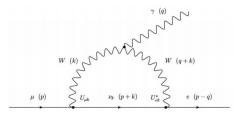
Searches for Lepton Flavour Violating decays at LHCb

$\begin{array}{c} \mbox{Cédric Méaux}^1 \\ \mbox{On behalf of the LHCb collaboration} \end{array}$

¹Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France


WIN 2019 2019 5th June

Lepton Flavour Violation (LFV) in Standard Model (SM)

- LFV in **neutral sector**: neutrino oscillation (e.g. $\nu_{\mu} \rightarrow \nu_{\tau}$)
- Charged lepton flavor is conserved in SM not supported by strong theoretical reasons e.g. underlying symmetry

$$\begin{split} \mathcal{B}(\mu \to e\gamma) \simeq \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} \frac{U_{\mu k} U_{ek}^* m_{\nu_k}^2}{M_W^2} \right|^2 \\ \simeq 10^{-55} - 10^{-54} \end{split}$$

• Any observation of charged LFV decay: \Rightarrow Indisputable sign of physics Beyond the SM (BSM)

Lepton Flavor Universality Violation (LFUV)

Interest in LFV decay renewed since:

Set of coherent experimental evidences of LFUV by LHCb/Belle/BaBar

- $b \rightarrow c$ charged currents: au vs light leptons (μ, e) $[R_D, R_{D^*}, R_{J/\Psi}]$
- $b \rightarrow s$ neutral currents: μ vs $e[R_K, R_{K^*}, P'_5]$
- See talk of Julian Garcia Pardinas for more details

LFU maybe just a low-energy property:

The different generations may well have a different behavior at higher energies.

What if LFU anomalies are due to BSM physics...?:

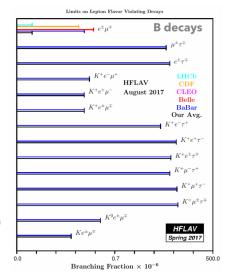
Many BSM models explaining LFU deviations predict large effect in LFV modes:

SUSY, Extended Higgs, little Higgs, LQ, Z', etc..

[JHEP09(2017)040, Phys.Rev.D 59, 034019 (1999), Phys.Rev.Lett. 114 (2015) 091801, Phys.Rev.D 92, 054013 (2015), arXiv:1211.5168v3v, Phys.Rev.D86 (2012) 054023,arXiv:1505.05164, Phys.Rev.Lett. 118 (2017), 011801, JHEP11(2017)044, Phys.Rev.D 98, 115002 (2018), JHEP10(2018)148, arXiv:1903.11517 etc...]

 $LFUV \Rightarrow LFV$:

$$\frac{\mathcal{B}(B_s^0 \to \tau(\mathbf{e}, \mu))}{\mathcal{B}(B_s^0 \to \mu\mu)_{SM}} \sim 4\left(\frac{1-R_K}{0.23}\right)^2, \qquad \frac{\mathcal{B}(B_s^0 \to \mu^+ \mathbf{e}^-)}{\mathcal{B}(B_s^0 \to \mu\mu)_{SM}} \sim 0.01 \left(\frac{1-R_K}{0.23}\right)^2,$$


 $\mathcal{B}(B \to K\tau(e,\mu)) \sim 2 \cdot 10^{-8} \left(\frac{1-R_K}{0.23}\right)^2, [\text{Hiller, Loose and Schonwald, JHEP12(2016)027}]$

EXCITING TIMES!!!

Decays	Experimental upper limit at 90% C.L.	LHCb -PAPER -Number
$B^+ o K^+ \mu^- { m e}^+$	$7.0 imes10^{-9}$	2019-022*
$B^+ ightarrow K^+ \mu^+ e^-$	$7.1 imes10^{-9}$	2019-022*
$B_s^0 \rightarrow \tau \mu$	$3.4 imes10^{-5}$	2019-016
$B^0 ightarrow au \mu$	$1.2 imes 10^{-5}$	2019-016
$B^0_{ m s} ightarrow e \mu$	$5.4 imes10^{-9}$	2017-031
$B^{0} ightarrow e \mu$	$1.0 imes10^{-9}$	2017-031
H-like $ ightarrow \mu au$	< 22 pb**	2018-030
$D^{0} ightarrow e \mu$	$1.3 imes 10^{-8}$	2015-048
$ au ightarrow 3\mu^{'}$	$4.6 imes10^{-8}$	2015-052

