

Weak decays of doubly heavy baryons

Zhen-Xing Zhao Shanghai Jiao Tong University

WIN2019@Bari Jun. 2019

arXiv:1902.01092 In collaboration with Yu-Ji Shi, Wei Wang

Outline

- Introduction
- QCD sum rules
 - -- Hadronic side
 - -- OPE side
- Numerical results
- Summary and outlook

Introduction

Discovery of Xi_cc^++

 $arepsilon_{cc}^{++}$

 $\Lambda_c^+ K^- \pi^+ \pi^+$

PhysRevLett.119.112001

Other observations on Ξ_{cc}^{++}

$\checkmark \quad \text{Measurement of the lifetime of the} \\ \text{doubly charmed baryon } \Xi_{cc}^{++}$

PhysRevLett.121.052002

 $0.256^{+0.024}_{-0.022}$ (stat) ± 0.014 (syst) ps

$$\Lambda_c^+ K^- \pi^+ \pi^+$$

 \checkmark

First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$

PhysRevLett.121.162002

Other studies on Ξ_{cc}^{++}

Two most promising channels!

- Ξ_{cc}^{++} belongs to SU(3) triplet ($\Xi_{cc}^{++}, \Xi_{cc}^{+}, \Omega_{cc}^{+}$)
- Can decay into Λ_c or Ξ_c (SU(3) anti-triplet)
- Can decay into Σ_c , Ξ_c' , Ω_c (SU(3) sextet)

List of studies on weak decays

- Doubly heavy baryon weak decays: $\Xi_{bc}^0 \rightarrow pK^-$, $\Xi_{cc}^+ \rightarrow \Sigma_c^{++}K^-$ 1701.03284 1. Discovery potentials of doubly charmed baryons 1703.09086 2. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 1/2$ case 1707.02834 3. Weak decays of doubly heavy baryons: SU(3) analysis 1707.06570 4. Weak decays of doubly heavy baryons: decay constant 5. 1711.10289 Weak decays of doubly heavy baryons: Multi-body decays 1712.03830 6. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 3/2$ case 1805.10878 7. Weak decays of doubly heavy baryons: the FCNC processes 1807.03101 8. Weak decays of doubly heavy baryons: $B_{cc} \rightarrow B_c V$ 1810.00541 9. 10. Weak decays of triply heavy baryons 1803.01476 I am sorry I can not list all of them
- Most of them adopt QCD-based phenomenological model
- Model independent calculation is highly demanded
- 1. QCD Sum Rules Analysis of Weak Decays of Doubly-Heavy Baryons1902.010922. Light-Cone Sum Rules Analysis of $\Xi_{QQ'q} \rightarrow \Lambda_{Q'}$ Weak Decays1903.03921

QCD sum rules Hadronic side

Form factors

Our *standard* parametrization:

$$\langle \mathcal{B}_2(p_2, s_2) | (V - A)_{\mu} | \mathcal{B}_1(p_1, s_1) \rangle = \bar{u}(p_2, s_2) [\gamma_{\mu} f_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{M_2} f_2(q^2) + \frac{q_{\mu}}{M} f_3(q^2)] u(p_1, s_1)$$

$$- \bar{u}(p_2, s_2) [\gamma_{\mu} g_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{M_2} g_2(q^2) + \frac{q_{\mu}}{M} g_3(q^2)] \gamma_5 u(p_1, s_1)$$

