Signals consistent with the \(B^+_c(2S) \) and \(B^{+*}(2S) \) states are observed in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, in an event sample corresponding to an integrated luminosity of 143 fb\(^{-1}\), collected by the CMS experiment during the 2015 - 2018 LHC running periods. These excited beauty states are observed in the \(B^+ \rightarrow \pi^+ \nu \) invariant mass spectrum, with the ground state \(B^+_c \) reconstructed through its decay to \(J/\psi \pi^+ \). The two states are reconstructed as two well-separated peaks, separated in mass by 28.3 \pm 1.5 (stat) \pm 0.7 (syst) MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the \(B^{+*}(2S) \) meson is measured to be 6871.0 \pm 1.2 (stat) \pm 0.8 (syst) \pm 0.8 (B) MeV, where the last term corresponds to the uncertainty in the world-average \(B^+_c \) mass.

Sources of systematic uncertainties

The systematic uncertainties come from:
- **B(2S) fit modeling**: J/\(K \) background, partially reconstructed decays and detector’s alignment:
 - Fit modeling:
 - Alternative functions for the signal and the backgrounds
 - Signal peaks: changed from two Gaussians to two Breit-Wigner functions
 - Background: changed from a polynomial to a threshold function
 - Observed differences in \(M \) and \(\Delta M \) are quoted as systematic uncertainties: 0.8 and 0.7 MeV, respectively
 - J/\(K \) background contamination:
 - Different fit results are modeled taking the shape from simulation.
 - Partially reconstructed \(B^+ \rightarrow J/\psi \pi^+ \) decays are modeled using an ARGUS function convolved with a Gaussian.

- **Unbinned ML fit**: the signal is modeled using a double Gaussian with common mean and the background as a polynomial.
- **Additional background contribution from \(B \rightarrow m \phi \) decays**: is modeled taking the shape from simulation.

Results [Published on Physical Review Letters 122 (2019) 132001]

- The \(M(\pi^+\pi^-) - M(B^+_c) + m_\nu \) distribution is fitted with Gaussian functions for the peaks and a 3rd order polynomial for the background.
- Mass resolution agrees with MC expectations (-6 MeV) and is much lower than \(\Delta M \) thus allowing a two-peak structure to be observed ; \(B(2S) \) is assumed to be the right-most peak.
- Measured two peaks’ mass difference: \(\Delta M = [29.1 \pm 1.5 \text{ (stat)} \pm 0.7 \text{ (syst)}] \text{ MeV} \).

Reconstruction of \(B^+_c \) in 2016, 2017, 2018 and events selection criteria

- \(J/\psi \) meson momentum required to be in plane of PV in xy plane.
- \(J/\psi \) meson momentum required to be in point of PV in yz plane.
- The PV is re-fitted excluding the three \(B \) decay tracks (two muons and one pion) \(\pi_2 \) and \(\pi_3 \) are tracks in that PV, e.g. they are pion tracks, which are going to be combined with \(\pi_1 \). Tracks and muons satisfy high-quality requirements.
- When multiple \(B^+_c \) candidates are found in the same event, keep only the one with the highest \(p_\text{vis} \) value.

Extraction of \(B^+_c \) signal in full Run-II

- Wilson ML fit: the signal is modeled using a double Gaussian with common mean and the background as a polynomial.
- Additional background contribution from \(B \rightarrow m \phi \) decays: is modeled taking the shape from simulation.
- Partially reconstructed \(B^+ \rightarrow J/\psi \pi^+ \) decays are modeled using an ARGUS function convolved with a Gaussian.

The 27th International Workshop on Weak Interactions and Neutrinos