New physics implication from Kaon physics

WIN2019 (Bari Italy) 4th June 2019

Why Kaon? & What's new?

- Kaon observables are sensitive to NP at a very high scale, which is not accessible at the LHC
 - FCNC and CP violation in Kaon system are suppressed in the SM

Several on-going experiments for Kaon observables (KOTO/NA62...)

Vsing recent result of lattice calculation, there is discrepancy in ε'/ε between SM value and data

ϵ and ϵ'

1964 $K_L \rightarrow 2\pi$ was observed *Discovery of CP violation*

$$\eta_{00} \equiv \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \equiv \epsilon - 2\epsilon' \qquad \eta_{+-} \equiv \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \equiv \epsilon + \epsilon'$$

Indirect CPV (mixing)
$$\epsilon$$

 $|\epsilon| \simeq \frac{1}{3} (|\eta_{00}| + 2|\eta_{+-}|)^s \overline{\frac{u,c,t}{d}}_{W} \underbrace{u,c,t}_{W} \frac{u,c,t}{\bar{s}} \overline{s}$

$$Direct CPV (decay) \epsilon'$$
 $|\frac{\eta_{00}}{\eta_{+-}}|^2 \simeq 1 - 6 \operatorname{Re} \left(\frac{\epsilon'}{\epsilon}\right) \quad s \underbrace{\frac{g/Z/\gamma}{\epsilon}}_{W} \underbrace{\frac{u,d}{\bar{u},\bar{d}}}_{\bar{d}} \frac{1}{\epsilon} \underbrace{\frac{g/Z/\gamma}{\epsilon}}_{W} \underbrace{\frac{u,d}{\bar{u},\bar{d}}}_{\bar{d}} \frac{1}{\epsilon} \underbrace{\frac{g/Z/\gamma}{\epsilon}}_{\bar{d}} \underbrace{\frac{u,d}{\bar{u},\bar{d}}}_{\bar{d}} \frac{1}{\epsilon} \underbrace{\frac{g/Z/\gamma}{\epsilon}}_{\bar{d}} \underbrace{\frac{u,d}{\bar{u},\bar{d}}}_{\bar{d}} \frac{1}{\epsilon} \underbrace{\frac{g/Z/\gamma}{\epsilon}}_{\bar{d}} \underbrace{\frac{g/Z/\gamma}{\epsilon}}_$

$$\epsilon = \mathcal{O}(10^{-3}) \quad \operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \mathcal{O}(10^{-3}) \quad \epsilon' = \mathcal{O}(10^{-6})$$

Highly suppressed and sensitive to NP

ε'/ε

$$A(K^{0} \rightarrow (\pi\pi)_{I=0,2}) = A_{0,2}e^{i\delta_{0,2}}$$

$$\frac{\epsilon'}{\epsilon} = -\frac{\omega}{\sqrt{2} |\epsilon|_{\exp} \operatorname{Re}A_{0}} \left(\operatorname{Im}A_{0} - \frac{1}{\omega} \operatorname{Im}A_{2} \right)$$

$$QCD \text{ penguin operator} \qquad EW \text{ penguin operator}$$

$$\underbrace{s = \frac{g \notin u, d}{\delta - \sqrt{\sqrt{\sqrt{w}}} - d}}_{d}$$

$$\underbrace{s = \frac{\gamma, Z^{0} \oint u, d}{\delta - \sqrt{\sqrt{\sqrt{w}}} - d}}_{d}$$

$$\underbrace{A(H^{0} \rightarrow (\pi\pi)_{I=0,2}) = \frac{1}{\omega} = 22.46 \quad (exp.)$$

In the SM, there is accidental cancellation between ImA_0 and ImA_2 due to the enhancement factor $1/\omega$

EW penguin is comparable to QCD penguin due to the enhancement factor

ε'/ε discrepancy

Short distance Matrix element $\langle (\pi\pi)_I | \mathcal{H} | K^0 \rangle = \sum_n C_n \langle (\pi\pi)_I | \mathcal{O}_n | K^0 \rangle$

Short distance

- NLO result has been available since early 90's
- NNLO QCD calculation is in progress Cerda-Sevilla, Gorbahn, Jager, Kokulu 1611.08276
- Long distance (Matrix elements)
 - First lattice result by RBC-UKQCD in 2015 1502.00263 1505.07863

From the lattice result, ϵ'/ϵ has been calculated in SM using data for ReA_{0,2}

$$\begin{split} & \underset{\text{with Lattice}}{\text{SM}} \left(\frac{\epsilon'}{\epsilon}\right)_{\text{SM}} = (1.06 \pm 5.07) \times 10^{-4} & \text{Kitahara, Nierste and Tremper, 1607.06727} \\ & \underset{\text{c.f. RBC-UKQCD / Buras, Gorbahn, Jager and Jamin 1507.06345}}{\text{Exp}} & \left(\frac{\epsilon'}{\epsilon}\right)_{\text{exp}} = (16.6 \pm 2.3) \times 10^{-4} & \text{average of NA48 and KTeV} \end{split}$$

2.8\sigma difference NP in ϵ'/ϵ ?