Our *practical* parametrization:

$$\langle \mathcal{B}_2(p_2, s_2) | (V - A)_\mu | \mathcal{B}_1(p_1, s_1) \rangle = \bar{u}(p_2, s_2) [\frac{p_{1\mu}}{M_1} F_1 + \frac{p_{2\mu}}{M_2} F_2 + \gamma_\mu F_3] u(p_1, s_1) - \bar{u}(p_2, s_2) [\frac{p_{1\mu}}{M_1} G_1 + \frac{p_{2\mu}}{M_2} G_2 + \gamma_\mu G_3] \gamma_5 u(p_1, s_1)$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \frac{M_1 + M_2}{2M_1} & \frac{M_1 + M_2}{2M_2} & 1 \\ \frac{1}{2} & \frac{M_1}{2M_2} & 0 \\ \frac{1}{2} & -\frac{M_1}{2M_2} & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$

$$\Pi^{V}_{\mu} = i^{2} \int d^{4}x d^{4}y e^{-ip_{1} \cdot x + ip_{2} \cdot y} \langle 0 | \mathrm{T} \{ J_{f}(y) V_{\mu}(0) \bar{J}_{i}(x) \} | 0 \rangle$$

$$I = \sum_{s_{2}} \int \frac{d^{4}p_{2}}{(2\pi)^{4}} \frac{i}{p_{2}^{2} - M_{2}^{2}} |\Sigma_{c}^{+}(p_{2})\rangle \langle \Sigma_{c}^{+}(p_{2})| + \cdots$$

$$I = \sum_{s_{1}} \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \frac{i}{p_{1}^{2} - M_{1}^{2}} |\Xi_{cc}^{++}(p_{1})\rangle \langle \Xi_{cc}^{++}(p_{1})| + \cdots$$

 $\Pi_{\mu}^{V} \sim \langle 0|J_{f}(y)|\Sigma_{c}^{+}\rangle \langle \Sigma_{c}^{+}|V_{\mu}(0)|\Xi_{cc}^{++}\rangle \langle \Xi_{cc}^{++}|\bar{J}_{i}(x)|0\rangle$ $\langle 0|J_{f}(y)|\Sigma_{c}^{+}\rangle \propto u(p_{2},s_{2})$ $\langle 0|\bar{J}_{i}(x)|\Xi_{cc}^{++}\rangle \propto \bar{u}(p_{1},s_{1})$ $\langle \Sigma_{c}^{+}|V_{\mu}(0)|\Xi_{cc}^{++}\rangle = \bar{u}(p_{2},s_{2})(F_{1}\frac{p_{1\mu}}{M_{1}} + F_{2}\frac{p_{2\mu}}{M_{2}} + F_{3}\gamma_{\mu})u(p_{1},s_{1})$

$$\Pi_{\mu}^{V} = \lambda_{i}\lambda_{f} \frac{(\not p_{2} + M_{2})(F_{1}\frac{p_{1\mu}}{M_{1}} + F_{2}\frac{p_{2\mu}}{M_{2}} + F_{3}\gamma_{\mu})(\not p_{1} + M_{1})}{(p_{1}^{2} - M_{1}^{2})(p_{2}^{2} - M_{2}^{2})}$$
10

12 Dirac structures

$$\Pi^{V}_{\mu} = \lambda_i \lambda_f \frac{(\not p_2 + M_2) (F_1 \frac{p_{1\mu}}{M_1} + F_2 \frac{p_{2\mu}}{M_2} + F_3 \gamma_{\mu}) (\not p_1 + M_1)}{(p_1^2 - M_1^2) (p_2^2 - M_2^2)}$$

$$\{ p_2, 1 \} \times \{ p_{1\mu}, p_{2\mu}, \gamma_{\mu} \} \times \{ p_1, 1 \}$$

3 form factors, 12 Dirac structures!