* in preparation: preliminary

** Limit given on $\sigma_H \times B$ at 95%C.L., ranges from 22 pb for a Higgs-like boson mass at 45 GeV/c², to 4 pb for 195 GeV/c².

$$B^0_{(s)} \to \tau \mu$$

Many BSM model explaining the anomalies predict large \mathcal{B} for $B^0_{(s)} \to \tau \mu$:

- Z': 10⁻⁸ [1] to 10⁻⁵ [2]
- LQs: 10⁻⁹ [3] to 10⁻⁴ [4], 10⁻⁵ [5]

[1] Becirevic et al. [EPJ C76(2016)134]

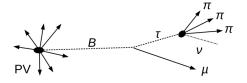
- [2] Crivellin et al. [PRD 92 (2015) 050413]
- [3] Becirevic et al. [JHEP 11(2016)035]

[4] Bhattacharya et al. [JHEP 01(2017)15]
 [5] Smirnov [MPLA 33(2018)1550019]

[6] Bordone et al. [JHEP10(2018)148]

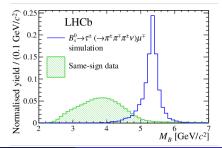
Experimental status before May 2019:

 $\mathcal{B}(B^0 \to \tau \mu) < 2.2 \times 10^{-5}$ [BaBar, Phys.Rev.D77,091104(2008)] $\mathcal{B}(B_s^0 \to \tau \mu)$: no limit yet

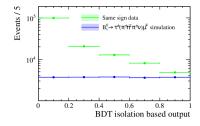

Analysis strategy

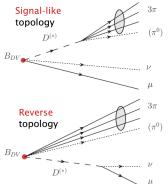
- Run1 data (3 fb⁻¹)
- Challenging reconstruction based on 3-prong τ decays: $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ ($\mathcal{B} \sim 9\%$) $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ taken into account, $\mathcal{B} \sim 5\%$
 - \Rightarrow B mass reconstruction possible up to a 2-fold ambiguity
- Signal region blinded for data
- Background rejection:
 - BDT classifiers
 - Isolation variables
 - ▶ Background modeled from Same-Sign (SS) data ($\tau^{\pm}\mu^{\pm}$) and MC simulation for qualitative studies.
- Signal yield extraction: Simultaneous fit to the mass distributions in bins of a final BDT
- Determine ${\cal B}$ normalized to ${\cal B}^0 o D^- (o {\cal K}^+ \pi^- \pi^-) \pi^+$

$B^0_{(s)} \rightarrow \tau \mu$ at LHCb [arXiv:1905.06614] (May 2019)


B Mass reconstruction

Only 1 missing ν , only 4 tracks, μ points to the *B* decay vertex \Rightarrow enough constraints to compute the ν momentum

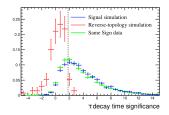



Data blinded for $4.9 < M_B < 5.8 \text{ GeV}/c^2$

$$\begin{cases} m_{\tau}^{2} = (E_{3\pi} + |\vec{p}_{\nu}|)^{2} - (\vec{p}_{3\pi} + \vec{p}_{\nu})^{2} \\ \vec{x}_{B} \in (d_{\mu}) \\ (\vec{p}_{3\pi} + \vec{p}_{\nu}) \parallel (\vec{x}_{\tau} - \vec{x}_{B}) \\ (\vec{p}_{3\pi} + \vec{p}_{\mu} + \vec{p}_{\nu}) \parallel (\vec{x}_{B} - \vec{x}_{PV}) \end{cases}$$
$$M_{B} = \sqrt{(E_{3\pi} + E_{\mu} + |\vec{p}_{\nu}|)^{2} - (\vec{p}_{3\pi} + \vec{p}_{\mu} + \vec{p}_{\nu})^{2}}$$

$B^0_{(s)} \rightarrow \tau \mu$ at LHCb [arXiv:1905.06614] (May 2019)

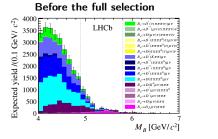
Cut on an isolation based BDT classifier


Uses charged, neutral, and vertex isolation variables 40% of signal efficiency, > 90% bkg rejection