ε'/ε discrepancy

SM with Lattice

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM} = (1.06 \pm 5.07) \times 10^{-4}$$
 difference $\left(\frac{\epsilon'}{\epsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4}$

 $O_6 \& O_8$ have dominant effects on ϵ'/ϵ due to chiral enhancement

 $\begin{array}{l} \langle (\pi\pi)_0 | \mathcal{O}_6 | K \rangle \propto B_6^{(1/2)} \\ \langle (\pi\pi)_2 | \mathcal{O}_8 | K \rangle \propto B_8^{(3/2)} \end{array} \begin{array}{l} \text{Non-perturbative} \\ \text{parameter} \end{array}$

 $B_6^{(1/2)} = 0.57 \pm 0.19$ $B_8^{(3/2)} = 0.76 \pm 0.05$

QCD penguin
$$O_6 = (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_q (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

EW penguin $O_8 = \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_q^q e_q(\bar{q}_{\beta}q_{\alpha})_{V+A}$

Buras, Buttazzo, Girrbach-Noe and Knegjens 1503.02693

Error for ε'/ε is dominated by $B_6^{(1/2)}$

Values extracted from the lattice result

Two ways of analytic approaches

Large N_C Dual QCD approachBuras and Gérard
1507.06326ChPT (FSI)Gisbert and Pich 1712.06147
hep-ph/0007208 $B_6^{(1/2)} \le B_8^{(3/2)} \le 1$ $\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM}^{} < (6.0 \pm 2.4) \times 10^{-4}$ $B_6^{(1/2)} \sim 1.5$
 $B_8^{(3/2)} \sim 0.9$ $\left(\frac{\epsilon'}{\epsilon}\right)_{\rm SM}^{} = (15 \pm 7) \times 10^{-4}$

Result in DQCD approach gives support to lattice result. On the other hand, result in ChPT is consistent with data

Wait for improved lattice results

ε'/ε at Lattice study

Amplitude	Exp. data	Lattice QCD
${\rm Re}A_0~[10^{-7}~{\rm GeV}]$	3.322 ± 0.001 [1]	$4.66 \pm 1.00 \pm 1.26 \ [2]$
${\rm Im} A_0 ~[10^{-11} ~{\rm GeV}]$		$-1.90 \pm 1.23 \pm 1.08 \ [2]$
$\operatorname{Re}A_2$ [10 ⁻⁸ GeV]	1.479 ± 0.003 [1]	$1.50 \pm 0.04 \pm 0.14$ [3]
${\rm Im}A_2 \ [10^{-13} \ {\rm GeV}]$		$-6.99 \pm 0.20 \pm 0.84 \; [3]$

[1] Buras et al., 1507.06345
[2]RBC-UKQCD, 1505.07863
[3] RBC-UKQCD, 1502.00263

ReA0, ReA2 are consistent with exp. Data $\rightarrow \Delta I=1/2$ rule is confirmed

Calculated I=0 $\pi\pi$ scattering phase shift of was smaller than measured value

$$\delta_0 = 23.8(4.9)(1.2)^{\circ}$$
 2015 $(\delta_0)_{exp} = 38.3(1.3)^{\circ}$

 \rightarrow New preliminary result RBC-UKQCD preliminary, 2018

 $\delta_0 = 30.9(1.5)(3.0)^\circ$ "Puzzle is resolved"