$$\begin{split} \Pi^{V}_{\mu} &= i^{2} \int d^{4}x d^{4}y e^{-ip_{1} \cdot x + ip_{2} \cdot y} \langle 0 | \mathrm{T} \left\{ J_{f}(y) V_{\mu}(0) \bar{J}_{i}(x) \right\} | 0 \rangle \\ I &= \sum_{s_{2}} \int \frac{d^{4}p_{2}}{(2\pi)^{4}} \frac{i}{p_{2}^{2} - M_{2}^{2}} | \mathcal{B}_{f+}(p_{2}) \rangle \langle \mathcal{B}_{f+}(p_{2}) | + \sum_{s_{2}} \int \frac{d^{4}p_{2}}{(2\pi)^{4}} \frac{i}{p_{2}^{2} - M_{2}^{2}} | \mathcal{B}_{f-}(p_{2}) \rangle \langle \mathcal{B}_{f-}(p_{2}) | + \cdots \\ I &= \sum_{s_{1}} \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \frac{i}{p_{1}^{2} - M_{1}^{2}} | \mathcal{B}_{i+}(p_{1}) \rangle \langle \mathcal{B}_{i+}(p_{1}) | + \sum_{s_{1}} \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \frac{i}{p_{1}^{2} - M_{1}^{2}} | \mathcal{B}_{i-}(p_{1}) \rangle \langle \mathcal{B}_{i-}(p_{1}) | + \cdots \\ \langle 0 | J_{+} | \mathcal{B}_{-}(p, s) \rangle &= (i\gamma_{5}) \lambda_{-} u(p, s) \end{split} \\ \Pi^{V, \text{pole}}_{\mu} &= \lambda_{f}^{+} \lambda_{i}^{+} \frac{(\not{p}_{2} + M_{2}^{+}) (\frac{p_{1\mu}}{M_{1}^{+}} F_{1}^{++} + \frac{p_{2\mu}}{M_{2}^{+}} F_{2}^{++} + \gamma_{\mu} F_{3}^{++}) (\not{p}_{1} + M_{1}^{+})}{(p_{2}^{2} - M_{2}^{+2}) (p_{1}^{2} - M_{1}^{+2})} \\ &+ \lambda_{f}^{+} \lambda_{i}^{-} \frac{(\not{p}_{2} + M_{2}^{+}) (\frac{p_{1\mu}}{M_{1}^{-}} F_{1}^{++} + \frac{p_{2\mu}}{M_{2}^{+}} F_{2}^{++} + \gamma_{\mu} F_{3}^{++}) (\not{p}_{1} - M_{1}^{-})}{(p_{2}^{2} - M_{2}^{+2}) (p_{1}^{2} - M_{1}^{-2})} \\ &+ \lambda_{f}^{-} \lambda_{i}^{-} \frac{(\not{p}_{2} - M_{2}^{-}) (\frac{p_{1\mu}}{M_{1}^{+}} F_{1}^{++} + \frac{p_{2\mu}}{M_{2}^{+}} F_{2}^{-+} - \gamma_{\mu} F_{3}^{-+}) (\not{p}_{1} + M_{1}^{+})}{(p_{2}^{2} - M_{2}^{-2}) (p_{1}^{2} - M_{1}^{-2})} \\ &+ \lambda_{f}^{-} \lambda_{i}^{-} \frac{(\not{p}_{2} - M_{2}^{-}) (\frac{p_{1\mu}}{M_{1}^{+}} F_{1}^{+-+} + \frac{p_{2\mu}}{M_{2}^{-}} F_{2}^{--} - \gamma_{\mu} F_{3}^{-+}) (\not{p}_{1} + M_{1}^{+})}{(p_{2}^{2} - M_{2}^{-2}) (p_{1}^{2} - M_{1}^{-2})} \\ &+ \lambda_{f}^{-} \lambda_{i}^{-} \frac{(\not{p}_{2} - M_{2}^{-}) (\frac{p_{1\mu}}{M_{1}^{-}} F_{1}^{--} + \frac{p_{2\mu}}{M_{2}^{-}} F_{2}^{--} - \gamma_{\mu} F_{3}^{--}) (-\not{p}_{1} + M_{1}^{-})}{(p_{2}^{2} - M_{2}^{-2}) (p_{1}^{2} - M_{1}^{-2})} \end{split}$$

