New physics implication from Kaon physics

WIN2019 (Bari Italy) 4th June 2019

Kei Yamamoto
(University of Zurich/Hiroshima University)
Why Kaon? & What’s new?

- Kaon observables are sensitive to NP at a very high scale, which is not accessible at the LHC

- FCNC and CP violation in Kaon system are suppressed in the SM

\[\mathcal{L}_{eff} = \mathcal{L}^{SM} + \frac{1}{\Lambda_{NP}^2} \sum_i C_i \mathcal{O}_i^{\text{dim6}} \]

If \(|C_{NP}| \sim 1 \)

\[\Lambda_{NP} \sim \begin{cases} \mathcal{O}(10^5 \text{TeV}) & : K^0 \\ \mathcal{O}(10^4 \text{TeV}) & : D^0 \\ \mathcal{O}(10^3 \text{TeV}) & : B_{d,s} \end{cases} \]

- Several on-going experiments for Kaon observables (KOTO/NA62...)

🌟 Using recent result of lattice calculation, there is discrepancy in \(\varepsilon'/\varepsilon \) between SM value and data
ε and ε'

1964 $K_L \rightarrow 2\pi$ was observed

Discovery of CP violation

\[|K_L\rangle = |K_2\rangle + \varepsilon |K_1\rangle \]

Direct CPV (decay) ε'

\[\eta_{00} = \frac{A(K_L \rightarrow \pi^0\pi^0)}{A(K_S \rightarrow \pi^0\pi^0)} \equiv \varepsilon - 2\varepsilon' \]

Indirect CPV (mixing) ε

\[\frac{\eta_{00}}{\eta_{+-}} \simeq 1 - 6\text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) \]

Direct CPV (decay) ε'

\[\eta_{+-} = \frac{A(K_L \rightarrow \pi^+\pi^-)}{A(K_S \rightarrow \pi^+\pi^-)} \equiv \varepsilon + \varepsilon' \]

\[\varepsilon = \mathcal{O}(10^{-3}) \quad \text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) = \mathcal{O}(10^{-3}) \quad \varepsilon' = \mathcal{O}(10^{-6}) \]

Highly suppressed and sensitive to NP
\(\varepsilon'/\varepsilon \)

\[
\frac{\varepsilon'}{\varepsilon} = -\frac{\omega}{\sqrt{2}} |\varepsilon|_{\text{exp}} \text{Re} A_0
\]

\[
A(K^0 \rightarrow (\pi\pi)_{I=0,2}) = A_{0,2}e^{i\delta_{0,2}}
\]

\[
\left(\frac{\text{Im} A_0}{\text{Im} A_2} - \frac{1}{\omega} \right)
\]

QCD penguin operator

EW penguin operator

\[
\frac{\text{Re} A_0}{\text{Re} A_2} \equiv \frac{1}{\omega} = 22.46 \quad (\text{exp.})
\]

In the SM, there is accidental cancellation between \(\text{Im} A_0 \) and \(\text{Im} A_2 \) due to the enhancement factor \(1/\omega \)

EW penguin is comparable to QCD penguin due to the enhancement factor

\(4/19 \)
\[\langle (\pi\pi)_I | \mathcal{H} | K^0 \rangle = \sum_n C_n \langle (\pi\pi)_I | \mathcal{O}_n | K^0 \rangle\]

Short distance
- NLO result has been available since early 90’s
- NNLO QCD calculation is in progress

Long distance (Matrix elements)
- First lattice result by RBC-UKQCD in 2015

From the lattice result, \(\varepsilon'/\varepsilon\) has been calculated in SM using data for ReA_{0,2}.

\[
\begin{align*}
\left(\frac{\varepsilon'}{\varepsilon}\right)_{\text{SM}} &= (1.06 \pm 5.07) \times 10^{-4} \\
\left(\frac{\varepsilon'}{\varepsilon}\right)_{\text{Exp}} &= (16.6 \pm 2.3) \times 10^{-4}
\end{align*}
\]

