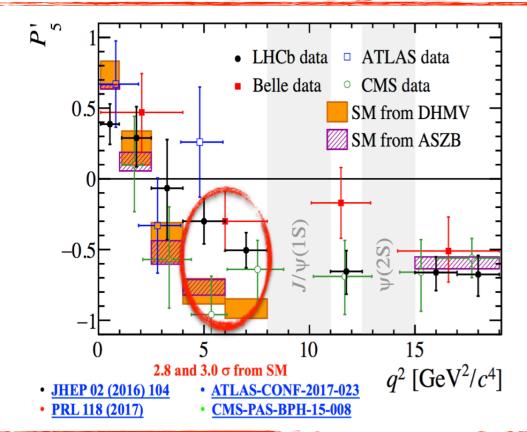
Flavour anomalies before and after Moriond 2019: new emerging scenarios

Joaquim Matias

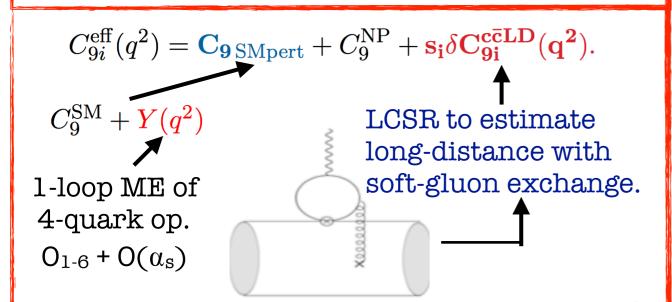
WIN2019 The 27th International Workshop on Weak Interactions and Neutrinos.

in collaboration with: M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Virto.

Bari, 4th June 2019


Outline & Questions

- 1. Diagnosis of anomalies: Where we stand?
- 2. A comparative study of Pre and Post Moriond
 -Are now all the global significances smaller?
 - -Are new emerging hypothesis?
 - -Brief Comparison with other analysis.
- 3. Lepton Flavour Universal (LFU) New Physics
 -Two kinds of New Physics? Maybe two scales?
- 4. Linking charge, neutral and LFU New Physics.
- 5. Conclusions


Diagnosis of anomalies in $b \to s \ell \ell$

[SDG,JM,JV,1207.2753]

Angular optimized observables

Theory: I-QCDF+SFF+KMPW+p.c.

$$P_5' = J_5/2\sqrt{-J_{2s}J_{2c}} = P_5^{\infty} (1 + \mathcal{O}(\alpha_s \xi_{\perp}) + \text{p.c.})$$

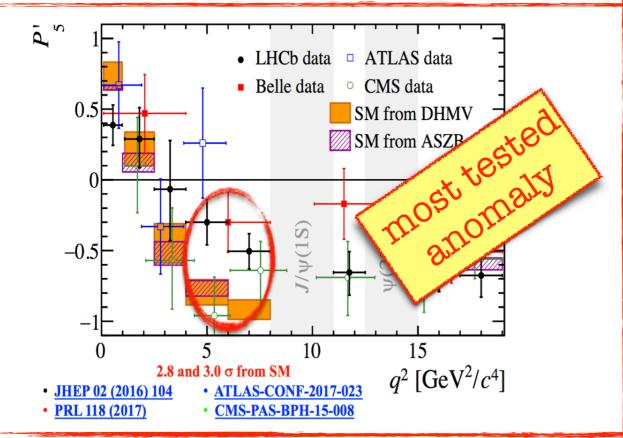
Impact of an improvement on KMPW-FF errors (50%):

• Optimized observable P_5' (% present error size)

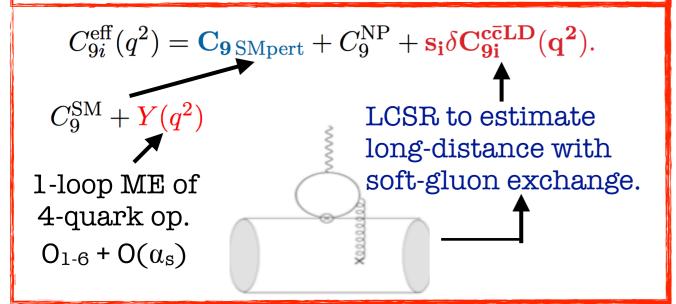
$$P_{5[4,6]}'=-0.82\pm0.08 ({\bf 10\%}) \rightarrow 0.06 ({\bf 8\%})$$
 \rightarrow interestingly BSZ-FF+full-FF approach finds 0.05

• Non-optimized observable S_5 $S_{5[4,6]} = -0.35 \pm 0.12 (34\%) \rightarrow 0.06 (17\%)$

LHCb: 1/fb with 3.7σ and 3/fb 2 bins with 3σ each **Belle** consistent with LHCb [4,8] **ATLAS** observed the tension.


CMS compatible with our SM-prediction

(Suggestions: extract correlations of F_L and P_1 , P_5 ' from same PDF;


Use analytical integration of 3D PDFs instead of numerical with RooFit)

[SDG,JM,JV,1207.2753]

Angular optimized observables

Theory: I-QCDF+SFF+KMPW+p.c.

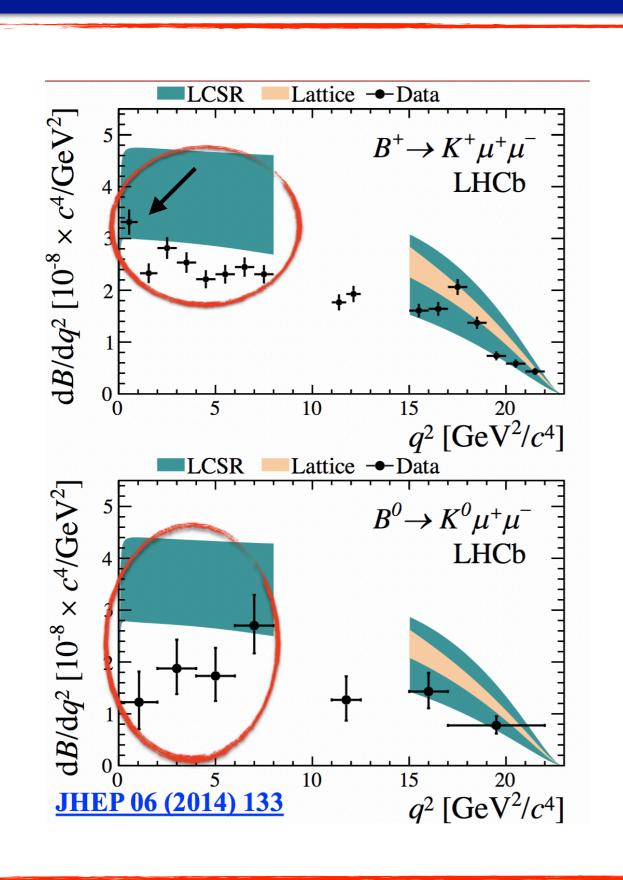
$$P_5' = J_5/2\sqrt{-J_{2s}J_{2c}} = P_5^{\infty} (1 + \mathcal{O}(\alpha_s \xi_{\perp}) + \text{p.c.})$$

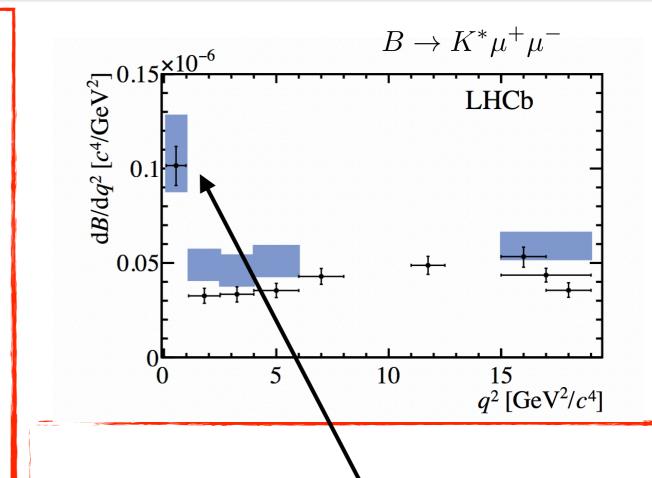
Impact of an improvement on KMPW-FF errors (50%):

• Optimized observable P_5' (% present error size)

$$P_{5[4,6]}'=-0.82\pm0.08 ({\bf 10\%}) \to 0.06 ({\bf 8\%})$$
 \to interestingly BSZ-FF+full-FF approach finds 0.05

• Non-optimized observable S_5 $S_{5[4,6]} = -0.35 \pm 0.12 (34\%) \rightarrow 0.06 (17\%)$

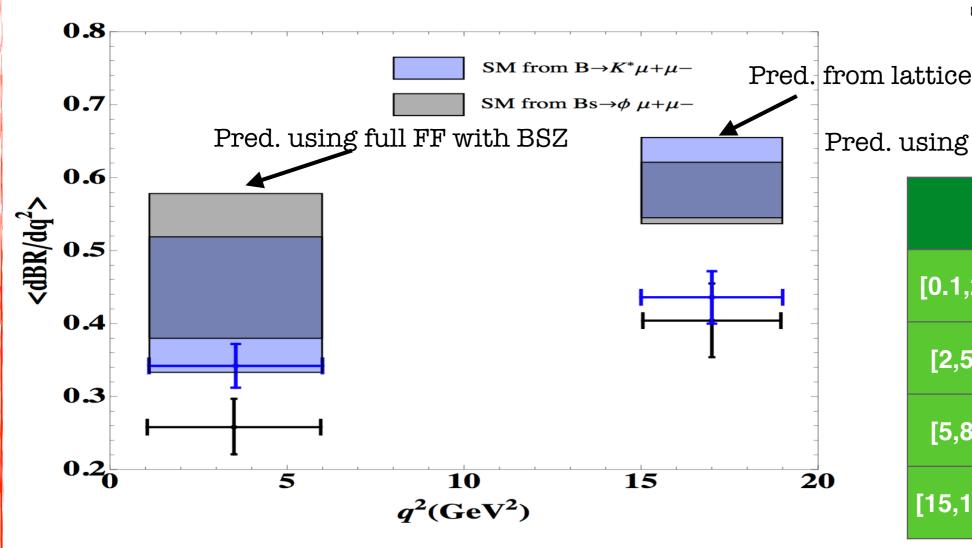

LHCb: 1/fb with 3.7σ and 3/fb 2 bins with 3σ each Belle consistent with LHCb [4,8] ATLAS observed the tension.


