 
    and convert into ν spectrum

● Direct measurements (IBD)  

isotope Fission 
fraction 
α (PWR)PWR))

E/fission [MeV] 
[Ma et al 2013]

235U 57% 202.36 ± 0.26

238U 8% 205.99 ± 0.52

239Pu 30% 211.12 ± 0.34

241Pu 5% 214.26 ± 0.33

Reality much more complicated...
● Varying reactor power →  P(t)
● Changing fuel composition → α(t) 

Virtue out of necessity:
CEνNS as flux measuring tool 

[Haag et al., 2013 
P. Huber, 2011; 
Mueller et al., 2011]

[e.g. Kopeikin, Mikaelyan, Sinev, 2004]

[An et al., 2017]
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CONUS shield design

● Onion-like structure with active and     
  passive components

● Pb + borated polyethylene

→ γ and n-capture

● Active muon-veto systeme

→ ~99% efficiency
● Very compact design

→ V=1.65 m3  & m=11 t

Suppression 
factor: ~104

Background level [0.5, 1.0] keV:
~10 counts/kg/day/keV

Active 
muon 
veto

lead
Borated 
polyethylene

steel
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CONUS detectors

CONUS 1-4:

● Detectors designed for shield dimensions   

● P-type point contact HPGe

● crystal/active mass: 4.0/3.74 kg

● Pulser resolution ≤85eV

           ≤300eV noise threshold  

● Electrical PT cryocoolers

● Very low background design

 novel development!

Stability

Bkg level

Linearity

detector Pulser 
FWHM 
[eV

ee
]

C1 74 ± 1

C2 75 ± 1

C3 59 ± 1

C4 74 ± 1

Detector performance 
under lab conditions
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Operating in an “unusual” environment

Understanding the experimental site:

● Close to a huge gamma and neutron source

→ correlation with reactor power

● Low bkg experiment encapsulated by large amounts  
   of usual concrete → radon emanation from walls

● Usual environmental radioactivity → wipe tests 

like CEνNS!

Signal expectation
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Power-correlated reactor radiation 

→ Dedicated investigation of reactor-correlated           
     background contributions:  arXiv:1903.09269

• Simulation and validation of neutrons emitted from          
  reactor core (at CONUS site) → thermal neutron counter

 

• γ-radiation (6.1MeV from 16N)

 

Reactor neutrons 
negligible at exp. site! 

Correlation to 
incore and excore 
instrumentation

Unshielded 
HPGe detector
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Reactor-correlated neutrons at site

Results of neutron investigation:

1) Neutron fluence ~factor 2 lower than on earth surface

2) Highly thermalized neutron field

3) Inhomogeneity in thermal neutron fluence ~20%

4) MC simulations in front of room similar to data, same peak energy  

Max. En 

< 1MeV
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Latest result of CONUS analysis

First data set: 1 month OFF, 6 months ON

● So far rate-only analysis

● Statistically limited by reactor OFF time

● With realistic quenching same order of                
  magnitude as prediction

Analysis [300; 550] eVee
counts

R)eactor OFF (PWR)65 kg*d) 354 ± 19

R)eactor ON (PWR)417 kg*d) 2405 ± 49

R)esidual ON-OFF 133 ± 130

Preliminary result (only 3 detectors)

quenching 0.15 0.175 0.2 0.225 0.25

events 7 19 41 74 117

Prediction:

Shape analysis: ongoing
● Data selection for clean detection 

thresholds
● Strong dependence on quenching!
● Systematics:

➢ Energy scale stability
➢ Detection efficiencies
➢ Background stability
➢ Neutrino emission and flux 

prediction



WIN2019, Bari, Italy 14T. Rink

New physics reach

Weinberg angle at low Q:

Neutrino magnetic moment:

● Loop induced effect → small!

● Model-dependent expectations

→ Dirac vs. Majorana

● Low-threshold detectors needed!

 

Light mediator searches:

● Light scalar coupling to neutrinos

● New chirality-flipping channel: 

Spectral distortion 
for small recoil 
energies! 

[Farzan et al., 2018]



WIN2019, Bari, Italy 15T. Rink

Further New Physics prospects

Non-standard neutrino interactions

●  ε partially degenerate → different isotopes

●  If sub-percent sensitivity 

  → probing TeV-scale physics!

→ further: scalar-/tensor-NSI, GNI 

Dark matter and supernova physics

●  Neutrino floor = CEνNS of solar neutrinos 

●  Same detector response

   → today’s signal, tomorrow’s background

●  CEνNS plays important role in SN evolution

eV-sterile neutrino & precision flux measurement

●  A new data point at 17m from PWR

●  Neutrino monitoring of fuel evolution

Neutron form factor  

Nuclear safeguarding

[P.Huber, 2015]

[Lindner, Rodejohann, Xu, 2017]

[Barranco et al., 2005] 

[Bischer, Rodejohann, 2019 ]
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Conclusion

● CEνNS opens era of high statistics neutrino physics 

→ beams and reactors go hand in hand!

● CONUS = low-E HPGe detectors in sophisticated 

 shield close to 3.9 GWth reactor core of NPP Brokdorf (Germany)

→ more background data this June!

● Extensive work to understand experimental environment 

→ Reactor-correlated neutrons negligible inside shield! 

●  CONUS is operating stable so far: preliminary rate analysis, limited by

  statistics 

→ 1σ excess in ROI, ongoing shape analysis

● Planned CONUS upgrades: systematics, shape information, PSD, …

● Various possibilities for BSM investigations as well as practical application! 
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Backup
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Neutrino sources in comparison
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Boon and bane of cosmogenic activated lines

Cosmogenic activated lines used for energy calibration!

●  Originating from above-ground storage during manufacturing

●  Well known literature for K-/L-shell peaks as well as their ratio

● Pulse generator scans guarantee linearity of energy calibration

BUT: decaying background contribution!
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Background comparison

Spectrum of 
unshielded CONRAD 
detector at site
→ dominated by 
natural radioactivity

Spectrum of CONUS detector at site 

Only factor ~4 
difference!

Almost identical shape!

No active muon veto
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Neutrino magnetic moment & millicharge
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Light scalar mediators: advantage of CONUS
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