Kitahara, Nierste and Tremper, 1607.06727
C.f. RBC-UKQCD / Buras, Gorbahn, Jager and Jamin 1507.06345

average of NA48 and KTeV

2.8σ difference NP in \(\varepsilon'/\varepsilon\)?
ε'/ε discrepancy

- O₆ & O₈ have dominant effects on ε'/ε due to chiral enhancement

\[
\begin{align*}
\langle (\pi\pi)_0 | \mathcal{O}_6 | K \rangle & \propto B_6^{(1/2)} \\
\langle (\pi\pi)_2 | \mathcal{O}_8 | K \rangle & \propto B_8^{(3/2)}
\end{align*}
\]

- Values extracted from the lattice result

\[B_6^{(1/2)} = 0.57 \pm 0.19 \quad B_8^{(3/2)} = 0.76 \pm 0.05 \]

- Error for ε'/ε is dominated by \(B_6^{(1/2)} \)

- Two ways of analytic approaches

|-----------------------------------|-----------------------------|-----------|---|
| \(B_6^{(1/2)} \leq B_8^{(3/2)} < 1 \) | \(\left(\frac{\epsilon'}{\epsilon} \right)_{\text{SM}} < (6.0 \pm 2.4) \times 10^{-4} \) | \(B_6^{(1/2)} \sim 1.5 \) \(B_8^{(3/2)} \sim 0.9 \) | \(\left(\frac{\epsilon'}{\epsilon} \right)_{\text{SM}} = (15 \pm 7) \times 10^{-4} \)

Result in DQCD approach gives support to lattice result. On the other hand, result in ChPT is consistent with data.

- Wait for improved lattice results
\(\varepsilon' / \varepsilon \) at Lattice study

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Exp. data</th>
<th>Lattice QCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReA_0 [10^{-7} \text{ GeV}]</td>
<td>3.322 \pm 0.001 [1]</td>
<td>4.66 \pm 1.00 \pm 1.26 [2]</td>
</tr>
<tr>
<td>ImA_0 [10^{-11} \text{ GeV}]</td>
<td>---</td>
<td>-1.90 \pm 1.23 \pm 1.08 [2]</td>
</tr>
<tr>
<td>ReA_2 [10^{-8} \text{ GeV}]</td>
<td>1.479 \pm 0.003 [1]</td>
<td>1.50 \pm 0.04 \pm 0.14 [3]</td>
</tr>
<tr>
<td>ImA_2 [10^{-13} \text{ GeV}]</td>
<td>---</td>
<td>-6.99 \pm 0.20 \pm 0.84 [3]</td>
</tr>
</tbody>
</table>

- ReA_0, ReA_2 are consistent with exp. Data \(\rightarrow \Delta l = 1/2 \) rule is confirmed

- Calculated \(l=0 \) \(\pi \pi \) scattering phase shift of was smaller than measured value

\[
\delta_0 = 23.8(4.9)(1.2)^\circ \quad 2015 \quad (\delta_0)_{\text{exp}} = 38.3(1.3)^\circ
\]

\(\rightarrow \) New preliminary result \(\text{RBC-UKQCD preliminary, 2018} \)

\[
\delta_0 = 30.9(1.5)(3.0)^\circ \quad \text{“Puzzle is resolved“}
\]

- Lattice update with higher statistics will appear soon
Motivated by ε'/ε discrepancy, several new physics models have been studied:

- **Little Higgs Model with T-parity**
 - Blanke, Buras and Recksiegel 1507.06316
- **Modified Z scenario**
 - Buras, Buttazzo and Knegjens 1507.08672/Buras, 1601.00005
 - Endo, Kitahara, Mishima and KY 1612.08839/Bobeth, Buras, Celis and Jung 1703.04753
- **Z’ models**
 - Buras, Buttazzo, Knegjens 1507.08672 /Buras 1601.00005
 - Endo, Kitahara, Mishima and KY 1608.01444
- **331 model**
 - Buras and De Fazio 1512.02869/1604.02344
- **MSSM Chargino Z penguin**
 - Endo, Mishima, Ueda and KY 1603.07960
 - Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959
- **Gluino Z penguin**
 - Tanimoto and KY 1603.07960
 - Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959
- **Gluino Box**
 - Kitahara, Nierste and Tremper 1604.07400, 1703.05786
 - Crivellin, D’Ambrosio, Kitahara, Nierste 1712.04959
 - Chobanova, D’Ambrosio, Kitahara, Martínez, Santos, Fernández and KY 1711.11030
- **Vector-like quarks**
 - Bobeth, Buras, Celis and Jung 1609.04783
- **Right handed current**
 - Cirigliano, Dekens, Vries and Mereghetti 1612.03914
 - Alioli, Cirigliano, Dekens, de Vries and Mereghetti 1703.04751
- **Leptoquark**
 - Bobeth and Buras 1712.01295
- **LR symmetric model**
 - Haba, Umeeda and Yamada 1802.09903/1806.0342
- **Type-III 2HDM**
 - Chen and Nomura 1804.06017/1805.07522
 - Matsuzaki, Nishiwaki and KY 1806.02312
- **Flavorful composite vectors**
 - Chen and Nomura 1808.04097
 - Matsuzaki, Nishiwaki and KY 1806.02312
- **Diquark model**
 - Chen and Nomura 1808.04097
- **3HDM**
 - Marzola and Raidal 1901.08290
- **General 2HDM**
 - Iguro and Omura, 1905.11778
ε’/ε beyond the SM

\[
\frac{\epsilon'_K}{\epsilon_K} = -\frac{\omega}{\sqrt{2} |\epsilon_K|_{\exp} \text{Re} A_0} \left(\text{Im} A_0 - \frac{1}{\omega} \text{Im} A_2 \right)
\]

- CPV effect
- ImA2 is enhanced by enhancement factor 1/ω
- SM effect is small due to this accidental cancellation

- NP in ImA0 or (and) ImA2

ImA2 ... have enhancement factor 1/ω

ImA0 ... likely to result in huge contribution to ϵ_K

→ NP in ImA2 is likely
ε’/ε beyond the SM

- **Master formulae for ε’/ε**
 - Aebischer, Bobeth, Buras, Gérard and Straub 1807.02520

 Master formula including BSM operators is derived with DQCD

 \[
 \left(\frac{\varepsilon'}{\varepsilon} \right)_{BSM} = \sum_{i} P_{i}(\mu_{W}) \text{Im} \left[C_{i}(\mu_{W}) - C'_{i}(\mu_{W}) \right]
 \]

 \(P_{i} \): Hadronic matrix elements + RG effects

- Most efficient operators explaining ε’/ε anomaly

 \[
 \begin{align*}
 O^{u}_{VLR} &= (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha})(\bar{u}^{\beta}\gamma^{\mu}P_{R}d^{\beta}) \\
 \tilde{O}^{u}_{VLR} &= (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha})(\bar{u}^{\beta}\gamma^{\mu}P_{R}d^{\alpha}) \\
 O^{d}_{VLR} &= (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha})(\bar{d}^{\beta}\gamma^{\mu}P_{R}d^{\beta}) \\
 \tilde{O}^{d}_{VLR} &= (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha})(\bar{d}^{\beta}\gamma^{\mu}P_{R}d^{\alpha})
 \end{align*}
 \]

 - SM type operators
 - HME calculated by Lattice & DQCD
 - Generate O6(ImA0) & O8(ImA2)

 \[
 \begin{align*}
 O^{u}_{TLL} &= (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta}) \\
 \tilde{O}^{u}_{TLL} &= (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}d^{\alpha}) \\
 O^{d}_{TLL} &= (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{d}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta}) \\
 \tilde{O}^{d}_{TLL} &= (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{d}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta}) \\
 O^{u}_{SLR} &= (\bar{s}^{\alpha}P_{L}d^{\alpha})(\bar{u}^{\beta}P_{R}u^{\beta})
 \end{align*}
 \]

 - New scalar & tensor Operators
 - HME calculated by only DQCD

- **NP scenario**
 - New heavy vectors
 - Modified Z penguin
 (MSSM, VLQ, LHT, ...)