CMS compatible with our SM-prediction

(Suggestions: extract correlations of F_L and P_1 , P_5 ' from same PDF;

Use analytical integration of 3D PDFs instead of numerical with RooFit)

Diff. Branching Ratios: Lepton Flavour Dependent


Systematic deficit in muonic channels at large and low-recoil

Possible caveat: In some muonic channels first bin is SM-like

This is **OK** if also electronic channel is SM-like (C7 dominated). Radiative constraints are tight.

also 1st bins of opt. obs. in mild tension

$B_s \rightarrow \phi \mu \mu \ vs \ B \rightarrow K^* \mu \mu$: Lepton Flavour Dependent

Tension at large and low recoil of

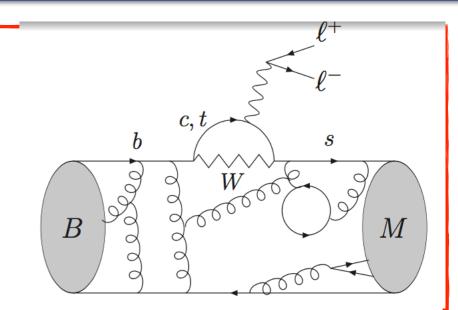
 $B(B_s \rightarrow \varphi \mu \mu) \times 10^7$

Pred. using our approach with BSZ-FF:

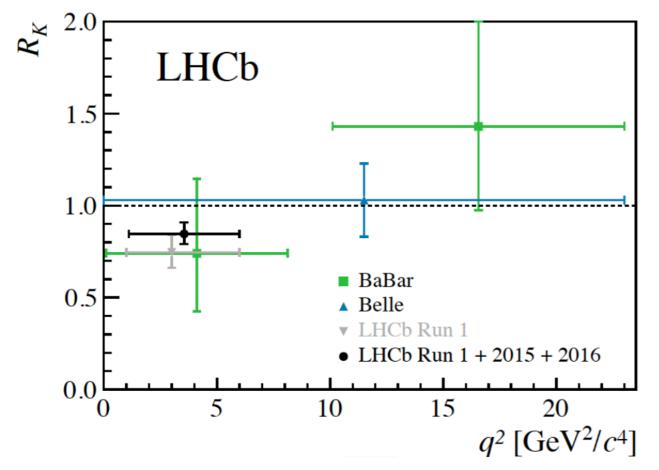
	SM	EXP	PULL
[0.1,2]	1.55±0.34	1.11±0.16	+1.2
[2,5]	1.55±0.33	0.77±0.14	+2.2
[5,8]	1.88±0.39	0.96±0.15	+2.2
[15,19]	2.20±0.17	1.62±0.20	+2.2

with corrected BSZ FF

Not yet significant: FF at low-q² for $B_s \rightarrow \phi$ (BSZ) larger than $B \rightarrow K^*$, while data is reversed. Ok at high-q². BSZ problem or statistical fluctuation? Our prediction for $B \rightarrow K^*$ with KMPW has larger errors so no problem in our case.


More data will clarify it....

R_K: Lepton Flavour Universality Violation


FCNC, test of universality of lepton coupling, potential high sensitivity to NP contributions.

First possible signal of LFUV ... after LHCb update

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

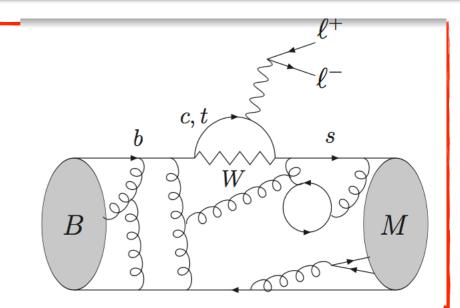
still at 2.5σ from SM

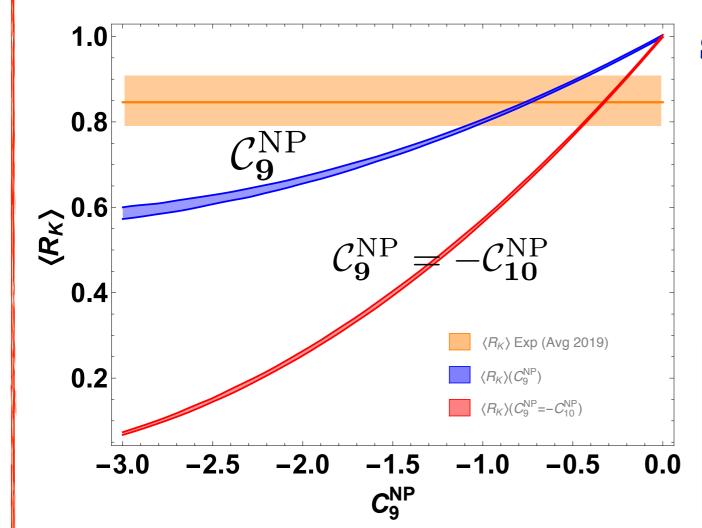
Simple structure of BR: $f_{+,0,T} o f_+$

dominates while the other two suppressed by lepton mass or C_7 .

- => Good observable in presence NP
- => tensions cannot be explained by FF or charm. Electromagnetic small.

[Isidori et al.]


Does a more SM-like central value imply a reduction in significance?


R_K: Lepton Flavour Universality Violation

FCNC, test of universality of lepton coupling, potential high sensitivity to NP contributions.

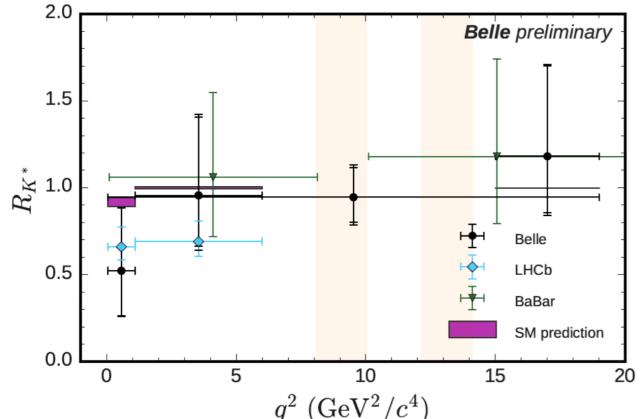
First possible signal of LFUV ... after LHCb update

$$R_K^{[1.1,6]} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

Simple structure of BR: $f_{+,0,T} \rightarrow f_{+}$

dominates while the other two suppressed by lepton mass or C_7 .

- => Good observable in presence NP
- => tensions cannot be explained by FF or charm. Electromagnetic small.


[Isidori et al.]

Does a more SM-like central value imply a reduction in significance?

R_{K*}: Lepton Flavour Universality Violation

FCNC, second test of universality of lepton coupling.

$$R_{K^*} = \frac{Br(B^0 \to K^{*0}\mu^+\mu^-)}{Br(B^0 \to K^{*0}e^+e^-)}$$

pulls	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$
Exp.	$0.66^{+0.113}_{-0.074}$	$0.685^{+0.122}_{-0.083}$
SM	0.92 ± 0.02	1.00 ± 0.01

different mechanisms?

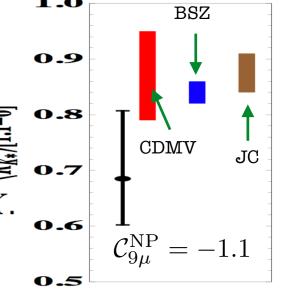
Belle combined data on charged and neutral channels:

$$R_{K^*}^{[0.045,1.1]} = 0.52_{-0.26}^{+0.36} \pm 0.05$$

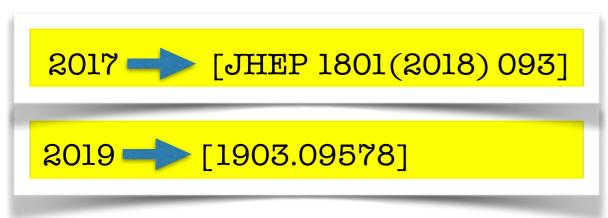
$$R_{K^*}^{[1.1,6]} = 0.96_{-0.29}^{+0.45} \pm 0.11$$

$$R_{K^*}^{[15,19]} = 1.18_{-0.32}^{+0.52} \pm 0.10$$

Th: Nuisance parameter required


Example of NP:

LHCb:


 $\mathbf{R}_{\mathbf{K}^*}$: More complex structure, 6-8 Amplitudes and 7 form factors.

Impact of long-distance charm from KMPW on $B \to K^*$ larger than on $B \to K$.

• In presence of NP or for $q^2 < 1$ GeV² hadronic uncertainties return.

Updated global analysis of $b \to s\ell\ell$

••• hopefully now the race for the right pattern

include additional interesting horses than just the old guys: C₉ and C₉=-C₁₀!

Global analysis of $b \to s\ell\ell$

178 observables from (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

• $B \to K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic obs.

...latest update $Br(B \to K^*\mu\mu)$ in small bins.

...LHCb results on R_{K^*}

- $B_s \to \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \ell \ell$ (BR) ($\ell = e, \mu$) (new average $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$)
- $B \to X_s \gamma$, $B \to X_s \mu \mu$, $B_s \to \mu \mu$ (BR).
- Radiative decays: $B^0 \to K^{*0} \gamma$ (A_I and $S_{K^* \gamma}$), $B^+ \to K^{*+} \gamma$, $B_s \to \phi \gamma$
- ▶ Belle measurements for the isospin-averaged but lepton-flavour dependent $(Q_{4,5} = P_{4,5}^{\prime\mu} P_{4,5}^{\prime e})$: [3rd test of LFUV]

$$P_i^{\prime \ell} = \sigma_+ P_i^{\prime \ell}(B^+) + (1 - \sigma_+) P_i^{\prime \ell}(\bar{B}^0)$$
 $\sigma_+ = 0.5 \pm 0.5$

similar treatment of new Belle isospin-averaged result on R_{K^*} (3-bins)

- ▶ ATLAS measurement of whole basis of P_i and CMS measurements of P_1 and P'_5 .
- ▶ ATLAS update of $B_s \to \mu\mu$ (averaged with LHCb & CMS) and latest f_{Bs} lattice update.

