Recent Progress on the Charmonium and XYZ states at BESIII

Xiaorong Zhou (on behalf of BESIII Collaboration)
State Key Laboratory of Particle Detection and Electronics
University of Science and Technology of China

The 27th International workshop on Weak Interactions and Neutrinos
Bari, Italy, June 2019
Beijing Electron Positron Collider (BEPCII)

- E_{beam}: 1.0-2.3 GeV
- σ_E: 5.16×10^{-4}
- L: 1.0×10^{33} cm$^{-2}$s$^{-1}$ @3.773 GeV
BESIII detector

Main Drift Chamber
- Small cell, 43 layers
- \(\sigma_{xy} = 130 \, \mu m, \, dE/dx \sim 6\% \)
- \(\sigma_p/p = 0.5\% \) at 1 GeV

Time Of Flight
- Plastic scintillator
 - \(\sigma_T \) (barrel): 80 ps
 - \(\sigma_T \) (endcap): 110 ps
 - (endcap update with MRPC \(\sigma_T:65 \) ps)

Electromagnetic Calorimeter
- CsI(Tl): \(L=28 \, cm \) (15\(X_0 \))
- Energy range: 0.02-2 GeV
- Barrel \(\sigma_E = 2.5\% \), \(\sigma_l = 6 \, mm \)
- Endcap \(\sigma_E = 5.0\% \), \(\sigma_l = 9 \, mm \)

Muon Counter
- Resistive plate chamber
- Barrel: 9 layers
- Endcaps: 8 layers
- \(\sigma_{\text{spatial}} = 1.48 \, cm \)
Data sets for Charmonium and XYZ study

- World largest data samples on J/ψ (~10 billion), $\psi(3686)$ (~0.45 billion)
- XYZ data:
 - 5 fb$^{-1}$ e^+e^- collision data event in open charm region from 3.8 to 4.6 GeV in 2013
 - totally ~13 fb$^{-1}$ data taken in 4.0~4.60 GeV, more data samples are being taken this year (~3.8 fb$^{-1}$)
- R-scan data: 104 energy points from 3.85 to 4.59 GeV, integrated luminosity~0.79 fb$^{-1}$
The Charmonium System

- $c\bar{c}$ bound states can be described using potential models
- All predicted states below the $D\bar{D}$ threshold have been found!
- Properties are in agreement with predictions
- Many unpredicted states were reported above the $D\bar{D}$ threshold, called “XYZ” states

“XYZ” states
- “X”: Neutral, $J^{pc} \neq 1^{--}$
 - Observed in radiative or hadronic transitions from Y.
- “Y”: Neutral, $J^{pc} = 1^{--}$
 - Direct access in e^+e^- annihilation.
- “Z”: isospin triplets
 - Observed in hadronic transitions from Y.
Recently highlight results in Charmonium and XYZ

✓ Observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$
 arXiv:1901.03992(accepted by PRL)

✓ Observation of $X(3872) \rightarrow \omega J/\psi$
 arXiv:1903.04695(accepted by PRL)

✓ Open charm and radiative decay transitions of $X(3872)$
 (BESIII preliminary)

✓ Resonant structure in $e^+ e^- \rightarrow \pi^+ D^0 D^{*-}$

✓ Resonant structure in $e^+ e^- \rightarrow \omega \chi_{c0}$

✓ Observation of $e^+ e^- \rightarrow \pi^+ \pi^- \psi(3770)$ and $D_1(2420)\bar{D}$
 arXiv: 1903.08126v1(submit to PRD)

✓ Evidence for $Z_c(3900) \rightarrow \rho^+ \eta_c$
 (BESIII preliminary) [in BACKUP]
The $X(3872)$ state

Discovery of $X(3872)$ ($J^{PC} = 1^{++}$)
- First observed by Belle in $B^\pm \rightarrow K^\pm \pi^+ \pi^- J/\psi$ decay
- Observed in $X(3872) \rightarrow \gamma J/\psi$ process by Babar and Belle
- Evidence of $X(3872) \rightarrow \omega J/\psi$ reported by Belle and Babar
- $M(X(3872)) = 3871.69 \pm 0.17 \text{ MeV}/c^2$
- $\Gamma < 1.2 \text{ MeV} \ (90\% \text{ C.L.})$
- At BESIII, $X(3872)$ is observed via $e^+ e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+ \pi^- J/\psi$