- **Heavy scalars**

- **Chrome magnetic operator <O_{8g}>** (calculated by Lattice & DQCD)
 - would be suppressed
ε'/ε beyond the SM

- Model independent approach

The constraints from K^0 and D^0 mixing as well as EDM are potentially important

- Z penguin scenario

$\Delta S=1$ operators generate $\Delta S=2$ contributions, through top-Yukawa enhanced RG evolution

\[
\begin{align*}
(H^\dagger i \bar{D}_\mu H) (\bar{s}_R \gamma^\mu d_R) & \quad \xrightarrow{\text{RG evolution}} \quad (\bar{s}_R \gamma^\mu d_R) Z_\mu \\
\Delta F=2 \text{ operator} \quad & \quad (\bar{s}_L \gamma^\mu d_L)(\bar{s}_R \gamma^\mu d_R)
\end{align*}
\]
\[\varepsilon' / \varepsilon \text{ beyond the SM} \]

- NP in \(\varepsilon' / \varepsilon \) also affect other observables

- \(\Delta S=2 \) process \(\varepsilon_K \) and \(\Delta M_K \) give severe constraint

 Some model need tuning to avoid this constraint

- Kaon rare decay \(K_L \rightarrow \pi^0 \nu \bar{\nu} \) and \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \) could be good probe

 Pure imaginary. Strong correlation with \(\varepsilon' / \varepsilon \)

- B observables have correlation (and become constraint) in some models

- Other observables (EDM)

- Different implications (correlations & predictions) for other observables appear depending on models \(\Rightarrow \) Possibility of model discriminations

\[\star K \rightarrow \pi \nu \bar{\nu} \]

\[\star \text{Correlation with B anomalies} \]
\(K_L \rightarrow \pi^0 \nu \bar{\nu} \) and \(K^+ \rightarrow \pi^+ \nu \bar{\nu} \)

- Highly suppressed in SM: \(\text{BR}_{\text{SM}} \approx 10^{-11} \)
- Theoretically clean (Hadronic matrix element can be estimated using isospin sym.)
- \(K_L \rightarrow \pi^0 \nu \bar{\nu} \) is purely CP violating mode

\[K^+ \rightarrow \pi^+ \nu \bar{\nu} \]

NA62@CERN

- NA62 at CERN observed one event in 2016 data

 \[
 \text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\text{SM}} = (9.11 \pm 0.72) \times 10^{-11}
 \]

 \[
 \text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\text{exp}} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}
 \]

 \(< 14 \times 10^{-10} (95\% \text{C.L.}) \quad \text{BNL 949/E787} \quad \text{New 2018}\)

- Expected about 20 SM events from the 2017-2018 data sample

\[K_L \rightarrow \pi^0 \nu \bar{\nu} \]

KOTO@J-PARC

- KOTO at J-PARC reported result from the 2015 data last summer

 \[
 \text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu})_{\text{SM}} = (3.00 \pm 0.30) \times 10^{-11}
 \]

 \[
 \text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu})_{\text{exp}} < 2.6 \times 10^{-8} (90\% \text{C.L.})
 \]

 \(< 3.0 \times 10^{-9}(90\% \text{C.L.}) \quad \text{E391a} \quad \text{New 2018}\)

- KOTO-phase2 aims to measure at 10% accuracy
There are interesting correlations between Kaon observables depending on the chiral structure of coupling (LH and/or RH)

\[\text{Re} \left(\frac{\epsilon'}{\epsilon} \right) \propto -\text{Im} \Delta_{L}^{sd} - 3 \text{Im} \Delta_{R}^{sd} + \cdots \]

\[\text{BR}(K^+ \to \pi^+ \nu \bar{\nu}) \propto |X| + \cdots \]

\[\text{BR}(K_L \to \pi^0 \nu \bar{\nu}) \propto (\text{Im } X)^2 \]

\[|\epsilon_K| \propto \text{Im} \left[(\Delta_{L}^{sd})^2 + (\Delta_{R}^{sd})^2 - 240 \Delta_{L}^{sd} \Delta_{R}^{sd} \right] \]

\[\Delta_{L}^{sd} (Z) = 0 \]

\[\Delta_{R}^{sd} (Z) = -0.5 \Delta_{L}^{sd} (Z) \]