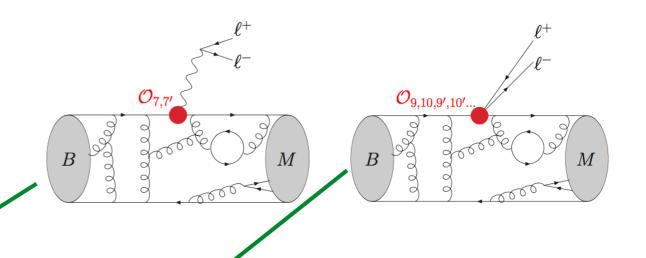
Model independent approach to $b \to s\ell\ell$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$\mathcal{O}_{7'} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu},$$

$$\mathcal{O}_{9\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\ell),$$


$$\mathcal{O}_{9\ell'} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10\ell} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

$$\mathcal{O}_{10\ell'} = \frac{e^2}{16\pi^2} (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

At the $\mu_b = 4.8$ GeV scale:

$$\mathcal{C}_7^{\mathrm{SM}} = -0.29, \; \mathcal{C}_9^{\mathrm{SM}} = 4.1, \; \mathcal{C}_{10}^{\mathrm{SM}} = -4.3$$

Interesting Directions:

$$\mathcal{C}_9 = -\mathcal{C}_{10} \quad \Rightarrow \quad L_q \otimes L_\ell$$
 $\mathcal{C}_{9'} = -\mathcal{C}_{10'} \quad \Rightarrow \quad R_q \otimes L_\ell$
 $\mathcal{C}_9 = -\mathcal{C}_{9'} \quad \Rightarrow \quad A_q \otimes V_\ell$

We explore not only directions BUT new BASIS

=>standard muon and electron basis => new LFUV and LFU basis

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

Pull_{SM}: $\chi^2_{SM}(C_i=0)-\chi^2_{min}(C_i^{HIP})$ considering N_{dof}

	2017	Manufacture of the Control of the Co	THE STATE OF THE S	All	ARCONING AND	-			LFUV	•		
	1D Hyp.	Best fit	1 σ	2σ	$ Pull_{SM} $	p-value	Best fit	1σ	2	$\delta \sigma$	Pull_{SM}	p-value
	$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.11 [-1.5	28, -0.94]	[-1.45, -0.	75] 5.8	68	-1.76	[-2.36, -1.2]	3] [-3.04]	[-0.76]	3.9	69
\mathcal{C}_{i}	$_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{10\mu}^{\mathrm{NP}}\left\Vert ightert$	-0.62 [-0.	75, -0.49]	[-0.88, -0.	37] 5.3	58	-0.66	[-0.84, -0.4]	8] [-1.04]	[-0.32]	4.1	78
	$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{9\mu}'$		18, -0.84]	[-1.34, -0.	[65] $[5.4]$	61	-1.64	[-2.13, -1.0]	5] [-2.52]	[0, -0.49]	3.2	32
\mathcal{C}_9^1	$\mathcal{C}_{\mu}^{\mathrm{NP}} = -3\mathcal{C}_{9e}^{\mathrm{NP}} \ $	-1.07 [-1.	24,-0.90]	[-1.40, -0.7]	2] 5.8	70	-1.35	[-1.82, -0.9]	5] [-2.38]	[0, -0.59]	4.0	72
	0010		- MARKET PARKET	Newstange and the second	was were well as the same of t						The second secon	
_	2019	**************************************	Machine College Colleg	All		The same of the sa		$_{ m LFUV}$				
	1D Hyp.	Best fit	$1 \sigma/2 \sigma$	7 Pull	SM p-val	ue Best	fit	$1 \sigma / 2 \sigma$	Pull_{SM}	p-value		
_	$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.02	[-1.18, -0] [-1.34, -0]	- I 3 5 2	65.1	% -1.0	2 1	$\begin{bmatrix} -1.38, -0.69 \\ -1.80, -0.40 \end{bmatrix}$	3.5	50.6 %	_	
	$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{10\mu}^{ ext{NP}}$	-0.49	$\begin{bmatrix} -0.59, -0 \\ [-0.69, -0 \end{bmatrix}$	- 1 h	4 55.5	% -0.4	4 -	$\begin{bmatrix} -0.55, -0.32 \\ -0.68, -0.21 \end{bmatrix}$	4.0	74.0 %		
	$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{9'\mu}$	1.02	$\begin{bmatrix} -1.18, -0 \\ [-1.33, -0 \end{bmatrix}$	Ī 1 D.	7 61.3	-1.6	nh I -	$\begin{bmatrix} -2.15, -1.05 \\ -2.54, -0.47 \end{bmatrix}$	3.1	35.4%		
_	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -3\mathcal{C}_{9e}^{\mathrm{NI}}$	-0.92	[-1.08, -0] [-1.23, -0]		7 62.7	% -0.7	h	$\begin{bmatrix} -1.02, -0.52 \\ -1.30, -0.30 \end{bmatrix}$	3.5	50.8 %	_	

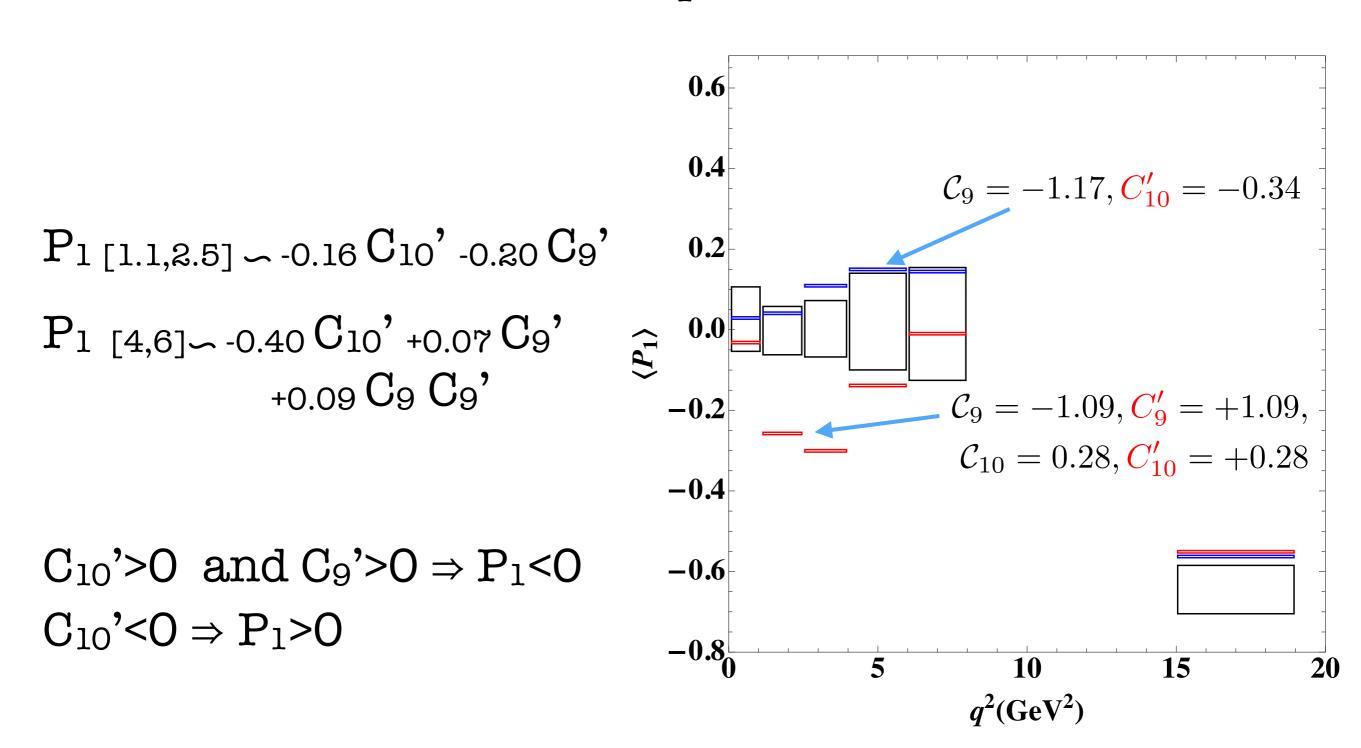
- Hierarchy remains invariant except $C_{9\mu} = -C_{9'\mu}$ scenario $(R_K \approx 1)$
 - Scenario $C_{9\mu}$ preferred in "All" fit Scenario $C_{9\mu}$ = $-C_{10\mu}$ preferred in "LFUV" fit.
- Best fit points for All and LFUV fits in scen. C_{9μ} in nice agreement
- Scenario $C_{10\mu}$ stays at a significance of $\approx 4\sigma$ for All and LFUV fits.

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

Interesting surprises in 2D updates...