Hadronic level: version 2

Hadronic level: version 2

$$\frac{\lambda_i^+ \lambda_f^+ (F_1^{++}/M_1^+)}{(p_1^2 - M_1^{+2})(p_2^2 - M_2^{+2})} = \frac{\{M_1^- M_2^-, M_2^-, M_1^-, 1\}.\{A_1, A_2, A_3, A_4\}}{(M_1^+ + M_1^-)(M_2^+ + M_2^-)}$$
$$\frac{\lambda_i^+ \lambda_f^+ (F_2^{++}/M_2^+)}{(p_1^2 - M_1^{+2})(p_2^2 - M_2^{+2})} = \frac{\{M_1^- M_2^-, M_2^-, M_1^-, 1\}.\{A_5, A_6, A_7, A_8\}}{(M_1^+ + M_1^-)(M_2^+ + M_2^-)}$$
$$\frac{\lambda_i^+ \lambda_f^+ F_3^{++}}{(p_1^2 - M_1^{+2})(p_2^2 - M_2^{+2})} = \frac{\{M_1^- M_2^-, M_2^-, M_1^-, 1\}.\{A_9, A_{10}, A_{11}, A_{12}\}}{(M_1^+ + M_1^-)(M_2^+ + M_2^-)}$$

$$\begin{split} \lambda_{i}^{+}\lambda_{f}^{+}(F_{1}^{++}/M_{1}^{+}) \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{1}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{2}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{3}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{4}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \\ \lambda_{i}^{+}\lambda_{f}^{+}(F_{2}^{++}/M_{2}^{+}) \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{5}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{6}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{7}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{8}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \\ \lambda_{i}^{+}\lambda_{f}^{+}F_{3}^{++} \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{5}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{1}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{8}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \end{split}$$

T₁², T₂²: Borel parameters

$$\begin{split} \lambda_{i}^{+}\lambda_{f}^{+}(F_{1}^{++}/M_{1}^{+}) \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{1}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{2}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{3}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{4}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \\ \lambda_{i}^{+}\lambda_{f}^{+}(F_{2}^{++}/M_{2}^{+}) \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{5}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{6}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{7}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{8}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \\ \lambda_{i}^{+}\lambda_{f}^{+}F_{3}^{++} \exp\left(-\frac{M_{1}^{+2}}{T_{1}^{2}} - \frac{M_{2}^{+2}}{T_{2}^{2}}\right) &= \frac{\{M_{1}^{-}M_{2}^{-}, M_{2}^{-}, M_{1}^{-}, 1\} \cdot \{\mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{5}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{6}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{7}, \mathcal{B}_{T_{1}^{2}, T_{2}^{2}}A_{8}\}}{(M_{1}^{+} + M_{1}^{-})(M_{2}^{+} + M_{2}^{-})} \end{split}$$

How can we get these A_i ?

$$\Pi_{\mu}^{\text{OPE}} = \sum_{i=1}^{12} A_i e_{i\mu} \qquad \qquad A_i \left(p_1^2, p_2^2, q^2 \right) = \int ds_1 ds_2 \frac{\rho_i^{\text{OPE}} \left(s_1, s_2, q^2 \right)}{\left(s_1 - p_1^2 \right) \left(s_2 - p_2^2 \right)}$$

 $B_j \equiv \operatorname{Tr}\left[\Pi^{\text{OPE}}_{\mu}.e^{\mu}_j\right] = \operatorname{Tr}\left[\left(\sum_{i=1}^{12} A_i e_{i\mu}\right).e^{\mu}_j\right]$

Cutkosky rules

QCD sum rules OPE side

Dim-0 and dim-3

991

$$\sim \int \frac{d^4k_2}{(2\pi)^4} \frac{N^{V,\langle \bar{q}q\rangle,b}_{\mu}}{(q^2 - m_1^2)(k_2^2 - m_2^2)((p_2 - k_2)^2 - m_3^2)}$$

no contribution

h'

y

x Pz

Dim-5

Dim-4

991

JJ3

JJ4

to the second se

JJ5

JJ6

997

JJ8

JJ 9

11

9910

19

2 topologies

pert, gg

qbarq, qgq

cutting rule

An example

How to calculate

JJ1

?

