

CONUS

Detecting elastic neutrino nucleus scattering in the fully coherent regime with reactor neutrinos

HEIDELBERG

Thomas Rink^{1,2} (on behalf of the CONUS collaboration)

¹Max-Planck-Institut für Kernphysik (MPIK), Heidelberg ²RTG "Physics beyond the Standard model", Heidelberg University

The 27th International Workshop on Weak Interactions and Neutrinos, Bari (Italy) June 6th, 2019

Coherent elastic neutrino nucleus scattering (CEvNS)

Freedman (1974): weak neutral current, flavor-blind!

Promising new neutrino channel, but ...

- COHERENT (2017): first detection with π -DAR source
 - So far consistent with SM!
- CONUS (2018): start of operation and first indication

The channel:

• Observable = nuclear recoil energy T_{N}

$$\frac{d\sigma_{\nu A}}{dT_{\rm N}} \simeq \frac{G_F^2}{8\pi} \left[Z \left(1 - 4\sin^2(\theta_{\rm W}) \right) - N \right]^2 \left[1 - \frac{T_{\rm N}}{4E_{\nu}^2} \right] \cdot F^2(T_{\rm N})$$

• Coherence = enhancement $\sim N^2$

- Hard to detect:
 - T_N~N⁻¹
 quenching

For Germanium: E_{max} <50 MeV Full coherence regime< 30MeV

Cross section σ vs. nuclear recoil T_N

T. Rink

Two complementary paths

Π-decay at rest neutrinos:

- Pulsed GeV-proton beam hitting heavy target \rightarrow multiple v-flavors
- Time correlation between prompt and delayed events \rightarrow strong background suppression 10^3 to 10^4
- Higher v-energies → larger x-section, but lack of coherence & neutrino-induced neutrons (NINs) → COHERENT

Reactor antineutrinos:

- β -decays in nuclear reaction chains \rightarrow only electron antineutrinos $\overline{\nu}_e$
- Strongest neutrino source on earth: $\sim 10^{20} \ \overline{\nu}_{e}$'s/GW/s
- ν-energies up to 10 MeV
 - \rightarrow fully coherent regime!
- Safety restrictions close to core
 - \rightarrow no cryogenic liquids

T. Rink

Experimental requirements at reactor site

Goal: Detecting CEvNS with high accuracy!

Several obstacles to overcome:

1) Beat 1/R² factor

T. Rink

- → strong (= commercial) power plant but safety restrictions inside building
- 2) Compensate quenching ($E_{recoil} \rightarrow E_{ion}$)
 - \rightarrow lowest possible detection threshold
- 3) Low background outside lab conditions
 - → moderate overburden & limited shielding capacities

The CONUS collaboration

Collaboration:

A. Bonhomme, C. Buck, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, T. Schierhuber, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Scientific cooperation:

M. Reginatto, M. Zboril, A. Zimbal - Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

T. Rink

Nuclear power plant in Brokdorf

~13m

Overburden at <u>shallow</u> depth:

10-45 m w.e. (angular dep.) => muon-induced background

Reactor core:

thermal power 3.9 GW
high duty cycle (1 month/yr off)
1)Signal: Anti neutrinos @17m
2)Potential background: Neutrons

		-	
	100		
			15
1. 1			

CONUS Experiment:

- 4kg low threshold p-type point contact HPGe detectors
- electrical PT cryocoolers

Fast neutron classes	Corr. with
	therm. power
μ -ind. in Pb inside shield	No
μ -ind. above ceiling	No
(α, n) -reactions from walls	No
fission n from spent fuel rods	No
fission n from reactor core	Yes

17 m

Antineutrinos from nuclear reactions

Antineutrino emission in β -decays of fuel reaction chain

- Mainly from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu → >99%
- \sim 6-7 v's/fission up to 10MeV
- Spectral distribution

$$S(E_{\nu}) = \frac{1}{4\pi R^2} \frac{W_{th}}{\sum_i \alpha_i E_i} \sum_i \alpha_i \left(\frac{dN_i}{dE_{\nu}}\right)$$

Knowledge about a reactors emission spectra

- Summation methods [e.g. Kopeikin, Mikaelyan, Sinev, 2004] \rightarrow summing β -branches of all fission fragments
- Conversion methods

 → measure β-decay electron spectrum
 and convert into v spectrum
- Direct measurements (IBD) [An et al., 2017]

Reality much more complicated...