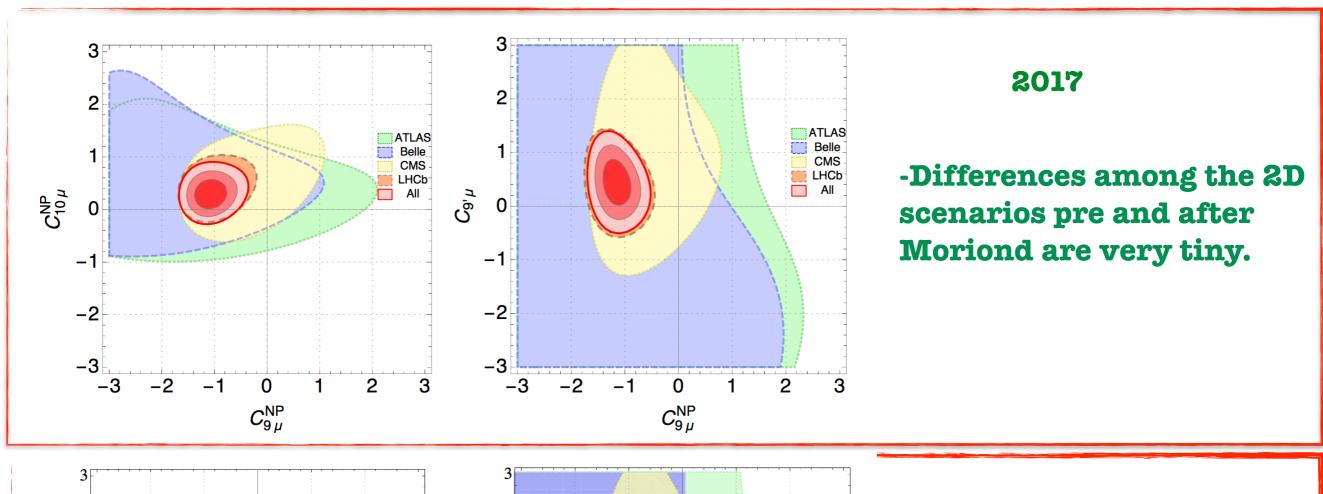
2017		All		L	FUV	
2D Hyp.	Best fit	Pull _{SM}	p-value	Best fit	$ Pull_{SM} $	p-value
$\overline{(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})}$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_7')$	(-1.13,0.01)	5.5	69	(-1.85, -0.04)	3.6	66
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9'\mu})$	(-1.15, 0.41)	5.6	71	(-1.99, 0.93)	3.7	72
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10'\mu})$	(-1.22, -0.22)	5.7	72	(-2.22, -0.41)	3.9	85
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00,0.42)	5.5	68	(-1.36,0.46)	3.5	65
Hyp. 1	(-1.16,0.38)	5.7	73	(-1.68, 0.60)	3.8	78
Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37
Hyp. 3	(-0.67, -0.10)	5.0	57	(0.61,2.48)	3.7	73
Hyp. 4	(-0.70, 0.28)	5.0	57	(-0.74, 0.43)	3.7	72

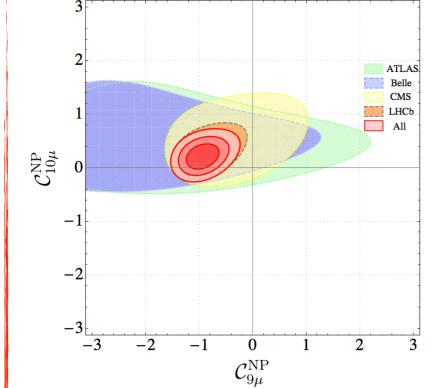
2019		All		/ I	$_{ m LFUV}$	
2D Hyp.	Best fit	Pull _{SM}	p-value	Best fit	Pull _{SM}	p-value
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-0.95,0.20)	5.7	69.5%	(-0.30,0.52)	3.6	74.5%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7}^{\prime})$	(-1.03, 0.02)	5.6	$\mid 68.2\% \mid$	(-1.03, -0.04)	3.1	53.7%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9'\mu})$	(-1.13, 0.54)	5.9	74.5%	(-1.88,1.14)	3.6	75.7%
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{10'\mu})$	(-1.17, -0.34)	6.1	78.1 %	(-2.07,-0.63)	4.0	92.8%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.04,-0.11)	5.5	65.3%	(-0.76.9.25)	3.1	50.8%
Hyp. 1	(-1.09, 0.28)	6.0	75.8%	(-1.69, 0.32)	3.6	77.1%
Hyp. 2	(-1.00,0.09)	5.4	63.9 %	(-2.00, 0.26)	3.3	61.2%
Hyp. 3	(-0.50, 0.08)	5.1	55.8%	(-0.43, -0.09)	3.6	74.5%
Hyp. 4	(-0.52, 0.11)	5.2	58.7%	(-0.50, 0.15)	3.7	81.9%
Hyp. 5	(-1.17, 0.24)	6.1	78.2 %	(-2.20, 0.52)	4.1	93.8%

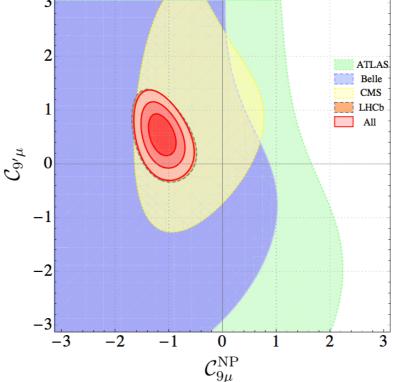

- Increase in significance in scenarios with RHC
- R_K more SM-like better described if $C_{9'\mu}>0$ and $C_{10'\mu}<0$
- A $R_q \otimes L_\ell$ structure for primed operators prefers a V over a L_ℓ structure for leptons.
- Hyp.1 is SM-like for $B_s \rightarrow \mu \mu$ but perfect for $R_K!$

Hyp. 1:
$$(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu}),$$

Hyp. 2: $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = -C_{10'\mu}),$
Hyp. 3: $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = C_{10'\mu}),$
Hyp. 4: $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$
Hyp. 5: $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu}).$


How can we test the presence of RHC (C_9 ' and C_{10} ')?


An accurate measurement:


Observable P_1 in two bins

Implications of the new updates on R_K , R_{K^*} , $B_s \rightarrow \mu\mu$

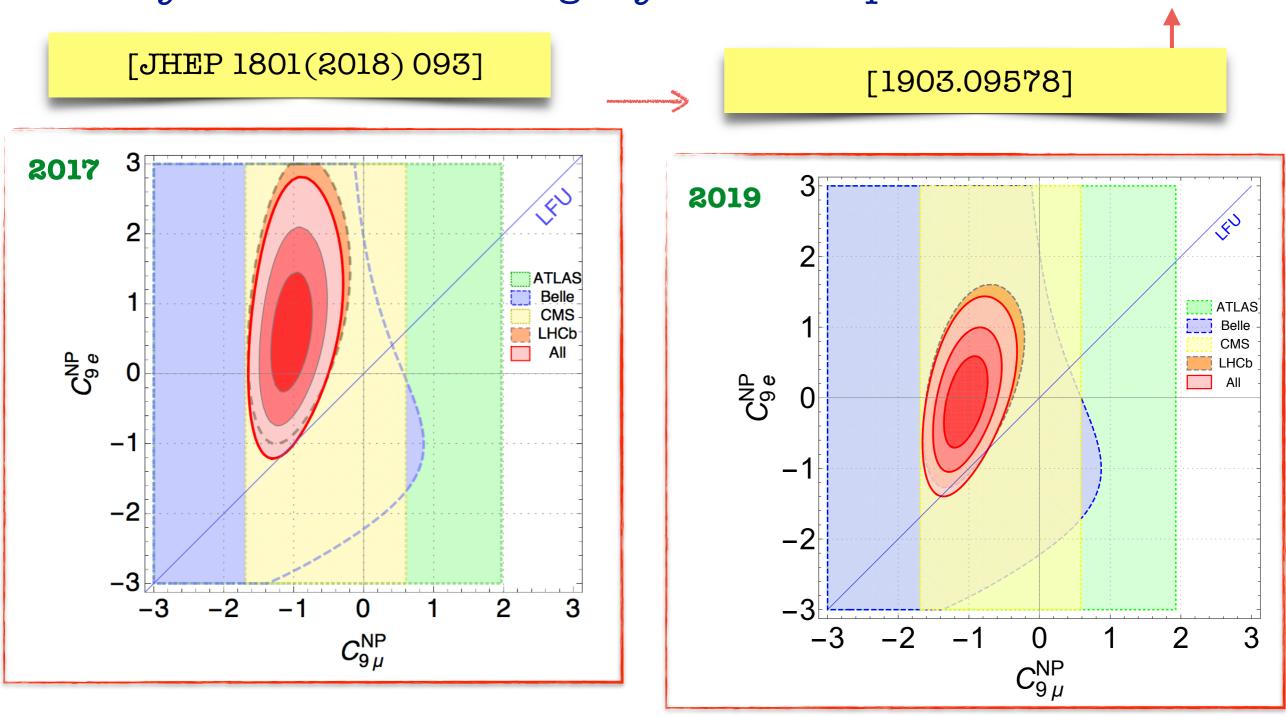
2019

-A C_9 ,>0 gets slightly more significant after Moriond.

Implications of the new updates on R_K , R_{K^*} , $Bs \rightarrow \mu\mu$

Let's check how the 6D fit has evolved:

_	2017	$\mathcal{C}_7^{ ext{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	${\cal C}_{10\mu}^{ m NP}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$
]	Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02
	1σ	[-0.01, +0.05]	[-1.34, -0.88]	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]
	2σ	[-0.03, +0.07]	[-1.54, -0.63]	[-0.08, +0.84]	$\left [-0.02, +0.08] \right $	[-0.59, +1.58]	[-0.54, +0.68]


2019	$\mathcal{C}_7^{ ext{NP}}$	$\mathcal{C}_{9\mu}^{ ext{NP}}$	$\mathcal{C}_{10\mu}^{ ext{NP}}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Best fit	+0.02	-1.13	+0.21	+0.02	+0.39	-0.12
1 σ	[-0.01, +0.05]	[-1.28, -0.91]	[+0.04, +0.42]	[+0.00, +0.04]	[-0.09, +0.96]	[-0.40, +0.17]
$2~\sigma$	[-0.03, +0.06]	[-1.48, -0.71]	[-0.12, +0.61]	[-0.02, +0.06]	[-0.56, +1.14]	[-0.57, +0.34]

 $C_{10\mu}$ -C' $_{10\mu}$ stays the same

- Again same picture,
 - -except change in sign of bfp of $C_{10'\mu}$
 - -except significance $5.0\sigma \rightarrow 5.3\sigma$

Implications of the new updates on R_K , R_{K^*} , $Bs \rightarrow \mu\mu$

New Physics in electrons slightly more compatible with zero.

It is then natural to expect some impact in the significance of LFUV+LFU scenarios

Are we overlooking Lepton Flavour Universal NP?