Possible configuration for $X(3872)$
- Conventional Charmonium state? χ'_{c1}?
- Molecule-like $X(3872) = (D^{*0}\bar{D}^0 + D^0\bar{D}^{*0})/\sqrt{2}$
- Tetraquark
- …

Molecule

\[\text{d} \hat{\text{u}} \text{\ldots} \pi^-,\ldots \]

Tetraquark

\[d\bar{d}u\bar{s} \]

PRL. 92, 262001 (2003)

PRL. 112, 092001 (2014)
$X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

- **Data sample:** 9.0 fb$^{-1}$ data from 4.15 to 4.30 GeV
- **Reconstructed processes:**
 - **Signal channel:** $e^+e^- \rightarrow \gamma X(3872), \ X(3872) \rightarrow \pi^0 \chi_{cJ}$ (with $\chi_{cJ} \rightarrow \gamma J/\psi, J/\psi \rightarrow l^+l^-$)

\begin{align*}
\text{Clear signal of } X(3872) \text{ in } Y(4260) \text{ zone, } N_{X(3872)} &= 16.9^{+5.2}_{-4.9} \\
\text{No } X(3872) \text{ events outside of } Y(4260) \text{ zone} \\
\text{Clear cluster of } \chi_{c1}(1P) \text{ events in } X(3872) \text{ mass window} \\
\text{First observation of } X(3872) \rightarrow \pi^0 \chi_{c1}(1P) \text{ with significance } >5\sigma.
\end{align*}
In conventional $c\bar{c}$ hypothesis, $\Gamma(X(3872) \rightarrow \pi^0\chi_{c1}) \sim 0.06$ keV \textit{PRD 77, 014013(2008)}

In tetraquark/molecular state hypothesis, the decay width could be sizeable. \textit{PRD 92, 034019 (2015)}

Using $3.3\% < \mathcal{B}(X(3872) \rightarrow \pi^+\pi^-J/\psi) < 6.4\%$: $\mathcal{B}(X(3872) \rightarrow \pi^0\chi_{c1}) \sim 3$-$6\%$.

If $X(3872)$ interpret as $\chi_{c1}(2P)$: $\Gamma(X(3872)) \sim 1.0$-2.0 keV, which is orders of magnitude smaller than all other observed charmonium states.

This measurement disfavors the $c\bar{c}$ interpretation of $X(3872)$
$X(3872) \rightarrow \omega J/\psi$

- Data sample: 11.6 fb$^{-1}$ data from 4.008 to 4.600 GeV
- Signal process: $e^+e^- \rightarrow \gamma X \rightarrow \gamma \omega J/\psi$, with $\omega \rightarrow \pi^+\pi^-\pi^0$, $J/\psi \rightarrow l^+l^-$

- An unbinned maximum-likelihood fit performed to $\omega J/\psi$.
- Signal PDF:
 - Three resonances hypothesis: (X(3872), X(3915) and X(3960))
 \[N_{\text{sig}}(X(3872)) = 45 \pm 9 \pm 3 \]
 - Two resonance hypothesis: (X(3872), X(3915))
 \[N_{\text{sig}}(X(3872)) = 40 \pm 8 \pm 2 \]

Hard to distinguish the two hypotheses since only 2.5σ difference.
The production cross section of $e^+e^- \rightarrow \gamma X(3872)$ ($\sigma \cdot B(X(3872) \rightarrow \omega J/\psi)$) is calculated at each energy point.

The line-shape can be described by a single BW resonance $Y(4200)$.