Cut on a second BDT

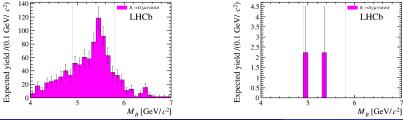
 \rightarrow Suppress Signal-like topology Trained on SS data and MC Use vertex related variables and opening angles

Cut on τ lifetime significance


 \rightarrow Suppress reverse topology (peaking in the signal region)

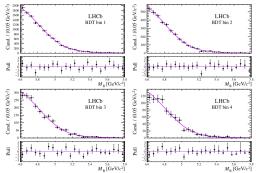
Searches for LFV decays at LHCb (WIN2019

$B^0_{(s)} \rightarrow \tau \mu$ at LHCb [arXiv:1905.06614] (May 2019)


Set of 16 exclusive backgrounds (signal-like and reverse topology)

After the full selection

Zoom on the reverse-topology background $B^0_s o D_s(\mu
u)\pi\pi\pi$

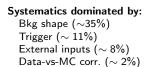

Searches for LFV decays at LHCb (WIN2019

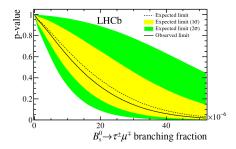
$B^0_{(s)} ightarrow au\mu$ at LHCb [arXiv:1905.06614] (May 2019)

Final BDT

Trained on same sign data and MC signal Uses output of first BDTs, vertex related variables and $2/3\pi$ -masses.

Simultaneous fit to the mass distributions in bins of the final BDT


Separation between B_s^0 and B^0 limited \Rightarrow fitting B_s^0 neglecting B^0 and vice versa

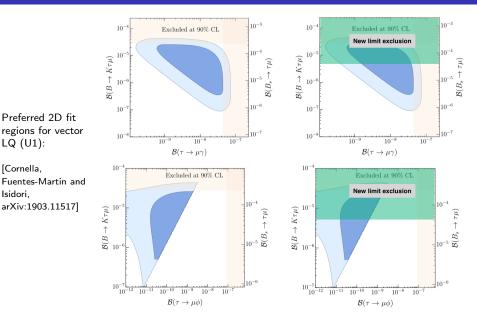

No signal found: $N_{B_{s}^{0}} = -16 \pm 38$ $N_{B}^{o} = -65 \pm 58$ $B_{(s)}^{0}
ightarrow au\mu$ at LHCb [arXiv:1905.06614] (May 2019)

Determine ${\cal B}$ normalized to ${\cal B}^0 o D^- (o K^+ \pi^- \pi^-) \pi^+$

$$\mathcal{B}(B^{\mathbf{0}}_{(s)} \to \tau\mu) = \frac{f^{\mathbf{0}}_{\mathbf{0}}}{f_{B^{\mathbf{0}}_{(s)}}} \cdot \frac{\mathcal{B}(B^{\mathbf{0}} \to D^{-}(\to K^{+}\pi^{-}\pi^{-})\pi^{+})}{\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{+}\nu_{\tau})} \cdot \frac{\epsilon_{B^{\mathbf{0}} \to D\pi}}{\epsilon_{B^{\mathbf{0}}_{(s)} \to \tau\mu}} \cdot \frac{N^{sig}_{(s)}}{N^{Norm}} = \alpha_{(s)} \cdot N^{sig}_{(s)}$$

$$lpha_{s} = (4.32 \pm 0.61) imes 10^{-7} \ lpha_{d} = (1.25 \pm 0.16) imes 10^{-7}$$

Mode	Limit	90% CL	95% CL
$B_s^0 \rightarrow \tau^{\pm} \mu^{\mp}$	Observed	$3.4 imes 10^{-5}$	4.2×10^{-5}
	Expected	$3.9 imes 10^{-5}$	4.7×10^{-5}
$B^0 \rightarrow \tau^{\pm} \mu^{\mp}$	Observed	$1.2 imes 10^{-5}$	1.4×10^{-5}
	Expected	$1.6 imes 10^{-5}$	$1.9 imes 10^{-5}$


First measurement for B_s^0 Best world limit for B^0 , improvement by a factor $\sim 2!$

$B^0_{(s)} \to \tau \mu$ limit impact

LQ (U1):