Hypothesis: Lepton Flavour Universality

We traded the usual controversy:

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

Is this New Physics or long-distance charm?

by a more constructive question:

Are we observing two kinds of New Physics?

$$\mathcal{C}^{NP}_{i\ell} = \mathcal{C}^{V}_{i\ell} + \mathcal{C}^{U}_{i}$$
 with $i=9,10$ $\ell=e,\mu$ Lepton Flavour Universal NP Lepton Flavour Universal Violating NP

....extended to primed operators in [Addendum: 1903.09578v3]

Motivation:

• We have LFUV and LFD observables, then it is natural to split:

$$\mathcal{C}^{V}_{i\ell}$$
 $\mathcal{C}^{V}_{i\ell}+\mathcal{C}^{U}_{i}$

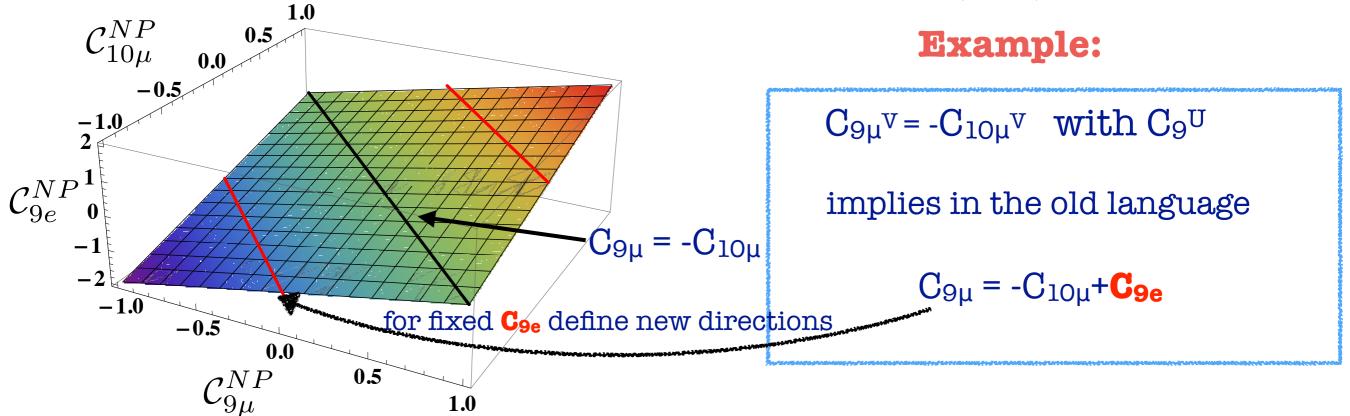
• New mechanism to fulfill $B_s \rightarrow \mu\mu$

Is this the same as adding NP in electrons?

Many previous works already included NP in electrons:

Mahmoudi et al. (large and low recoil data)

London et al. (large and low recoil data)


Ciuchini et al. (only large recoil data)

• • • •

Which is the difference with our proposal?

All previous analyses explored directions within 2D planes in coordinates $(C_{9\mu},C_{10\mu}) \ \ \text{and} \ \ (C_{9e},C_{10e})$

instead the plane in coordinates (C_9^v, C_{10}^v) in presence for instance of C_9^v LFU can translate in a tilted plane in $(C_{9\mu}, C_{10\mu}, C_{9e})$ coordinates

in summary this is NOT simply a reparametrization

LFU updates 2019

[180	9.08447]	Best-fit point	1 σ	Pull _{SM}	p-value
Sc. 5	$\mathcal{C}_{9\mu}^{ m V} \ \mathcal{C}_{10\mu}^{ m V}$	-0.16 +1.00	[-0.94, +0.46] [+0.18, +1.59]	5.8	78%
	$\mathcal{C}_9^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}$	-0.87	[-1.43, -0.14]		
Sc. 6	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V}$	-0.64	[-0.77, -0.51]	6.0	79%
	$\mathcal{C}_9^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}$	-0.44	[-0.58, -0.29]		
Sc. 7	$\mathcal{C}^{\mathrm{V}}_{9\mu}$	_1.57	[-2.14, -1.06]	5.7	72%
	$\mathcal{C}_{9}^{\mathrm{U}}$	+0.56	[+0.01, +1.15]		
Sc. 8	$\mathcal{C}_{9\mu}^{ m V}=-\mathcal{C}_{10\mu}^{ m V}$	-0.42	[-0.57, -0.27]	5.8	74%
	$\mathcal{C}_{9}^{\mathrm{U}}$	-0.67	[-0.90, -0.42]	0.0	7 + 70
				l	
[190	3.09578]	Best-fit point	1 σ	Pull _{SM}	p-value
	$\mathcal{C}^{ m V}_{9\mu}$	-0.34	[-0.93, +0.19]		
Sc. 5	$\mathcal{C}_{10\mu}^{\mathrm{V}}$	+0.69	[+0.21, +1.12]	5.5	72 %
	$\mathcal{C}_9^{ ext{U}} = \mathcal{C}_{10}^{ ext{U}}$	-0.50	[-0.92, +0.02]		
Sc. 6	$C_{9\mu}^{ m V} = -C_{10\mu}^{ m V}$	-0.52	[-0.64, -0.41]	5.8	71%
30. 6	$\mathcal{C}_9^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}$	-0.37	[-0.52, -0.22]	5.6	/ 1 70
So 7	$\mathcal{C}^{ m V}_{9\mu}$	-0.91	[-1.25, -0.58]	5.5	65%
Sc. 7	$egin{array}{c} \mathcal{C}_{9\mu}^{ m V} \ \mathcal{C}_{9}^{ m U} \end{array}$	-0.08	[-0.46, +0.31]	5.5	00 %
Sc. 8	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V}$	-0.33	[-0.45, -0.22]	5.9	74%
	$\mathcal{C}_{9}^{\mathrm{U}}$	-0.72	[-0.93, -0.47]	3.9	/ 4 /0

Changed

Sc. 7: If only V-NP (C₉) now preference for LFUV-C₉

$$C_{9\mu}^V + C_9^U = -0.98$$

Unchanged

Sc. 8: A LFUV left-handed lepton struc. $(C_9^{V}=-C_{10}^{V})$ yields a better description with LFU-NP in C_9 .

Still

Sc. 6: A LFUV V-A struc. $(C_9^{V}=-C_{10}^{V})$ and a LFU V+A struc. provides a good description of data.

• LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

S	Scenario	Best-fit point	1σ	Pull _{SM}	p-value
Sc. 9	$\mathcal{C}_{9\mu}^{ m V} = -\mathcal{C}_{10\mu}^{ m V}$	-0.63	[-0.79, -0.47]	5.3	73.4 %
ы. Э	$\mathcal{C}_{10}^{ ext{U}}$	-0.39	[-0.65, -0.13]	0.0	10.4 /0
Sc. 10	$\mathcal{C}_{9\mu}^{ ext{V}} \ \mathcal{C}_{10}^{ ext{U}}$	-0.99	[-1.17, -0.80]	5.7	69.7%
DC. 10	$\mathcal{C}_{10}^{ ext{U}}$	+0.29	[0.10, 0.48]	0.1	09.1 70
Sc. 11	$\mathcal{C}_{9\mu}^{ ext{V}}$	-1.07	[-1.25, -0.88]	5.9	73.9%
50. 11	$\mathcal{C}_{10'}^{ ext{U}}$	-0.31	[-0.48, -0.13]	0.9	10.9 /0
Sc. 12	$\mathcal{C}_{9'\mu}^{ ext{V}}$	-0.05	[-0.23, 0.14]	1.7	13.1 %
DC. 12	$\mathcal{C}_{10}^{ ext{U}}$	+0.43	[0.22, 0.65]	1.1	10.1 /0
	$\mathcal{C}_{9\mu}^{ ext{V}}$	-1.12	[-1.29, -0.94]		
Sc. 13	$\mathcal{C}_{9'\mu}^{ m V}$	+0.48	[0.19, 0.85]	5.6	78.7 %
DC. 13	$egin{aligned} \mathcal{C}^{ ext{V}}_{9'\mu} \ \mathcal{C}^{ ext{U}}_{10} \end{aligned}$	+0.26	[0.01, 0.50]	0.0	10.1 /0
	${\cal C}_{10'}^{ m U}$	-0.05	[-0.28, 0.18]		

- Sc. 9 versus Sc.10 preference of C_9^{V} versus C_9^{V} =- C_{10}^{V} in presence of C_{10}^{U} , opposite to the case of C_9^{U} (sc.7-8).
- Sc. 10 versus Sc.11 shows a slight preference of $C_{10}^{,U}$ over C_{10}^{U} .
- Sc.12 irrelevance of RHC without C_9^{V} . If $C_{10}^{U} \rightarrow C_9^{U}$ then 4σ

Changed

Sc. 7: If only V-NP (C₉) now preference for LFUV-C₉

$$C_{9\mu}^V + C_9^U = -0.98$$

Unchanged

Sc. 8: A LFUV left-handed lepton struc. $(C_9^{V}=-C_{10}^{V})$ yields a better description with LFU-NP in C_9 .

New

Sc.9-13: We extend the universal contribution also to **primed universal coefficients** associated to models.