Feynman rules

$$15 \text{ gamma's} \begin{array}{c} & \left(igT^{a}\gamma^{\alpha}\right)\left(\int \frac{d^{4}u}{(2\pi)^{4}}\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial u_{\rho}}\delta^{4}(u)G_{\rho\alpha}^{a}(0)\right) \\ & \left(\int \frac{d^{4}u}{(2\pi)^{4}}\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial u_{\rho}}\delta^{4}(u)G_{\rho\alpha}^{a}(0)\right) \\ & \left(\int \frac{d^{4}u}{(2\pi)^{4}}\int \frac{d^{4}u}{(2\pi)^{4}}\int \frac{d^{4}v}{(2\pi)^{4}}\right) \\ & \left(\int \frac{i}{2\sqrt{2}i^{2}\epsilon_{a'b'c'}\epsilon_{abc}}\int \frac{d^{4}k_{2}}{(2\pi)^{4}}\int \frac{d^{4}u}{(2\pi)^{4}}\int \frac{d^{4}v}{(2\pi)^{4}} \\ & \left(\int \frac{i}{k_{2}+\frac{i}{p}-m_{2}}\delta_{c'j'}(igT_{j'j}^{b}\gamma^{\beta})\left(\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial v_{\sigma}}\delta^{4}(v)G_{\sigma\beta}^{b}(0)\right)\frac{i}{k_{2}-m_{2}}\delta_{jb}\right) \\ & \left(\int \frac{i}{k_{2}+\frac{i}{p}-m_{2}}\delta_{c'j'}(igT_{j'j}^{b}\gamma^{\beta})\left(\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial v_{\sigma}}\delta^{4}(v)G_{\sigma\beta}^{b}(0)\right)\frac{i}{\frac{i}{p_{1}-k_{2}-\frac{k}{q_{3}}+\frac{i}{p_{4}}+m_{1}}\delta_{a''i'}\right) \\ & \left(\int \frac{i}{k_{2}-\frac{i}{p_{2}-\frac{k}{q_{3}}+\frac{i}{m_{1}}}\delta_{ia}(igT_{i'i}^{a}\gamma^{\alpha})\left(\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial u_{\rho}}\delta^{4}(u)G_{\rho\alpha}^{a}(0)\right)\frac{i}{\frac{i}{p_{1}-\frac{k}{q_{2}-\frac{k}{q_{3}}+\frac{i}{p_{4}}+m_{1}}}\delta_{a''i'}\right) \\ & \left(\int \frac{i}{k_{2}-\frac{i}{p_{2}-\frac{k}{q_{3}}+\frac{i}{m_{1}}}\delta_{ia}(igT_{i'i}^{a}\gamma^{\alpha})\left(\frac{-i}{2}(2\pi)^{4}\frac{\partial}{\partial u_{\rho}}\delta^{4}(u)G_{\rho\alpha}^{a}(0)\right)\frac{i}{\frac{i}{p_{1}-\frac{k}{q_{2}-\frac{k}{q_{3}}+\frac{i}{p_{4}}+m_{1}}}\delta_{a''i'}\right) \\ & \left(\int \frac{i}{k_{3}-\frac{i}{p_{3}-\frac{k}{q_{3}-\frac{k}{q_{3}}+\frac{k}{q_{3}+\frac{k}{q_{3}}+\frac{k}{q_{3}+\frac{k}{q_{3}+\frac{k}{q_{3}+\frac{k}{q_{3}}+\frac{k}{q_{3}+\frac{k}{q$$