[Cornella,

Isidori,

Searches for LFV decays at LHCb (WIN2019

Cédric Méaux

Many BSM models predict large \mathcal{B}

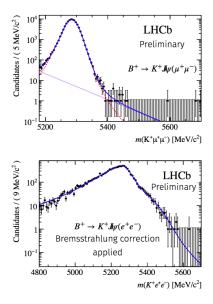
- LQs: $\mathcal{B}(B \to K \mu e) \sim 3 \cdot 10^{-8} (\frac{1 R_K}{0.23})^2 \sim 10^{-8}$ [1], [2]
- Z′: B ∼ 10^{−8} [3]
- CPV in u oscillations: $\mathcal{B} \sim 10^{-10}$ [4]

[1] Medeiros Vaezilas and Hiller, JHEP06 (2015) 072

[2] Hiller ar al., JHEP12 (2016) 027

[3] Crivellin et al. PRD92 (2015) 054013

[4] Boucenna et al. PLB (2015) 09 040

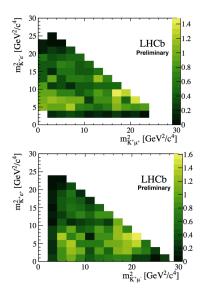

Previous experimental status:

 $\mathcal{B}(B^+\to K^+e^+\mu^-) < 9.1\times 10^{-8}$ [BaBar, PRD73 (2006) 092001] $\mathcal{B}(B^+\to K^+e^-\mu^+) < 13\times 10^{-8}$

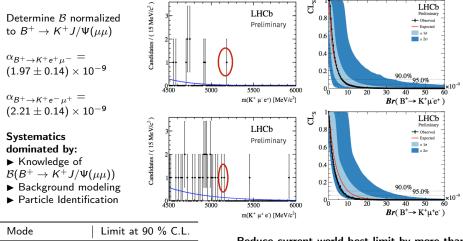
$B^+ \rightarrow K^+ e^{\pm} \mu^{\mp}$ (Preliminary, LHCb-Paper-2019-022 in preparation)

Analysis strategy

- Run1 data (3 fb⁻¹)
- Search designed for two charge configurations: $B^+ \rightarrow K^+ e^+ \mu^ B^+ \rightarrow K^+ e^- \mu^+$
- Normalized with $B^+ \to K^+ J/\Psi(\mu^- \mu^+)$
- MC corrected using data: $B^+ \rightarrow K^+ J/\Psi(\mu^- \mu^+)$ $B^+ \rightarrow K^+ J/\Psi(e^- e^+)$
- Background rejection: Double semileptonic decays Charmonium decays
 Suppressed by vetoes and double-stage BDT
- Developed blind in the region $m(Ke\mu) \in [4985, 5385] \text{ GeV/c}^2$



Preselection


- Most significant backgrounds from $B^+ \rightarrow \bar{D^0} X \ell^+ \nu_{\ell}$, with $\bar{D^0} \rightarrow K^+ Y \ell^- \bar{\nu_{\ell}}$ • $m(K^+ \ell^-) < 1885 \text{ MeV/c}^2$
- Charmonium decays
 B⁺ → K⁺JΨ, Λ⁰_b → pK⁻J/Ψ, ...
 ▶ Vetoes on charmonium regions
- Strong requirements on particle identification criteria

BDT selection

- BDT to remove random tracks combinations trained on upper mass sideband *B* kinematics, topological variables, isolation
- BDT to remove partially reconstructed *b*-hadron decays trained on lower mass sideband same set of discriminant variables used

$B^+ \rightarrow K^+ e^{\pm} \mu^{\mp}$ (Preliminary, LHCb-Paper-2019-022 in preparation)

Reduce current world best limit by more than 10!

• A whole family to be searched for:

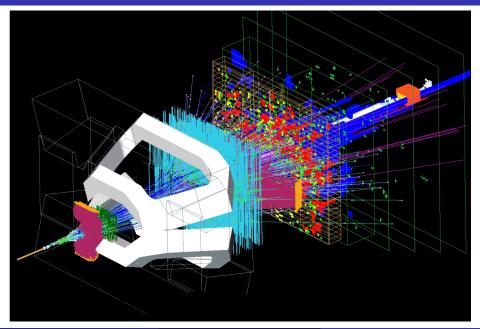
ntegrated Recorded Luminosity (1/fb) 2018 2012 5+2.51 TeV): 1.71 //b + 0.10 //b 2.1 $B^{0}_{(s)} \rightarrow e\mu$ released, Run2 to be added .5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb 2017 1.8 2012 (4.0 TeV): 2.08 /fb $B^{0}_{(s)} \rightarrow \tau \mu$ just released! Run2 to be added 2011 (3.5 TeV): 1.11 /fb 1.6 2016 2010 (3.5 TeV): 0.04 /fb $B_{(s)}^{0} \to K \tau \mu$ 1.4 2011 $B_{(s)}^{0} \rightarrow K^{*} \tau \mu \text{ (on-going)}$ 1.1 0.9 $B^+ \rightarrow K^+ e\mu$ soon released! 0.7 $\Lambda_b \rightarrow \Lambda^0 e \mu$ 0.5 $\tau \rightarrow 3\mu$ 0.2 $\tau \rightarrow p \mu \mu$ Mar Jul Sen Nov Month of year

2.3

2018 (6.5 TeV): 2.19 /fb

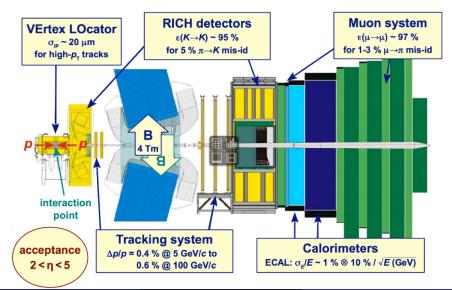
Only Run1 dataset exploited so far: 3 fb^{-1} of pp collisions at 7/8 TeV.

Run2 dataset: 6 fb⁻¹ of pp collisions at 13 TeV ($\sigma_{b\bar{b}} \times 2$) $\Rightarrow \sim 4$ more data to analyze!! Significant improvements expected by adding Run2 dataset!


Conclusions

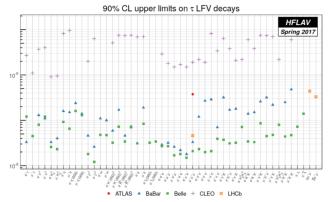
- A lot of work have been done by LHCb on LFV decay
- First and world-best limits recently set on $B^0_{(s)} o au\mu$ and $B^+ o K^+ \mu^\pm e^\mp$
- Very challenging at LHCb Missing energy Electron ID High level and variety of backgrounds
- Most of analysis are handmade by small group of people!
- New experiments coming (Belle II, CMS, ...) Great for double-checking, interplay among experiments.

Need analysis improvement and upgrades to get to more interesting regimes:



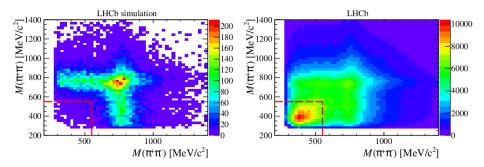
BACK-UP

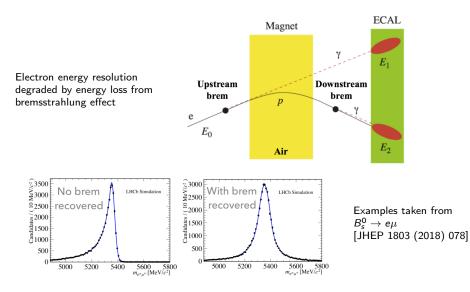
LHCb detector


[LHCb performance, Int.J.Mod.Phys. A30 (2015) no.07, 1530022] [The LHCb Detector at the LHC, JINST 3 (2008) S08005]

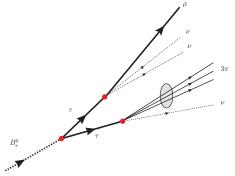
Other LFV measurements

μ^- DECAY MODES		Fraction	(Γ _i /Γ)	Confidence level	р (MeV/c)
$e^- \nu_e \overline{\nu}_\mu$	LF	[f] < 1.2	%	90%	53
$e^-\gamma$	LF	< 4.2	imes 10 ⁻¹	3 90%	53
$e^-e^+e^-$	LF	< 1.0	imes 10 ⁻¹	2 90%	53
$e^{-}2\gamma$	LF	< 7.2	imes 10 ⁻¹	1 90%	53


$$\begin{split} & \mathbb{B}(Z^0 \to e^{\pm} \mu^{\mp}) < 7.5 \times 10^{-7} \; (@95\%CL) \\ & \mathbb{B}(Z^0 \to e^{\pm} \tau^{\mp}) < 9.8 \times 10^{-6} \; (@95\%CL) \\ & \mathbb{B}(Z^0 \to \mu^{\pm} \tau^{\mp}) < 1.2 \times 10^{-5} \; (@95\%CL) \\ & \mathbb{B}(H^0 \to \mu \tau) < 0.25\% \; (@95\%CL) \\ & \mathbb{B}(H^0 \to e\tau) < 0.61\% \; (@95\%CL) \end{split}$$