Lattice update with higher statistics will appear soon

Motivated by ϵ'/ϵ discrepancy, several new physics models have been studied

Little Higgs Model with	h T-parity Blanke, Buras and Recksiegel 1507.06316		
Modified Z scenario	Buras, Buttazzo and Knegjens1507.08672/Buras, 1601.00005		
	Endo, Kitahara, Mishima and KY 1612.08839/Bobeth, Buras, Celis and Jung 1703.04753		
Z' models	Buras, Buttazzo, Knegjens 1507.08672 /Buras 1601.00005		
331 model	Buras and De Fazio 1512.02869/1604.02344		
MSSM Chargino Z pen	guin Endo, Mishima, Ueda and KY 1608.01444		
Gluino Z pengu	in Tanimoto and KY 1603.07960		
	Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959		
Gluino Box	Kitahara, Nierste and Tremper 1604.07400,1703.05786		
	Crivellin, D'Ambrosio, Kitahara, Nierste 1712.04959		
	Chobanova, D'Ambrosio,Kitahara, Martínez, Santos, Fernández and KY 1711.11030		
Vector-like quarks	Bobeth, Buras, Celis and Jung 1609.04783		
Right handed current	Cirigliano, Dekens, Vries and Mereghetti 1612.03914		
	Alioli, Cirigliano, Dekens, de Vries and Mereghetti 1703.04751		
Leptoquark	Bobeth and Buras 1712.01295		
LR symmetric model	Haba,Umeeda and Yamada 1802.09903/1806.0342		
Type-III 2HDM	Chen and Nomura 1804.06017/1805.07522		
Flavorful composite ve	ctors Matsuzaki, Nishiwaki and KY 1806.02312		
Diquark model	Chen and Nomura 1808.04097		
3HDM	Marzola and Raidal 1901.08290		
General 2HDM	Iguro and Omura, 1905.11778		

$$\frac{\epsilon'_K}{\epsilon_K} = -\frac{\omega}{\sqrt{2} |\epsilon_K|_{\text{exp}} \text{Re}A_0} \left(\text{Im}A_0 - \frac{1}{\omega} \text{Im}A_2 \right)$$
22.4

- CPV effect
- ImA2 is enhanced by enhancement factor $1/\omega$
- SM effect is small due to this accidental cancellation

NP in ImA_0 or (and) ImA_2

 ImA_2 ... have enhancement factor $1/\omega$

 ${\sf ImA}_0$... likely to result in huge contribution to ϵ_K

 \rightarrow NP in ImA₂ is likely

Master formulae for ϵ'/ϵ Aebischer, Bobeth, Buras, Gérard and Straub 1807.02520

Master formula including BSM operators is derived with DQCD

$$\left(\frac{\varepsilon'}{\varepsilon}\right)_{\text{BSM}} = \sum_{i} P_i(\mu_W) \text{ Im} \left[C_i(\mu_W) - C'_i(\mu_W)\right]$$

$$P_i: \text{Hadronic matrix elements + RG effects}$$

Most efficient operators explaining ϵ'/ϵ anomaly

$$\begin{array}{l} O_{VLR}^{u} = (\bar{s}^{\alpha} \gamma_{\mu} P_{L} d^{\alpha}) (\bar{u}^{\beta} \gamma^{\mu} P_{R} d^{\beta}) \\ \tilde{O}_{VLR}^{u} = (\bar{s}^{\alpha} \gamma_{\mu} P_{L} d^{\beta}) (\bar{u}^{\beta} \gamma^{\mu} P_{R} d^{\alpha}) \\ O_{VLR}^{d} = (\bar{s}^{\alpha} \gamma_{\mu} P_{L} d^{\alpha}) (\bar{d}^{\beta} \gamma^{\mu} P_{R} d^{\beta}) \\ \tilde{O}_{VLR}^{d} = (\bar{s}^{\alpha} \gamma_{\mu} P_{L} d^{\beta}) (\bar{d}^{\beta} \gamma^{\mu} P_{R} d^{\alpha}) \end{array} \right\} \begin{array}{l} \text{SI} \\ \text{H} \\ \text{H}$$

SM type operators HME calculated by Lattice & DQCD Generate O6(ImA0) & O8(ImA2) NP scenario

New heavy vectors Modified Z penguin (MSSM,VLQ,LHT,,,)

$$O_{TLL}^{u} = (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta})$$
$$\tilde{O}_{TLL}^{u} = (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\beta})(\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta})$$
$$O_{TLL}^{d} = (\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha})(\bar{d}^{\beta}\sigma^{\mu\nu}P_{L}d^{\beta})$$
$$O_{SLR}^{u} = (\bar{s}^{\alpha}P_{L}d^{\alpha})(\bar{u}^{\beta}P_{R}u^{\beta})$$

New scalar & tensor Operators HME calculated by only DQCD

Heavy scalars

*Chrome magnetic operator <O_{8g}> (calculated by Lattice & DQCD) ETM collaboration, 1712.09824 Buras and Gérard 1803.08052

SMEFT study : (SM effective field theory) [SU(2) × U(1) inv.] ($\mu_{EW} < \mu < \mu_{NP}$)

-Model independent approach Aebischer, Bobeth, Buras and Straub 1808.00466 The constraints from K⁰ and D⁰ mixing as well as EDM are potentially important