A simultaneous fit to the $X(3872) \rightarrow \omega J/\psi$ and $\pi^+\pi^- J/\psi$ cross section gives

\[
M(Y(4200)) = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2
\]
\[
\Gamma(Y(4200)) = 115^{+38}_{-26} \pm 12 \text{ MeV}
\]

\[
\mathcal{R} \equiv \frac{B(X(3872) \rightarrow \omega J/\psi)}{B(X(3872) \rightarrow \pi^+\pi^- J/\psi)} = 1.6^{+0.4}_{-0.3} \pm 0.2, \text{ agree with the previous measurement.}
\]

(0.8\pm0.3 from Babar)
$X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3686), D^0 \overline{D}^{*0}, \gamma D^+ D^-$

- Data sample: 8.5 fb$^{-1}$ from $\sqrt{s} = 4.178$ to 4.278 GeV

$X(3872) \rightarrow \gamma J/\psi$

$J/\psi \rightarrow \mu\mu/ee$

$X(3872) \rightarrow \gamma \psi(3686)$

$\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$

$\psi(3686) \rightarrow \mu\mu$

$\frac{B[X(3872)\rightarrow \gamma \psi(3686)]}{B[X(3872)\rightarrow \gamma J/\psi]} < 0.59$ at 90% C.L.

- Simultaneous fit; significance $> 3.5 \sigma$

- Simultaneous fit; no evident signal

Expectation strength
$X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3686), D^0 \bar{D}^*0, \gamma D^+D^-$

$X(3872) \rightarrow D^0 \bar{D}^*0 + c.c.$

$D^0 \rightarrow \gamma D^0, \pi^0 D^0$

$D^0 \rightarrow K\pi, K\pi\pi, K\pi\pi\pi$

$X(3872) \rightarrow \gamma D^+D^-$

$D^\pm \rightarrow K\pi\pi, K\pi\pi\pi$

$N_{\gamma D^+D^-} = 0.0^{+0.5}_{-0.0}$

No evident signal for γD^+D^-

- Relative branching ratio compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$

<table>
<thead>
<tr>
<th>mode</th>
<th>$D^*0 \bar{D}^0 + c.c.$</th>
<th>$\gamma J/\psi$</th>
<th>$\gamma \psi'$</th>
<th>γD^+D^-</th>
<th>$\omega J/\psi$</th>
<th>$\pi^0 \chi_{c1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratio</td>
<td>14.81 ± 3.80</td>
<td>0.79 ± 0.28</td>
<td>< 0.42</td>
<td>< 0.99</td>
<td>$1.7^{+0.4}_{-0.3} \pm 0.2$ [27]</td>
<td>$0.88^{+0.33}_{-0.27} \pm 0.10$ [37]</td>
</tr>
</tbody>
</table>
The Y states

- **Y(4260)** in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
 - Discovery in ISR process by BaBar
 - Confirmed by Belle.

<table>
<thead>
<tr>
<th>Y(4260)</th>
<th>PDG2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M[Y(4260)]$</td>
<td>4230 ± 8 (MeV/c2)</td>
</tr>
<tr>
<td>$\Gamma_{tot}[Y(4260)]$</td>
<td>55 ± 19 (MeV)</td>
</tr>
</tbody>
</table>

- At BESIII, two resonant structures are observed in the energy region of Y(4260).
 - Y(4320) observed for the first time with 7.6σ significance.
 - No hint of Y(4008) which is seen in Belle.

$$M_1 = 4222.5 \pm 3.1 \pm 1.4 \text{ MeV/c}^2, \Gamma_1 = 44.1 \pm 4.3 \pm 2.0 \text{ MeV}$$

$$M_2 = 4320.0 \pm 10.4 \pm 7.0 \text{ MeV/c}^2, \Gamma_2 = 101.4^{+25.3}_{-19.7} \pm 10.2 \text{ MeV}$$

References:
- PRD 86, 051102 (R) (2012)
- PRL 110, 252002 (2013)
- PRL 118, 092001 (2017)
- PDG2018
The Y states

- $Y(4360)$, $Y(4660)$ in $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$
 - Discovery in ISR process by Belle
 - Confirmed by Babar.
 - No evidence for the $Y(4260)$