- Varying reactor power → P(t)
- Changing fuel composition $\rightarrow a(t)$

isotope	Fission fraction a (PWR)	E/fission [MeV] [Ma et al 2013]
235U	57%	202.36 ± 0.26
238U	8%	205.99 ± 0.52
239Pu	30%	211.12 ± 0.34
241Pu	5%	214.26 ± 0.33

Parametr./Data: from P.Huber and N.Haag

T. Rink

WIN2019, Bari, Italy

Virtue out of necessity:

CEvNS as flux measuring tool

[Haag et al., 2013

Mueller et al., 2011]

P. Huber, 2011;

CONUS shield design

T. Rink

CONUS detectors

CONUS 1-4:

- Detectors designed for shield dimensions
- P-type point contact HPGe
- crystal/active mass: 4.0/3.74 kg
- Pulser resolution \leq 85eV
 - ➡ ≤300eV noise threshold
- Electrical PT cryocoolers
- Very low background design

Detector performance under lab conditions

detector	Pulser FWHM [eV _{ee}]
C1	74 ± 1
C2	75 ± 1
C3	59 ± 1
C4	74 ± 1

T. Rink

Operating in an "unusual" environment

Understanding the experimental site:

- Close to a huge gamma and neutron source
 - \rightarrow correlation with reactor power **—-like CEvNS!** '
- Low bkg experiment encapsulated by large amounts of usual concrete → radon emanation from walls
- Usual environmental radioactivity \rightarrow wipe tests

Signal expectation

T. Rink

Power-correlated reactor radiation

→ Dedicated investigation of reactor-correlated background contributions: arXiv:1903.09269 • Simulation and validation of neutrons emitted from reactor core (at CONUS site) → thermal neutron counter $\begin{bmatrix} 10^{-1} \\ 9 \\ 10^{-3} \\ 10^{-5} \\ 10^{-7} \\ 10^{-9} \\ 10^{-1} \\ 10^{-9} \\ 10^{-1}$

T. Rink

WIN2019, Bari, Italy

assemblies

²³⁵U fission: integral=1

inside of RDB wall

II) outside room A408 V) inside room A408

outside of bio. shield

Reactor-correlated neutrons at site

Results of neutron investigation:

T. Rink

- 1) Neutron fluence ~factor 2 lower than on earth surface
- 2) Highly thermalized neutron field
- 3) Inhomogeneity in thermal neutron fluence $\sim 20\%$
- 4) MC simulations in front of room similar to data, same peak energy

Latest result of CONUS analysis

First data set: 1 month OFF, 6 months ON

- So far rate-only analysis
- Statistically limited by reactor OFF time
- With realistic quenching same order of magnitude as prediction

Preliminary result (only 3 detectors)

Analysis [300; 550] eV _{ee}	counts
Reactor OFF (65 kg*d)	354 ± 19
Reactor ON (417 kg*d)	2405 ± 49
Residual ON-OFF	133 ± 130

Prediction:

quenching	0.15	0.175	0.2	0.225	0.25
events	7	19	41	74	117

Shape analysis: ongoing

- Data selection for clean detection thresholds
- Strong dependence on quenching!
- Systematics:
 - > Energy scale stability
 - > Detection efficiencies
 - Background stability
 - Neutrino emission and flux prediction

T. Rink

New physics reach

Weinberg angle at low Q:

Neutrino magnetic moment:

- Loop induced effect → small!
- Model-dependent expectations
 - \rightarrow Dirac vs. Majorana $\mu_{kk}^D \simeq 3.2 \cdot 10^{-19} \left(\frac{m_k}{eV}\right) \mu_B$

$$\mu^M_{kk'} \lesssim 4 \cdot 10^{-19} \left(rac{m^M_{kk'}}{\mathrm{eV}}
ight) \left(rac{\mathrm{TeV}}{\Lambda}
ight)^2 \mu_B$$

Low-threshold detectors needed!