More about the preselection:


 $M_B < 4 \text{ GeV/c}^2$ discarded

 $\tau^{-} \rightarrow a1(1260)^{-} \nu_{\tau}$ $\hookrightarrow \pi_{1}^{-} \rho(770)^{0}$ $\hookrightarrow \pi_{2}^{+} \pi_{3} -$

- Neutral isolation variables Count neutral objects in a cone around the B candidate
- Vertex isolation variables Combine tracks making a τ candidate with other tracks in the events, refit vertex, and check for improvement
- Track isolation variables BDT-based, identify tracks coming from other vertex

Experiment	Corr.	\mathbf{SM}
0.334(31)	-0.37	0.299(3) [63-65]
0.297(15)	-0.57	0.258(5) [64-66]
$1.09(24) \cdot 10^{-4}$ [67]	-	$0.812(54) \cdot 10^{-4}$ [68]
-0.40 ± 0.12	0.5	-
-0.50 ± 0.38 [41, 42]	-0.5	-
$0.0(3.4) \cdot 10^{-3}$ [69]	-	$7.73(49) \cdot 10^{-7}$ [70]
$1.36(0.71) \cdot 10^{-3}$ [71]	-	$1.5(0.2) \cdot 10^{-7}$
$0.0(3.0) \cdot 10^{-8}$ [53]	-	-
$0.0(1.7) \cdot 10^{-5}$ [72]	-	-
$0.0(5.1) \cdot 10^{-8}$ [73]	-	-
1.0000 ± 0.0014 [53]	-	1.
	$\begin{array}{c c} 0.334(31)\\ 0.297(15)\\ \hline \\ 1.09(24)\cdot 10^{-4} & \hline & & & \hline & \hline & & \hline & \hline & & \hline \hline & \hline & \hline \hline & \hline & \hline & \hline \hline & \hline & \hline \hline & \hline & \hline \hline & \hline \hline & \hline \hline & \hline \hline \hline \hline & \hline \hline \hline & \hline \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Observables entering in the χ^2 fit:

Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = -\frac{2C_U}{v^2} \left[-2 \left(\beta_L^{i\alpha} \right)^* \beta_R^{l\beta} (\bar{\ell}_L^{\alpha} e_R^{\beta}) (\bar{d}_R^l q_L^i) + \text{h.c.} + \beta_R^{i\alpha} (\beta_R^{l\beta})^* (\bar{e}_R^{\beta} \gamma_\mu e_R^{\alpha}) (\bar{d}_R^i \gamma^\mu d_R^l) \right. \\ \left. + \frac{1}{2} \beta_L^{i\alpha} (\beta_L^{l\beta})^* (\bar{\ell}_L^{\beta} \gamma_\mu \ell_L^{\alpha}) (\bar{q}_L^i \gamma^\mu q_L^l) + \frac{1}{2} \beta_L^{i\alpha} (\beta_L^{l\beta})^* (\bar{\ell}_L^{\beta} \sigma^a \gamma_\mu \ell_L^{\alpha}) (\bar{q}_L^i \sigma^a \gamma^\mu q_L^l) \right] ,$$

$$(2.5)$$

where $C_U \equiv g_U^2 v^2/(4M_U^2)$ and $v = (\sqrt{2} G_F)^{-1/2} \approx 246$ GeV is the SM Higgs vacuum expectation value (vev).

$C_U \in [0.3, 1.0] \cdot 10^{-2}$,	Fit results: $\beta_L^{s\tau} \in [0.08, 0.25]$,	$\beta_L^{d\tau} \in [-0.17, -0.01] \ ,$
$\beta_L^{b\mu} \in [-0.42, -0.07] \ ,$	$\beta_L^{s\mu} \in [0.01, 0.08]$.	

Searches for LFV decays at LHCb (WIN2019