1. Integrate out u and v

$$\int d^4 u d^4 v \frac{\partial}{\partial u_\alpha} \delta^4(u) \frac{\partial}{\partial v_\beta} \delta^4(v) f(u,v) = \frac{\partial}{\partial v_\beta} \left(\frac{\partial}{\partial u_\alpha} f(u,v) \Big|_{u=0} \right) \Big|_{v=0}$$

$$\frac{\partial}{\partial u_{\alpha}} \frac{1}{\not p + \not u - m} \bigg|_{u=0} = (-1) \frac{1}{\not p - m} \gamma^{\alpha} \frac{1}{\not p - m}$$

$$\Pi_{\mu} = \sum_{i=1}^{12} A_i e_{i\mu}, \quad e_{i\mu} : 12 \text{ Dirac structures}$$

$$B_j \equiv \operatorname{Tr}\left[\Pi_{\mu} \cdot e_j^{\mu}\right] = \operatorname{Tr}\left[\left(\sum_{i=1}^{12} A_i e_{i\mu}\right) \cdot e_j^{\mu}\right]$$

Advantages:

- A_i are all scalars.
- We need not calculate Π_{μ} ! Calculate scalar $B_j \equiv \text{Tr} \left[\Pi_{\mu} \cdot e_j^{\mu} \right]$ instead!

3. Integrate out k2 and k3

$$\int d^4k_2 d^4k_3 \frac{1}{(k_1^2 - m_1^2)\delta(k_1'^2 - m_1'^2)\delta(k_2^2 - m_2^2)\delta(k_3^2 - m_3^2)}$$

$$\rightarrow \int d^4k_2 d^4k_3 \delta(k_1^2 - m_1^2)\delta(k_1'^2 - m_1'^2)\delta(k_2^2 - m_2^2)\delta(k_3^2 - m_3^2)$$

$$= \int dm_{23}^2 \int_{\Delta} \int_{2}$$

$$\int_{\Delta} = \int d^4k_1 d^4k_1' d^4k_{23} \delta(k_1^2 - m_1^2) \delta(k_1'^2 - m_1'^2) \delta(k_{23}^2 - m_{23}^2) \delta^4(p_1 - k_1 - k_{23}) \delta^4(p_2 - k_1' - k_{23})$$
$$\int_{2} = \int d^4k_2 d^4k_3 \delta(k_2^2 - m_2^2) \delta(k_3^2 - m_3^2) \delta^4(k_{23} - k_2 - k_3)$$

3. Integrate out k2 and k3

$$\int d^4k_2 d^4k_3 \delta(k_1^2 - m_1^2) \delta(k_1'^2 - m_1'^2) \delta(k_2^2 - m_2^2) \delta(k_3^2 - m_3^2) = \int dm_{23}^2 \int_{\Delta} \int_{2} dm_{23}^2 \int_{\Delta} \int_{2} dm_{23}^2 \int_{\Delta} dm_{23$$

rank
$$\int dm_{23}^2 \int_{\Delta} \int_{2} (...)$$

0: 1
1: $k_2 \cdot p_1, \quad k_2 \cdot p_2$
2: $(k_2 \cdot p_1)(k_2 \cdot p_1), \quad (k_2 \cdot p_1)(k_2 \cdot p_2), \quad (k_2 \cdot p_2)(k_2 \cdot p_2)$
 \vdots

٠

Building blocks: k_2

Numerical results

Inputs

$$\Xi_{cc}^{++}(ccu) \to \Sigma_c^+(dcu):$$

$$\begin{split} m_c &= (1.35 \pm 0.10) \text{ GeV}, \quad m_u = m_d = 0, \\ s_1^0 &= (4.1 \text{ GeV})^2, \quad s_2^0 = (3.2 \text{ GeV})^2, \quad T_1^2 \in [4.8, 6.8] \text{ GeV}^2, \\ \lambda_{\Xi_{cc}^{++}} &= 0.109 \pm 0.020 \text{ GeV}^3, \quad \lambda_{\Sigma_c^+} = \sqrt{2}(0.046 \pm 0.006) \text{ GeV}^3, \\ M_{\Xi_{cc}^{++}(\frac{1}{2}^+)} &= 3.621 \text{ GeV}, \quad M_{\Xi_{cc}^{++}(\frac{1}{2}^-)} = (3.77 \pm 0.18) \text{ GeV}, \\ M_{\Sigma_c^+(\frac{1}{2}^+)} &= 2.453 \text{ GeV}, \quad M_{\Sigma_c^+(\frac{1}{2}^-)} = (2.74 \pm 0.20) \text{ GeV}, \\ \langle \bar{q}q \rangle &= ((-0.24 \pm 0.01) \text{ GeV})^3, \quad \langle \bar{q}g_s \sigma Gq \rangle = m_0^2 \langle \bar{q}q \rangle, \quad m_0^2 = (0.8 \pm 0.2) \text{ GeV}^2 \end{split}$$