$$\left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}} = \frac{\pi\alpha^{2}}{m_{e}^{2}} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) \left(\frac{\mu_{\nu}}{\mu_{B}}\right)^{2} \propto \frac{1}{T} \qquad \text{sensitivity}(\mu_{\nu}) \propto N^{-\frac{1}{2}} \left[\frac{B}{M \cdot t}\right]^{\frac{1}{2}}$$

electron scattering & APV, but new channel

Light mediator searches: $y_{\nu} = C_{\nu} - iD_{\nu}$

- Light scalar coupling to neutrinos
- New chirality-flipping channel:

T. Rink

Further New Physics prospects

Non-standard neutrino interactions [Barranco et al., 2005] $\frac{d\sigma_{\nu A}}{dT_N} \propto \left\{ \left[Z(g_V^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}) + N(g_V^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}) \right]^2 \right\}$

- $+\sum_{\alpha=\mu,\tau}\left[Z(2\epsilon_{\alpha e}^{uV}+\epsilon_{\alpha e}^{dV})+N(\epsilon_{\alpha e}^{uV}+2\epsilon_{\alpha e}^{dV}))\right]^{2}\right\}$
- ϵ partially degenerate \rightarrow different isotopes
- If sub-percent sensitivity $\epsilon_{\alpha\beta}^q \approx \frac{m_W^2}{\Lambda_{NSI}^2}$
 - → probing **TeV-scale** physics!

→ further: scalar-/tensor-NSI, GNI [Bischer, Rodejohann, 2019]

Dark matter and supernova physics

- Neutrino floor = CEvNS of solar neutrinos
- Same detector response

\rightarrow today's signal, tomorrow's background

• CEvNS plays important role in SN evolution

eV-sterile neutrino & precision flux measurement

- A new data point at 17m from PWR
- Neutrino monitoring of fuel evolution

Neutron form factor

T. Rink

wIMP Mass [GeV/c⁺] https://agenda.infn.it/getFile.py/access? contribld=11&sessionId=3&resId=1&materialId=slides&confId=9608

Conclusion

- CEvNS opens era of high statistics neutrino physics
 - \rightarrow beams and reactors go hand in hand!
- CONUS = low-E HPGe detectors in sophisticated

- shield close to 3.9 GW_{th} reactor core of NPP Brokdorf (Germany)
 - \rightarrow more background data this June!
- Extensive work to understand experimental environment
 - → Reactor-correlated neutrons negligible inside shield!
- CONUS is operating stable so far: preliminary rate analysis, limited by statistics
 - $\rightarrow 1\sigma$ excess in ROI, ongoing shape analysis
- Planned CONUS upgrades: systematics, shape information, PSD, ...
- Various possibilities for BSM investigations as well as practical application!

Backup

Neutrino sources in comparison

parameter	π -DAR ν 's	reactor ν 's	radioactive ν 's	natural ν 's
a ser tara a	(DAR=decay-at-rest)			(sol.,atm.,DSNB,SN)
ν flux, Φ_{ν}	$\begin{array}{c} 1 \times 10^{15}/\text{s} \rightarrow \\ 2 \times 10^{7}/(\text{s} \cdot \text{cm}^2) \end{array}$	$\begin{array}{c} 2\times10^{20}/(\text{s}\cdot\text{GW}) \rightarrow \\ 1\times10^{13}/(\text{s}\cdot\text{cm}^2) \end{array}$	¹⁴⁴ Ce:4×10 ¹⁵ /s	8 B:5×10 ⁶ /(s·cm ²) DSNB: ν_{e} <1.2/(s·cm ²)
	in 20 m dist.	in 15 m dist.		DSNB: $\bar{\nu}_e < 70/(s \cdot cm^2)$ SN(10kpc): $10^{12} cm^{-2}$
u variability $ u $ extension	high, <mark>pulsed-beam</mark> small	mediocre small	steady-state pointlike	ss./1 pulse (SN) diffuse
	1/R dep; ster. $ u$	1/R dep; ster. $ u$	1/R dep; ster. $ u$	no 1/R dep
ν flavor ν ener., E_{ν}		<i>v̄_e</i> <8 MeV	$ u_e ext{ or } ar{ u_e} \\ 1-10 ext{ MeV} \\ ^{144} ext{Ce}:<3.0 ext{ MeV} \\ ^8 ext{Li}:<12.9 ext{ MeV} $	$ar{ u}_e, u_lpha, ar{ u}_\mu$ ⁸ B: <16 MeV DSNB: <100 MeV atm: <1 GeV SN: $\langle E \rangle \leq 25$ MeV
location background	cohdecoh. reg. access restr. shallow depth neutrons, NIN	coh. reg. high access restr. shallow depth neutrons	coh. reg. access restr. deep undergr. gamma's	cohdecoh. reg. no restriction deep undergr. few high-energy n