Sc.7-10 show LFU-NP is quite dependent on structure of LFUV-NP

LFU updates 2019

Assuming loop-level scale of NP and no MFV

$$\Lambda_i^L \sim \frac{v}{s_w g} \frac{1}{\sqrt{2|V_{tb}V_{ts}^*|}} \frac{1}{|\mathcal{C}_i^{\text{NP}}|^{1/2}}$$

Mild preference

Scenario 6:
$$C_{9\mu}^{V} = -C_{10\mu}^{V}$$

 $C_{9}^{U} = C_{10}^{U}$

LFUV-NP $\mathsf{L}_q \otimes L_\ell$

 $\Lambda_i^{
m LFUV} \sim 3.9 \ {
m TeV}$

LFU-NP $L_q \otimes R_\ell$

 $\Lambda_i^{
m LFU} \sim 4.6 \; {\sf TeV}$

Scenario 8:
$$C_{9\mu}^{V} = -C_{10\mu}^{V}$$

LFUV-NP $L_q \otimes L_\ell$

 $\Lambda_i^{
m LFUV} \sim 4.6 \; {\sf TeV}$

LFU-NP $\mathsf{L}_q \otimes V_\ell$

 $\Lambda_i^{
m LFU} \sim 3.3~{
m TeV}$

- If we are in presence of two types and scales of NP, their hierarchy depend on the LFU

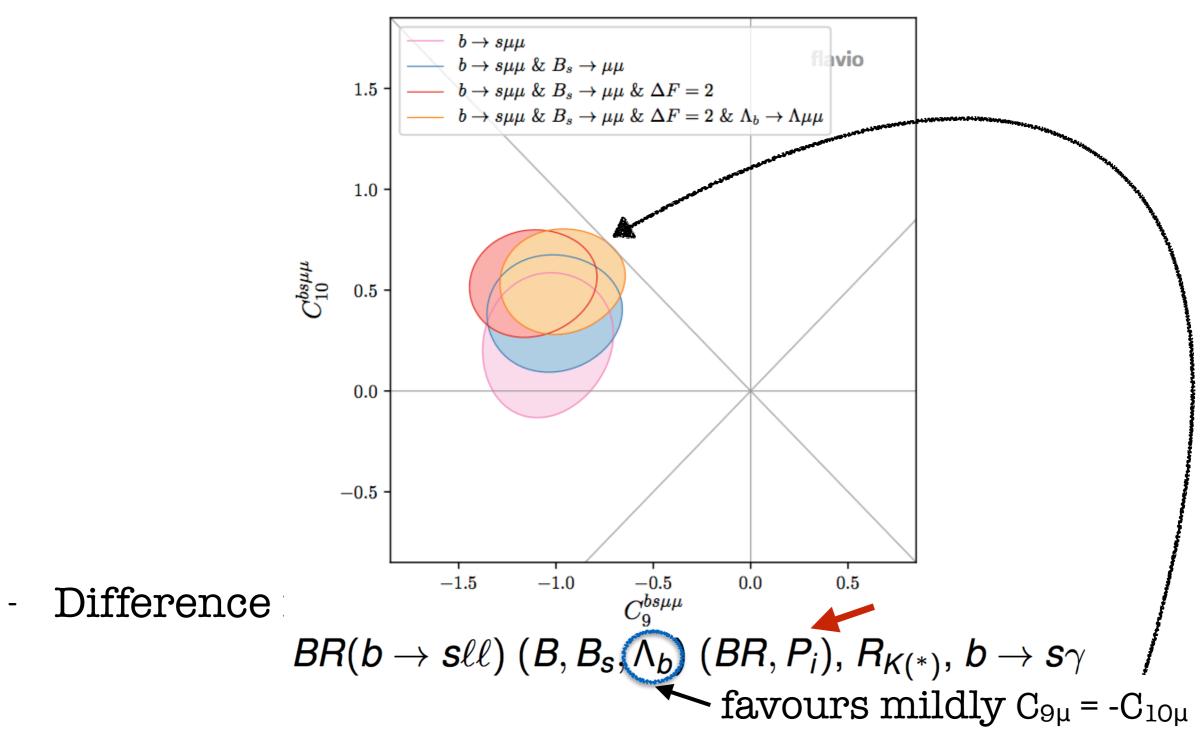
Results from other analysis

[Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub]

Similar results in general terms but 1D differences. Why?

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.95	[-1.10, -0.79]	[-1.26, -0.63]	5.8σ
$C_9^{\prime bs\mu\mu}$	+0.09	[-0.07,+0.24]	[-0.23, +0.39]	0.5σ
$C_{10}^{bs\mu\mu}$	+0.73	[+0.59, +0.87]	[+0.46, +1.01]	5.6σ
$C_{10}^{\prime bs\mu\mu}$	-0.19	[-0.30, -0.07]	[-0.41, +0.04]	1.6σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	+0.20	[+0.05, +0.35]	[-0.09, +0.51]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.62, -0.45]	[-0.70, -0.36]	6.5σ

- Difference in observable sets:

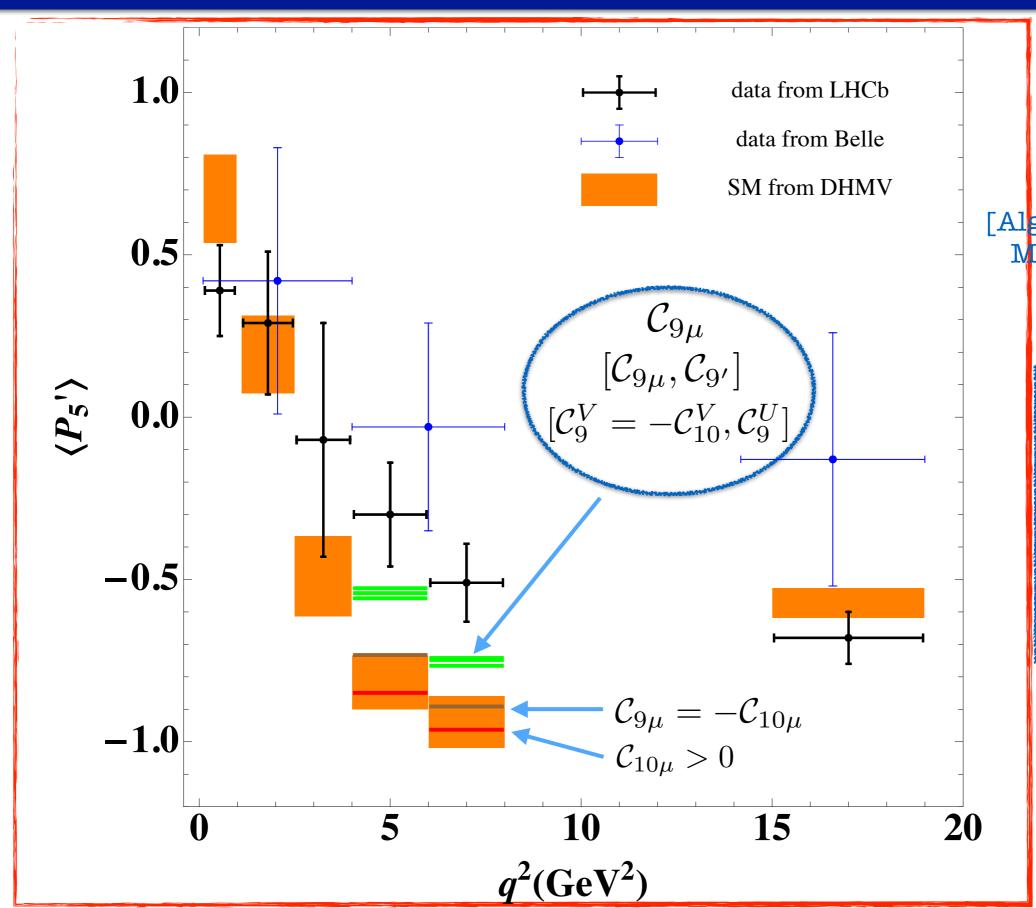

$$BR(b \to s\ell\ell) \ (B, B_s, \Lambda_b) \ (BR, P_i), \ R_{K(*)}, \ b \to s\gamma$$
 favours mildly $C_{9\mu} = -C_{10\mu}$

But latest Belle updates on P_5 ' and Q_5 are missing

- Extra assumption: no NP in $\Delta F=2$ observables

=> constraints inputs for $B_s \rightarrow \mu\mu \ (f_{B_s}, V_{tb} V_{ts}^* \dots)$

Different question: Is there NP in $b\rightarrow sll$ assuming no NP in $\Delta F=2$?



But latest Belle updates on P_5 ' and Q_5 are missing

- Extra assumption: no NP in $\Delta F=2$ observables
 - => constraints inputs for $B_s \rightarrow \mu\mu \ (f_{B_s}, V_{tb} V_{ts}^* \dots)$

Different question: Is there NP in b \rightarrow sll assuming no NP in $\Delta F=2$?

P'5 under different scenarios

In

[Algueró, Capdevila, SDG, Masjuan, JM, PRD'19]

it was found:

Only in presence of LFU-NP a scenario $C_9^{V=-}C_{10}^{V}$ can work. True also for P_5 ?

for NP points (green, blue, red) only central values are depicted here

Results from other analysis

[Arbey, Hurth, Mahmoudi, Martinez Santos, Neshatpour]