P. Ball, V. M. Braun and H. G. Dosch, Phys. Rev. D 44, 3567 (1991)

2 criteria are satisfied

TABLE I: $\Xi_{cc}^{++} \to \Sigma_c^+, T_1^2 \in [4.8, 6.8] \text{ GeV}^2, q^2 = -0.75 \text{ GeV}^2$, pole contribution dominated

F_1	F_2	F_3	G_1	G_2	G_3	
(58 - 82)%	(55 - 80)%	(50 - 77)%	(55 - 82)%	(54 - 82)%	(56 - 76)%	

TABLE II: $\Xi_{cc}^{++} \rightarrow \Sigma_c^+$, $T_1^2 = 5.8 \text{ GeV}^2$, $q^2 = -0.75 \text{ GeV}^2$, contributions from dim-0, 3, 5

	F_1	F_2	F_3	G_1	G_2	G_3
dim-0	0.321	0.135	-0.548	-0.692	0.373	0.157
\dim -3	0.481	0.327	-0.938	-1.197	0.829	0.211
\dim -5	0.036	0.047	-0.097	-0.214	0.160	0.016

Our *standard* parametrization:

$$\langle \mathcal{B}_2(p_2, s_2) | (V - A)_{\mu} | \mathcal{B}_1(p_1, s_1) \rangle = \bar{u}(p_2, s_2) [\gamma_{\mu} f_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{M_2} f_2(q^2) + \frac{q_{\mu}}{M} f_3(q^2)] u(p_1, s_1)$$

$$- \bar{u}(p_2, s_2) [\gamma_{\mu} g_1(q^2) + i\sigma_{\mu\nu} \frac{q^{\nu}}{M_2} g_2(q^2) + \frac{q_{\mu}}{M} g_3(q^2)] \gamma_5 u(p_1, s_1)$$

Our *practical* parametrization:

$$\langle \mathcal{B}_2(p_2, s_2) | (V - A)_\mu | \mathcal{B}_1(p_1, s_1) \rangle = \bar{u}(p_2, s_2) [\frac{p_{1\mu}}{M_1} F_1 + \frac{p_{2\mu}}{M_2} F_2 + \gamma_\mu F_3] u(p_1, s_1) - \bar{u}(p_2, s_2) [\frac{p_{1\mu}}{M_1} G_1 + \frac{p_{2\mu}}{M_2} G_2 + \gamma_\mu G_3] \gamma_5 u(p_1, s_1)$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \frac{M_1 + M_2}{2M_1} & \frac{M_1 + M_2}{2M_2} & 1 \\ \frac{1}{2} & \frac{M_1}{2M_2} & 0 \\ \frac{1}{2} & -\frac{M_1}{2M_2} & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$

Error estimate

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \frac{M_1 + M_2}{2M_1} & \frac{M_1 + M_2}{2M_2} & 1 \\ \frac{1}{2} & \frac{M_1}{2M_2} & 0 \\ \frac{1}{2} & -\frac{M_1}{2M_2} & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$