[W.Manscheg, 2017]

- \rightarrow most promising: π -DAR vs. reactor
- background discrimination (pulsed beam)
- high recoil energies

- high $\bar{\nu}$ -flux
- · full coherency regime

T. Rink

Boon and bane of cosmogenic activated lines

Cosmogenic activated lines used for energy calibration!

- Originating from above-ground storage during manufacturing
- Well known literature for K-/L-shell peaks as well as their ratio
- Pulse generator scans guarantee linearity of energy calibration

Main	T _{1/2}	En
isotope	[d]	[MeV]
Ge-71	11.4	10^{-6} -1
Ge-68	271.0	>20
Ga-68	0.046	←Ge-68
Zn-65	244.0	>60

BUT: decaying background contribution!

Background comparison

WIN2019, Bari, Italy

20

T. Rink

Neutrino magnetic moment & millicharge

Loop-induced electromagnetic quantities:

 μ

- Neutrino magnetic moment:

$$\left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}} = \frac{\pi\alpha^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) \left(\frac{\mu_{\nu}}{\mu_B}\right)^2 \propto \frac{1}{T}$$

Neutrino millicharge: -

$$\left(\frac{d\sigma}{dT}\right)_{q_{\nu}} = \frac{2\pi\alpha^2}{m_e^2} \frac{q_{\nu}}{m_e T^2} \propto \frac{1}{T^2}$$

 $\mu_{kk}^D \simeq 3.2 \cdot 10^{-19} \left(\frac{m_k}{eV} \right) \mu_B$

T: nuclear recoil energy

 model-dependent expectation, difference between Dirac and Majorana neutrinos $\mu_{kk'}^M \lesssim 4 \cdot 10^{-19} \left(\frac{m_{kk'}^M}{N} \right) \left(\frac{\text{TeV}}{\Lambda} \right)^2 \mu_B$

$$\rightarrow$$
 enhancement through heavy particles or breaking of $\mu_{\nu} - m_{\nu}$ -relation

VS.

[Wong et al., 2006]

T. Rink

Light scalar mediators: advantage of CONUS

light scalar coupling to neutrinos

$$\mathcal{L}_{LNC} = y_{\nu}\phi\bar{\nu}_{R}\nu_{L} + \text{h.c.} \quad \text{or} \quad \mathcal{L}_{LNV} = \frac{y_{\nu}}{2}\phi\bar{\nu}_{L}^{c}\nu_{L} + \text{h.c.}, \quad y_{\nu} = C_{\nu} - iD_{\nu}$$

• scalar-nucleus interaction:

$$\mathcal{L}_{q\phi} \to \mathcal{L}_{N\phi} = \overline{\psi}_N \Gamma_{N\phi} \psi_N \phi, \qquad \Gamma_{N\phi} = C_N + i\gamma^5 D_N$$

• new chirality-flipping channel:

$$\frac{d\sigma}{dT} = \frac{d\sigma_{\rm SM}}{dT} + \frac{d\sigma_{\phi}}{dT} = \dots + \frac{MY^4A^2}{4\pi(2MT + m_{\phi}^2)^2} \left[\frac{MT}{E_{\nu}^2} + \mathcal{O}\left(\frac{T^2}{E_{\nu}^2}\right)\right], Y^4 \equiv \frac{C_N^2}{A^2}|y_{\nu}|^2$$

 \rightarrow spectral distortion for small recoil energies!

[Farzan et al., 2018]

T. Rink

WIN2019, Bari, Italy