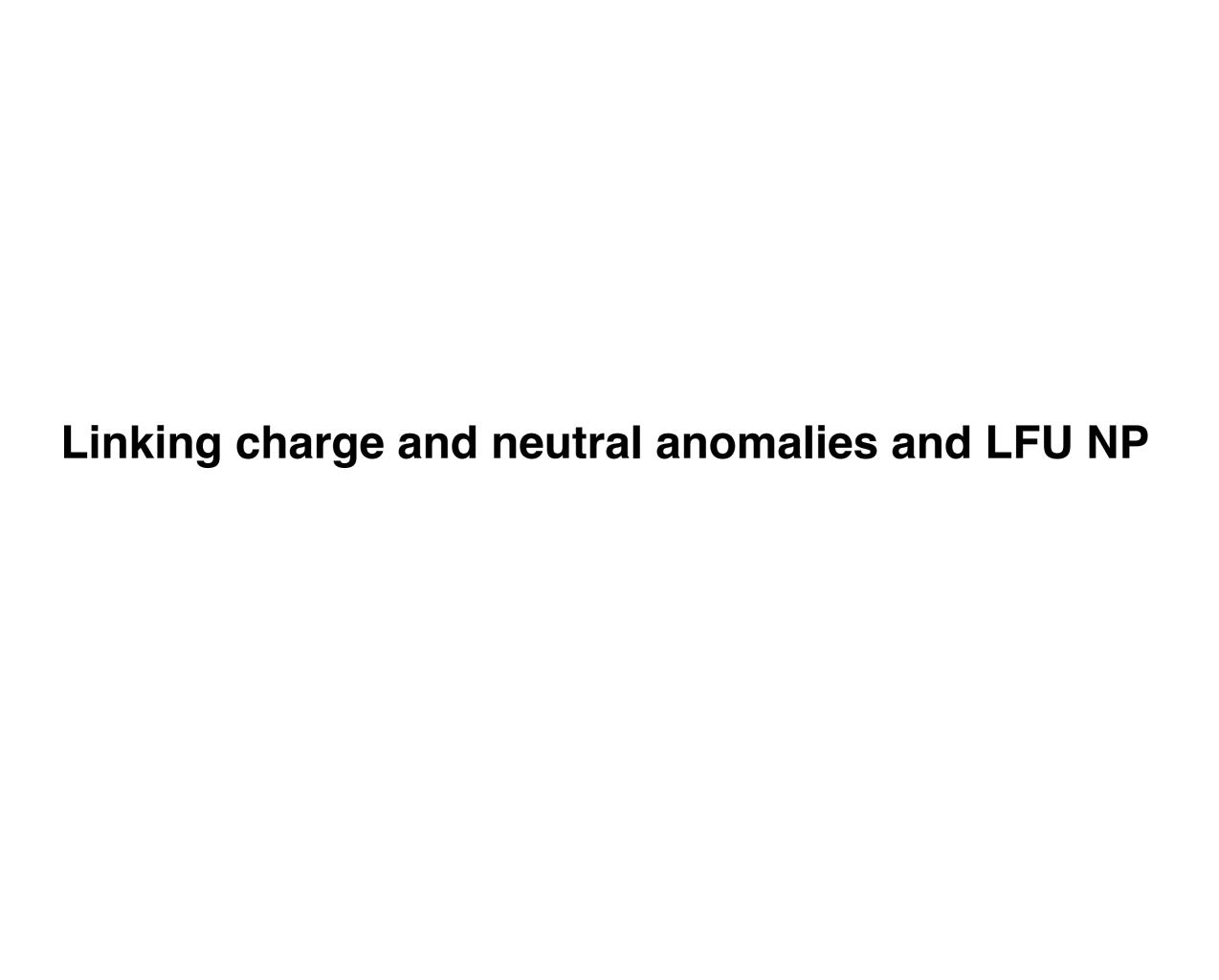
Obs: $b \to s\ell\ell$ (B, B_s) (BR, S_i) , $R_{K(*)}$, $b \to s\gamma$ not included yet latest Belle's results on P₅'. FF: light-meson LCSR+lattice

Left-handed hypothesis considered. ... similar 1D and 2D results

Confirm our hierarchy of 1D scenarios

A	All observables ($\chi^2_{\rm SM} = 117.03$)						
	b.f. value	$\chi^2_{\rm min}$	Pull _{SM}				
δC_9	-1.01 ± 0.20	99.2	4.2σ				
δC_9^{μ}	-0.93 ± 0.17	89.4	5.3σ				
δC_9^e	0.78 ± 0.26	106.6	3.2σ				
δC_{10}	0.25 ± 0.23	115.7	1.1σ				
δC_{10}^{μ}	0.53 ± 0.17	105.8	(3.3σ)				
δC_{10}^e	-0.73 ± 0.23	105.2	3.4σ				
$\delta C_{ m LL}^{\mu}$	-0.41 ± 0.10	96.6	4.5σ				
$\delta C_{ m LL}^e$	0.40 ± 0.13	105.8	3.3σ				

$$\delta \mathcal{C}_{LL}^{\ell} = \delta \mathcal{C}_{9}^{\ell} = -\delta \mathcal{C}_{10}^{\ell}$$


[Alok, Dighe, Gangal, Kumar]

122 **Obs**: $BR(b \to s\ell\ell)$ (B, B_s) , P_5' $R_{K(*)}$ FF: light-meson LCSR+lattice

Flavio based analysis: slight decrease of SM pull for $(\mathcal{C}_{9\mu}, \mathcal{C}_{10\mu})$, at the same level as $(\mathcal{C}_{9\mu}, \mathcal{C}_{9'\mu})$ and $(\mathcal{C}_{9\mu}, \mathcal{C}_{10'\mu})$...very similar results to ours

[Ciuchini et al.]

Only large-recoil obs. considered, but latest Belle results on P_5 ' incl. Flavio based analysis for FF. Bayesian approach. OK: RHC and not C_{10} .

Linking charged and neutral anomalies (step 1)

Let's move to SMEFT ($\Lambda_{NP} >> m_{t,W,Z}$)

[Grzadkowski, Iskrzynski, Misiak, Rosiek; Alonso, Grinstein, Camalich]

• **NP** contribution to : $[\bar{\mathbf{c}}\gamma^{\mu}\mathbf{P_L}\mathbf{b}][\bar{\tau}\gamma_{\mu}\mathbf{P_L}\nu_{\tau}]$ \longrightarrow $R_{J/\psi}/R_{J/\psi}^{\mathrm{SM}} = R_D/R_D^{\mathrm{SM}} = R_{D^*}/R_{D^*}^{\mathrm{SM}}$

$$R_{J/\psi}/R_{J/\psi}^{SM} = R_D/R_D^{SM} = R_{D^*}/R_{D^*}^{SM}$$

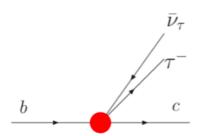
BUT who order that

(at high energy)? Only Two $SU(2)_L$ invariant operators in SMEFT @ 1st order

$$\mathcal{O}^{(1)}_{ijkl} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l],$$

$$\mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \sigma^I Q_j] [\bar{L}_k \gamma^\mu \sigma^I L_l],$$

After EWSB i=2, j=k=l=3 if C(1)=C(3)

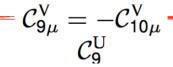

if
$$C^{(1)}=C^{(3)}$$

[Capdevila, Crivellin, SDG, Hofer, JM]

Accommodate charged $R_{D(*)}$.

OK constraints:

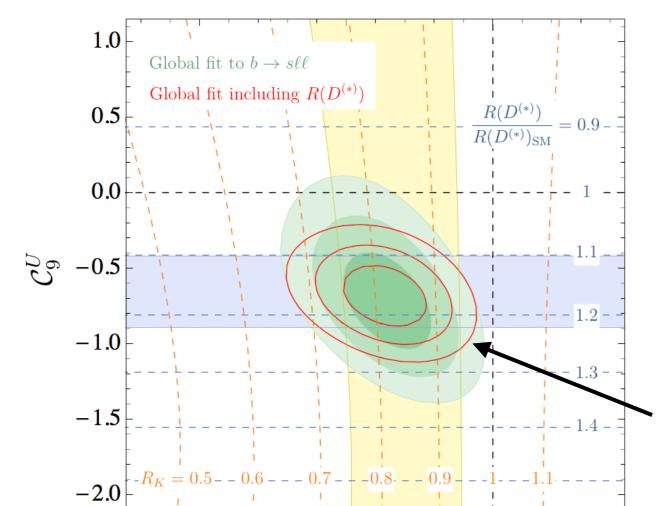
Bc lifetime, q2 distributions, but also $\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{v} \mathbf{v}$, direct searches and EWP data.



Contribution to neutral b→s TT (40)with a pattern: $C_{9(10)\tau} \simeq C_{9,10}^{SM} - (+)\Delta$ $\Delta = 2 \frac{\pi}{\alpha_{em}} \frac{V_{cb}}{V_{tb}V_{tc}^*} \left(\sqrt{\frac{R_X}{R_Y^{SM}}} - 1 \right) \simeq \mathcal{O}(100)$

10% NP w.r.t. tree-level SM \Rightarrow Huge contrib. w.r.t. loopinduced SM.

Linking anomalies with LFU NP (step 2)


Scenario 8 well motivated to link charged/neutral anomalies with LFU

• LFUV: $CV_9 = - CV_{10}$

from **0**2322

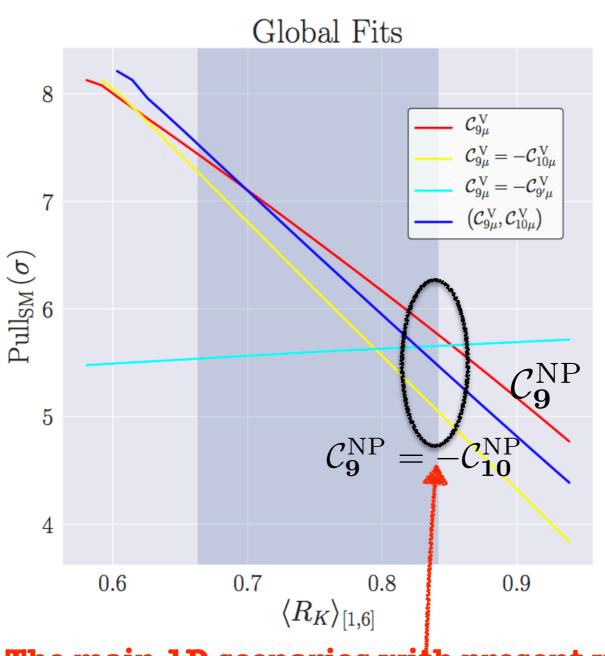
• LFU: CU₉ from radiative corrections with insertion of O₂₃₃₃

 $\mathcal{C}^V_{9\mu} = -\mathcal{C}^V_{10\mu}$

Assuming a generic flavour structure and NP at the scale \wedge :

$$\mathcal{C}_{9}^{\rm U} \approx 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};\rm SM}}}\right) \!\! \left(1 + \frac{\log(\Lambda^2/(1{\rm TeV}^2))}{10.5}\right)$$

Agreement region including new $R_{D(*)}$ from Belle, bs \rightarrow ll LFUV and LFU-NP: NP hyp. 7σ

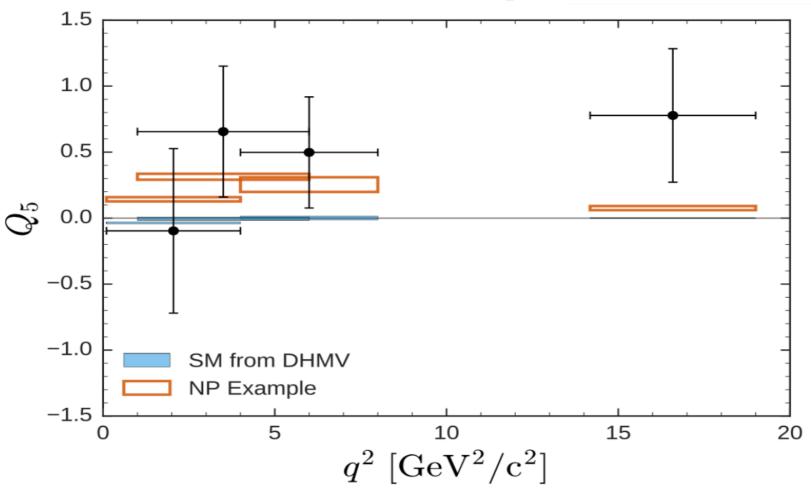

See G. Isidori for explicit UV realisations and A. Crivellin et al. PRL 2019.