LH Scenario \(\Rightarrow \) negative correlation

LH+RH Scenario \(\Rightarrow \) positive correlation

Examples
Examples

Chargino Z penguin

Endo, Mishima, Ueda and KY
1608.01444

Large trilinear couplings bring enhancement of ε'/ε

LH Z scenario → negative correlation between ε'/ε and $K \to \pi 0\nu\nu$

- ε'/ε ↔ SUSY scale <4–6 TeV

- $BR(K_L \to \pi^0 \nu\bar{\nu}) < 0.6$ SM
- $BR(K^+ \to \pi^+ \nu\bar{\nu})$ O(10–100%) effect

Gluino box

Crivellin, D’Ambrosio, Kitahara and Nierste
1703.05786

Large isospin breaking ($m_U \neq m_D$) gives effect on ΔA_2

- $m_{\tilde{U}} = 1.5$ TeV, $m_L = 300$ GeV

Different correlations between ε'/ε and $K \to \pi \nu\nu$ may allow to distinguish among models

- $BR(K_L \to \pi^0 \nu\bar{\nu}) < 0.6$ SM → KOTO
- $BR(K^+ \to \pi^+ \nu\bar{\nu}) < 1.4$ SM → NA62
B anomalies

Lepton flavor universality Violation (LFUV) in semi-leptonic B decays

\[b \rightarrow c \tau \nu \]

\[R_{D^{(*)}} = \frac{\mathcal{B}(B \rightarrow D^{(*)}\tau\nu)}{\mathcal{B}(B \rightarrow D^{(*)}\ell\nu)} \]

~3σ excess over the SM

\[b \rightarrow s \ell\ell \]

\[R_{K^{(*)}} = \frac{\mathcal{B}(B \rightarrow K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \rightarrow K^{(*)}e^+e^-)} \]

~2.5σ less over the SM

Correlation with ε'/ε?
ε'/ε ↔ B anomalies

Possibility of simultaneous explanation of them are discussed in several models:

- **Z model** is not favored by anomalies in $b \to s$ transitions, which suggest large C_9^{NP} due to smallness of the vector coupling to charged lepton:

 \[
 O_9 = (\bar{s}_L \gamma_\mu b_L)(\bar{\mu} \gamma^\mu \mu) (1 - 4s_w^2)
 \]

 In Z model, it is hard to produce large C_9^{NP} due to smallness of the vector coupling to charged lepton.

- In **Leptoquark model**, which is one of strong candidate of NP model realizing B anomalies, it is difficult to explain ε'/ε because of bounds from rare Kaon decays. \[\text{Christoph and Buras 1712.01295}\]

- **2HDM + νR** can address $R_{K(*)}$ and ε'/ε. \[\text{Iguro and Omura, 1905.11778}\]

- **3HDM + νR** can access $R_{D(*)}, R_{K(*)}$ and ε'/ε. \[\text{Marzo, Marzola and Raidal 1901.08290}\]

- **Composite model** can access $R_{K(*)}$ and ε'/ε. \[\text{Matsuzaki, Nishiwaki and KY 1806.02312}\]
$\varepsilon'/\varepsilon \Leftrightarrow B$ anomalies - Example -

Flavorful composite vectors

Matsuzaki, Nishiwaki and KY 1806.02312

New vector particles: G', Z', W', Leptoquark(LQ)

are included as composite vectors

ε'/ε (K$\to\pi\pi$)

Flavor texture: Assume pure imaginary
(to avoid ε_K constraint)

ε'/ε

$g_{\rho L}^{ij} = \begin{pmatrix} 0 & i g_{\rho L}^{12} & 0 \\ i (g_{\rho L}^{12})^* & 0 & 0 \\ 0 & 0 & g_{\rho L}^{33} \end{pmatrix}$

B anomaly

The correlation b/w ε'/ε and B obs. appear in K$\to\pi\nu\nu$

$K\to\pi\nu\nu$

$R(K^*)$ & ε'/ε (2σ)

$\Leftrightarrow 1.5 < BR(K^+\to\pi^+\nu\nu)/SM$

$\Leftrightarrow 10 < BR(K_L\to\pi^0\nu\nu)/SM$
Summary

Kaon physics is highly suppressed and sensitive to NP

2.8σ discrepancy in direct CPV of Kaon ε'/ε

Many experiments are on-going, and could allow us to discriminate NP models

Kaon physics will continue to offer a powerful probe for NP!