<table>
<thead>
<tr>
<th></th>
<th>PDG2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{\text{tot}}[Y(4260)]$</td>
<td>55 ± 19(MeV)</td>
</tr>
<tr>
<td>$M[Y(4360)]$</td>
<td>4368 ± 13 (MeV/c2)</td>
</tr>
<tr>
<td>$\Gamma_{\text{tot}}[Y(4360)]$</td>
<td>96 ± 7(MeV)</td>
</tr>
<tr>
<td>$M[Y(4660)]$</td>
<td>4643 ± 9 (MeV/c2)</td>
</tr>
<tr>
<td>$\Gamma_{\text{tot}}[Y(4660)]$</td>
<td>72 ± 11(MeV)</td>
</tr>
</tbody>
</table>

- At BESIII, two resonant structures observed in energy region 4.2-4.4 GeV
 - $Y(4220)$ observed for the first time in this process with significance of 5.8σ

$$M_1 = 4209.5 \pm 7.4 \pm 1.4 \text{ MeV/c}^2, \quad \Gamma_1 = 80.1 \pm 24.6 \pm 2.9 \text{ MeV}$$
$$M_2 = 4383.8 \pm 4.2 \pm 0.8 \text{ MeV/c}^2, \quad \Gamma_2 = 84.2 \pm 12.5 \pm 2.1 \text{ MeV}$$
The Y states

Some more Y states observed at BESIII

- Y(4220), Y(4390) observed in $\pi^+\pi^- h_c$
- Y(4220) observed in $\omega \chi_{c0}$

Why “exotic”

- No natural place within quark model.
- Strongly coupling to $\pi^+\pi^- J/\psi$ rather charm decay modes.
- Dip on R-value

Theoretical interpretation

- Hybrid charmonium
- Tetraquark
- Hadronic molecule
- ...
Using data sample from 4.05 to 4.60 GeV

Reconstructed channel: $D^0 \rightarrow K^- \pi^+$

Using $RM(D^0 \pi^+) + M(D^0) - m(D^0)$ to select D^{*-} signal

Peaking background comes from isospin partner $e^+e^- \rightarrow \pi^+D^-D^{*0}$

Fit with a coherent sum of three-body PHSP and two BW functions

Significance of two structures greater than 10σ over one structure assumption

$M_1 = 4228.6 \pm 4.1 \pm 6.3$ MeV/c^2, $\Gamma_1 = 77.1 \pm 6.8 \pm 6.8$ MeV

The resonance parameters around 4.40 GeV strongly depend on the model and need further studies

$e^+ e^- \rightarrow \omega \chi_{c0}$

Data sample: 7 fb$^{-1}$ from 4.178 to 4.278 GeV

The χ_{c0} is reconstructed from $\pi^+\pi^-$ and K^+K^-

This observation confirms and improves the previous result

$M = (4218.5 \pm 1.6 \pm 4.0)$ MeV/c2

$\Gamma = (28.2.0 \pm 3.9 \pm 1.6)$ MeV
\[e^+ e^- \rightarrow \pi^+ \pi^- \psi(3770), \ D_1(2420) \bar{D} \]

- Study the intermediate states of \[e^+ e^- \rightarrow \pi^+ \pi^- D^0 \bar{D}^0 \], \[e^+ e^- \rightarrow \pi^+ \pi^- D^+ D^- \]
 - \[D^0 \rightarrow K^- \pi^+ \], \[K^- \pi^+ \pi^0 \], \[K^- \pi^+ \pi^+ \pi^- \] and \[K^- \pi^+ \pi^+ \pi^- \pi^0 \]
 - \[D^+ \rightarrow K^- \pi^+ \pi^+ \], \[K^- \pi^+ \pi^+ \pi^0 \], \[K_S^0 \pi^+ \], \[K_S^0 \pi^+ \pi^0 \], and \[K_S^0 \pi^+ \pi^+ \pi^- \]

- \[e^+ e^- \rightarrow \pi^+ \pi^- \psi(3770) \] is observed for the first time at 4.42 GeV.
- Hints in \(\pi^\pm \psi(3770) \) mass spectrum at 4.04 and 4.13 GeV/c^2 in \(\sqrt{s} = 4.42 \) GeV data
- Clear structure in line-shape of \(\pi^+ \pi^- \psi(3770) \)
Three different decay channels ($D^0\pi^+\pi^−$, $D^{*+}\pi^−$, and $D^+\pi^+\pi^−$) are used to search for $D_1(2420)$