Near Future next test: $Q_5=P'_{5\mu}-P'_{5e}$

What can we learn?

Q5 can disentangle relevant scenarios?

 R_K (if no-RHC are included) cannot distinguish among relevant scenarios.


[Alguerò, Capdevila, SDG, Masjuan, JM: 1902.04900]

The main 1D scenarios with present value of R_K are still too packed within 0.5 σ to disentangle the correct pattern.

Q5 can disentangle relevant scenarios?

Only Belle has been able to measure Q_5 up to now: $Q_{5[1,6]}^{Belle} = 0.656 \pm 0.496$

[S. Wehle et al. PRL118 (2017)]

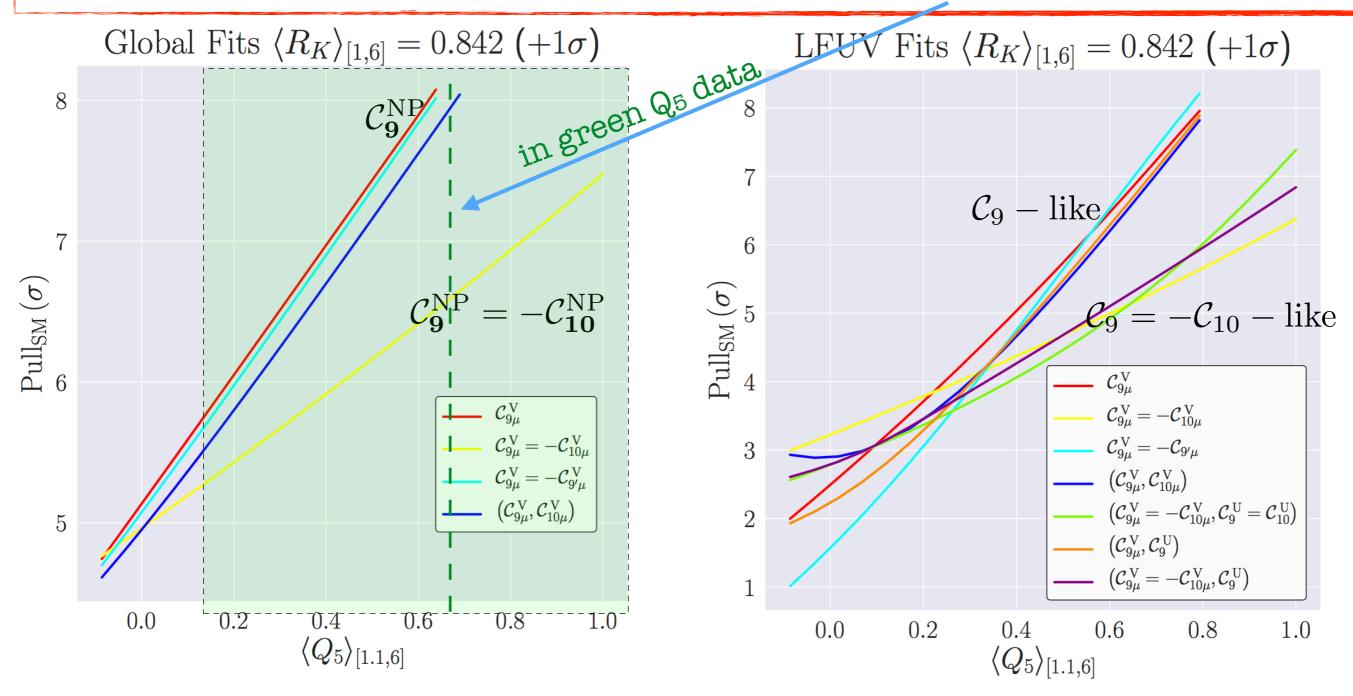


Table 2: Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

q^2 in GeV^2/c^2	Q_4	Q_5
[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

Q5 can disentangle relevant scenarios?

Instead Q_5 groups relevant scenarios differently. $Q_{5[1,6]}^{Belle} = 0.656 \pm 0.496$

All scenarios with Cv_9 are packed as well as those with Cv_9 = - Cv_{10} BUT in two

different sets. Also:

- *Q₅ positive and large would favour scenarios with $C_{9\mu}$ <-1
- * $Q_5 < 0$ or small would favour scenarios with $C_{9\mu=-}C_{10\mu}$

Conclusions

- After the updates of R_K (LHCb), R_{K^*} (Belle) and $B_s \rightarrow \mu\mu$ we find:
 - no dramatic changes in the hierarchy of 1D hypothesis: C_9 and C_9 =- C_9 ' preferred with All fit [178 obs] significance 5.8 (5.7) σ C_9 =- C_{10} preferred with LFUV fit [20 obs] significance 4.0 σ
 - 2D new emerging scenarios including RHC with C_9 '>0 & C_{10} '<0: $(C_{9\mu}, C'_{9\mu} = -C'_{10\mu})$ (6.1 σ)
- LFU-NP structure is **quite dependent** on LFUV-NP structure: A $C_9^{V}=-C_{10}^{V}$ struct. provides a good description only in presence of C_9^{U}
- We have found a link of charged & neutral anomalies & LFU NP in scn 8.
- While R_K cannot disentangle scenarios, a measurement of Q_5 such that:
 - -Q₅ **positive and large** would **favour** scenarios with $C_{9\mu}$ <-1 -Q₅ < 0 or small would **favour** scenarios with $C_{9\mu}$ =- $C_{10\mu}$
 - new data on Q_5 , R_{ϕ} , updated optimized observables is essential. Belle II inputs are also crucial.

BACK-UP

P5' anomaly: Lepton Flavour Dependent

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

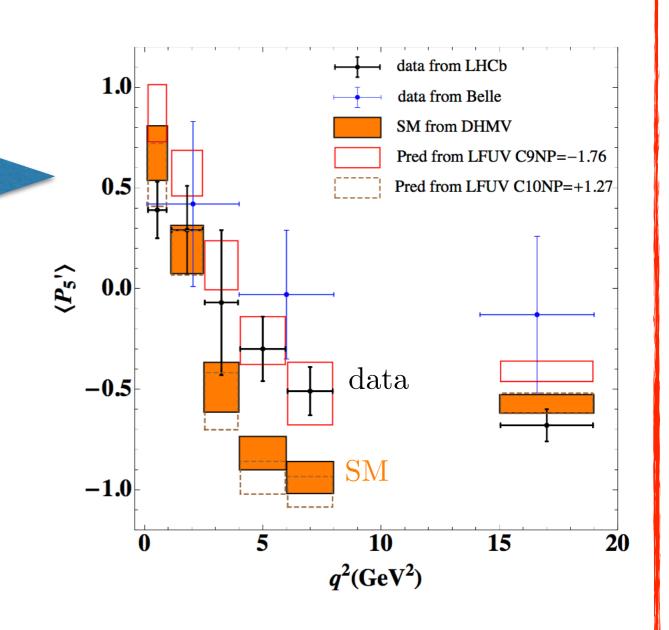
LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

P₅' anomaly: Lepton Flavour Dependent

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:


LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

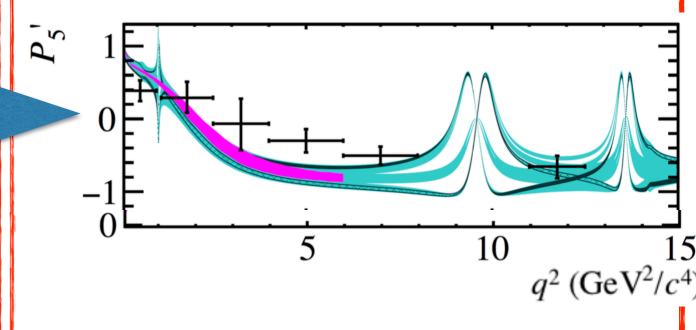
LD effects from analyticity:

(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

P₅' anomaly: Lepton Flavour Dependent

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:


LCSR by Khodjamirian + s_i const/destr interference.

Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

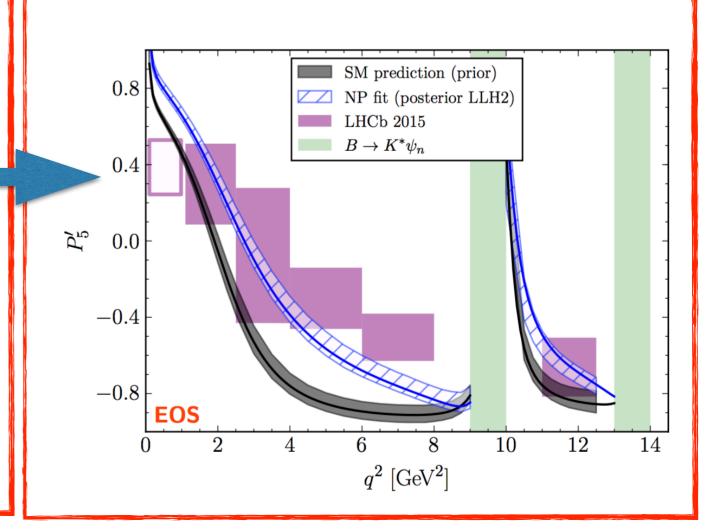
(fixes q² dep. up to pol. & systematic) Bobeth et al.'18

P₅' anomaly: Lepton Flavour Dependent

Different theory approaches to estimate/predict "LD charm":

Long distance non-factorizable:

LCSR by Khodjamirian + s_i const/destr interference.


Empirical model to determine the impact of resonances:

(amp. analysis+BW) Blake et al. '17

LD effects from analyticity:

(fixes q² dep. up to pol. & systematic)

Bobeth et al.'18