- Z penguin scenario Bobeth, Buras, Celis and Jung 1703.04753 Endo, Kitahara, Mishima and KY 1612.08839/ Endo, Goto, Kitahara, Mishima, Ueda and KY 1712.04959

 $\Delta S=1$ operators generate $\Delta S=2$ contributions, through top-Yukawa enhanced RG evolution

 $\left(H^{\dagger}\,i\overleftrightarrow{D}_{\mu}H\right)\left(\bar{s}_{R}\gamma^{\mu}d_{R}\right)$

NP in ε'/ε also affect other observables

- ΔS = 2 process $\epsilon_K~$ and $\Delta M_K~$ give severe constraint Some model need tuning to avoid this constraint

- Kaon rare decay $K_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ could be good probe Pure imaginary. Strong correlation with ϵ'/ϵ
- B observables have correlation (and become constraint) in some models
- Other observables (EDM)

Different implications (correlations & predictions) for other observables appear depending on models \Rightarrow Possibility of model discriminations

$$\bigstar K \to \pi
u \overline{
u}$$
 Correlation with B anomalies

$K_1 \rightarrow \pi^0 v \bar{v}$ and $K^+ \rightarrow \pi^+ v \bar{v}$

Highly suppressed in SM : BR_{SM}~10⁻¹¹

Theoretically clean (Hadronic matrix element can be estimated using isospin sym.)

 $K_1 \rightarrow \pi^0 vv$ is purely CP violating mode

 $K^+ \to \pi^+ \nu \bar{\nu}$

NA62 👌 NA62@CERN - NA62 at CERN observed one event in 2016 data $BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (9.11 \pm 0.72) \times 10^{-11}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ BNL 949/E787 $< 14 \times 10^{-10} (95\%$ C.L.) New 2018

- Expected about 20 SM events from the 2017-2018 data sample

 $K_L \to \pi^0 \nu \bar{\nu}$ KOTO@J-PARC

- KOTO at J-PARC reported result from the 2015 data last summer

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (3.00 \pm 0.30) \times 10^{-11}$ $BR(K_L \to \pi^0 \nu \bar{\nu})_{exp} < 2.6 \times 10^{-8} (90\% \text{C.L.})$ E391a $< 3.0 \times 10^{-9} (90\%$ C.L.) New 2018

- KOTO-phase2 aims to measure at 10% accuracy

$\epsilon'/\epsilon \Leftrightarrow K \rightarrow \pi \nu \nu$ - Examples -

Z scenario

Buras, Buttazzo and Knegjens 1507.08672 / Buras 1601.00005 / Bobeth, Buras, Celis and Jung 1703.04753

$\epsilon'/\epsilon \Leftrightarrow K \rightarrow \pi \nu \nu$ - Examples -

Different correlations between ϵ'/ϵ and $K \rightarrow \pi v v$ may allow to distinguish among models

B anomalies

Lepton flavor universality Violation (LFUV) in semi-leptonic **B** decays

$$b \to c\tau\nu \qquad \qquad b \to s\ell\ell$$
$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \qquad \qquad R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

~ 30 excess over the SM

~ 2.5σ less over the SM

Correlation with ϵ'/ϵ ?

$\epsilon'/\epsilon \Leftrightarrow B$ anomalies

Possibility of simultaneous explanation of them are discussed in several models

• Z model is not favored by anomalies in b \rightarrow s transitions, which suggest large C_9^{NP}

 $O_9 = (\bar{s}_L \gamma_\mu b_L) (\bar{\mu} \gamma^\mu \mu)$

In Z model, it is hard to produce large C_9^{NP} due to smallness of the vector coupling to charged lepton

- In Leptoquark model, which is one of strong candidate of NP model realizing B anomalies, it is difficult to explain ε'/ε because of bounds from rare Kaon decays Christoph and Buras 1712.01295
- 2HDM + vR can address $R_{K(*)}$ and ϵ'/ϵ 3HDM + vR can access RD(*),RK(*) and ϵ'/ϵ
 - Composite model can access $R_{K(*)}$ and ϵ'/ϵ

Iguro and Omura, 1905.11778

Marzo, Marzola and Raidal 1901.08290

Matsuzaki, Nishiwaki and KY 1806.02312

$\epsilon' / \epsilon \Leftrightarrow B$ anomalies - Example -

Flavorful composite vectors

Matsuzaki, Nishiwaki and KY 1806.02312

Br[K+→π+νν]/SM

Summary

Kaon physics is highly suppressed and sensitive to NP

2.8\sigma discrepancy in direct CPV of Kaon ϵ'/ϵ

Many experiments are on-going, and could allow us to discriminate NP models

Kaon physics will continue to offer a powerful probe for NP!