Clear structure in the line-shape of $e^+e^− \rightarrow D_1(2420)\bar{D}$
The Y states

Parameters of the Peaks in e^+e^- Cross Sections

```
\begin{align*}
\psi(4160)_R & \\
\psi(4415)_R & \\
"Y(4220)"_{\pi\pi\psi} & \\
"Y(4320)"_{\pi\pi\psi} & \\
"Y(4220)"_{\pi\pi\psi(2S)} & \\
"Y(4390)"_{\pi\pi\psi(2S)} & \\
"Y(4220)"_{\pi\pi h_c} & \\
"Y(4390)"_{\pi\pi h_c} & \\
"Y(4220)"_{\pi\pi DD} & \\
"Y(4390)"_{\pi\pi DD} & \\
\end{align*}
```
Summary

BESIII has achieved great progress recently in Charmonium system, especially in XYZ studies, which help discriminate different theoretical interpretation.

- New decay mode $X(3872) \rightarrow \pi^0 \chi_{c1}$ is observed
- First firm observation of $X(3872) \rightarrow \omega J/\psi$
- Exclusive decays of $X(3872)$ is searched
- Two enhancement observed in the lineshape of $e^+e^- \rightarrow \pi^+D^0D^{*-}$
- Improved measurement of process $e^+e^- \rightarrow \omega \chi_{c0}$
- Line-shape measured for process $e^+e^- \rightarrow \pi^+\pi^-\psi(3770), D_1(2420)\bar{D}$

There are still many remain unanswered questions.

BESIII continues taking data and increasing the beam energy, more results in Charmonium system are foreseen.

Thanks
Backup
The Z states

- Discovery of a resonant structure decaying to $J/\psi \pi^\pm$ in $e^+ e^- \rightarrow \pi^+ \pi^- J/\psi$ by BESIII, and observed via ISR in Belle.

- Absolutely exotic!
 - Decays to $J/\psi \Rightarrow$ contain $c \bar{c}$
 - Electrically charged \Rightarrow contains $u \bar{d}$
 - Very close to the $D D^*$ threshold

- Z states at BESIII
$Z_c(3900)^{\pm} \rightarrow \rho^{\pm}\eta_c$

The ratio of $\mathcal{B}(Z_c \rightarrow \rho\eta_c) / \mathcal{B}(Z_c \rightarrow \pi J/\psi)$ can be used to discriminate between the molecule and tetraquark scenarios.

The green band and yellow band show the 1σ and 2σ confidence range of the corresponding theoretical model.

A. Esposito et al., PLB 746(2015), 194-201
$Z_c(3900)^\pm \rightarrow \rho^\pm \eta_c$

- $\pi^+\pi^-\pi^0\eta_c$ final state is studied with η_c reconstructed from 9 hadronic decay modes: ($p\bar{p}$, $2(K^+K^-)$, $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0$, $p\bar{p}\pi^0$, $K_sK\pi$, $\pi^+\pi^-\eta$, $K^+K^-\eta$ and $\pi^+\pi^-\pi^0\pi^0$)

- First evidence for the $Z_c(3900)^\pm \rightarrow \rho^\pm \eta_c$ is observed with 3.9σ significance at 4.226 GeV.

- No significant signal is observed in $Z_c(4020)^\pm \rightarrow \rho^\pm \eta_c$
The production Born cross section is calculated at 4.226 GeV:

\[\sigma(e^+e^- \to \pi^+\pi^-\pi^0\eta_c) = (46 \pm 12 \pm 10) \text{ pb} \]

\[\sigma(e^+e^- \to \pi Z_c, Z_c \to \rho \eta_c) = (47 \pm 11 \pm 11) \text{ pb} \]

This measurement doesn't agree with both molecular Zc and tetraquark Zc Type-1 assumptions.