TABLE III: error estimate

		Central value	m_c	s_1^0	s_2^0	T_1^2	λ_i	λ_{f}	M_1^-	M_2^-	$\langle \bar{q}q \rangle$	$\langle \bar{q}g_s\sigma Gq \rangle$
f_1	$f_1(0)$	-0.30	0.07	0.00	0.02	0.02	0.05	0.03	0.01	0.00	0.02	0.00
	$m_{\rm pole}$	1.76	0.04	0.50	0.43	0.02	0.00	0.00	0.00	0.01	0.05	0.02
	δ	-0.65	0.38	1.12	1.06	0.28	0.00	0.00	0.01	0.00	0.03	0.03

$$F(q^2) = \frac{F(0)}{1 - \frac{q^2}{m_{\rm fit}^2} + \delta \left(\frac{q^2}{m_{\rm fit}^2}\right)^2}$$

when $m_{\rm fit} \to m_{\rm pole}$ and $\delta \to 0$

$$F(q^2) = \frac{F(0)}{1 - \frac{q^2}{m_{\text{pole}}^2}}$$

Results and comparison

TABLE IV: $\Xi_{cc}^{++} \to \Sigma$	L_c^+ , Comparison	with other works
--------------------------------------	----------------------	------------------

	This work	LFQM	NRQM	MBM
$f_1(0)$	-0.30 ± 0.10	-0.46	-0.28	-0.30
$f_2(0)$	1.04 ± 0.44	1.04	0.14	0.91
$f_{3}(0)$	0.10 ± 0.06		-0.10	0.07
$g_1(0)$	0.47 ± 0.19	-0.62	-0.70	-0.56
$g_2(0)$	-0.09 ± 0.07	0.04	-0.02	0.05
$g_{3}(0)$	-2.99 ± 1.32		0.10	2.59

$$\Xi_{cc}^{++} \to \Sigma_{c}^{+} l^{+} \nu_{l} \qquad \qquad \Gamma = (5.58 \pm 4.42) \times 10^{-15} \\ \mathcal{B} = (2.17 \pm 1.72) \times 10^{-3} \\ \Gamma_{L} / \Gamma_{T} = 1.12 \pm 0.24$$

TABLE V: Comparison with other works (in units of 10^{-15} GeV)

	This work	LFQM	HQSS	NRQM	MBM
$\Xi_{cc}^{++} \to \Sigma_c^+ l^+ \nu_l$	5.58 ± 4.42	9.60	5.22	6.58	2.63

Summary and outlook

- We have adopted QCDSR to investigate the weak decays of spin-1/2 doubly-heavy baryon to spin-1/2 singly-heavy baryon
- On the OPE side, dim-0, 3, 5 are considered, and dim-4 can be neglected
- We have also considered the contribution from the negative parity baryons to eliminate the ambiguousness on the choice of the form factors
- No model-dependent parameters are introduced
- Our results are comparable to other works

Outlook

- Go ahead to investigate
 - -- 1/2 -> 3/2 cases
 - -- FCNC processes

• More important, the lifetime of doubly-heavy baryon!

B. Guberina, B. Melic and H. Stefancic, hep-ph/9911241 H. Y. Cheng and Y. L. Shi, Phys. Rev. D 98, no. 11, 113005 (2018)

Thank you for your attention!

backup

Outline

- Hadronic level
- QCD level
 - Dimension 0: perturbative
 - Dimension 3: $\langle \bar{q}q \rangle$ condensate
 - Dimension 4: $\langle GG \rangle$ condensate
 - Dimension 5: $\langle \bar{q}Gq \rangle$ condensate

Dim-5

Calculation: the 1st step

$$\left(\operatorname{amp}["1"] = \left\{ 2 \sqrt{2} \operatorname{Hold}[\dot{a}^{2}] \in [ap, bp, cp] \in [a, b, c], \frac{\operatorname{int}[4][u]}{\operatorname{Hold}[(2\pi)^{4}]}, \frac{\operatorname{int}[4][v]}{\operatorname{Hold}[(2\pi)^{4}]}, \frac{\operatorname{int}[4][v]}{\operatorname{Hold}[v]}, \frac{\operatorname{int}[4][v]}{\operatorname{Hold}[v]}$$

40

