

Recent Progress on the Charmonium and XYZ states at BESIII

Xiaorong Zhou (on behalf of BESIII Collaboration) State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

The 27th International workshop on Weak Interactions and Neutrinos Bari, Italy, June 2019

1

Beijing Electron Positron Collider (BEPCII)

BESIII detector

Main Drift Chamber Small cell, 43 layer σ_{xy} =130 µm, dE/dx~6% σ_p/p = 0.5% at 1 GeV Time Of Flight Plastic scintillator σ_T (barrel): 80 ps σ_T (endcap): 110 ps (endcap update with MRPC σ_T :65 ps)

Electromagnetic Calorimeter CsI(Tl): L=28 cm (15X₀) Energy range: 0.02-2GeV Barrel σ_E 2.5%, σ_I 6mm Endcap σ_E 5.0%, σ_I 9mm

 $\begin{array}{l} \textbf{Muon Counter} \\ \textbf{Resistive plate chamber} \\ \textbf{Barrel: 9 layers} \\ \textbf{Endcaps: 8 layers} \\ \sigma_{\text{spatial}} \textbf{: 1.48 cm} \end{array}$

Data sets for Charmonium and XYZ study

Vorld largest data samples on J/ψ (~10 billion), ψ (3686) (~0.45 billion)

> XYZ data:

- > 5 fb⁻¹ e⁺e⁻ collision data event in open charm region from 3.8 to 4.6 GeV in 2013
- totally ~13 fb⁻¹ data taken in 4.0~4.60 GeV, more data samples are being taken this year (~3.8 fb⁻¹)

R-scan data:104 energy points from 3.85 to 4.59 GeV, integrated luminosity~ 0.79 fb⁻¹

The Charmonium System

- $c\bar{c}$ bound states can be described using potential models
- All predicted states below the $D\overline{D}$ threshold have been found!
- Properties are in agreement with predictions
- Many unpredicted states were reported above the $D\overline{D}$ threshold, called "*XYZ*" states
- "XYZ" states
 - \succ "X": Neutral, $J^{pc} \neq 1^{--}$

Observed in radiative or hadronic transitions from Y.

- → "Y": Neutral, $J^{pc} = 1^{--}$
 - Direct access in e^+e^- annihilation.
- "Z": isospin triplets

Observed in hadronic transitions from Y.

Recently highlight results in Charmonium and XYZ

- ✓ Observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ arXiv:1901.03992(accepted by PRL)
- ✓ Observation of $X(3872) \rightarrow \omega J/\psi$ arXiv:1903.04695(accepted by PRL)
- ✓ Open charm and radiative decay transitions of X(3872) (BESIII preliminary)
- ✓ Resonant structure in $e^+e^- \rightarrow \pi^+D^0D^{*-}$ Phys. Rev. Lett. 122, 102002 (2019)
- ✓ Resonant structure in $e^+e^- \rightarrow \omega \chi_{c0}$ Phys. Rev. D 99, 091103 (2019)
- ✓ Observation of $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ and $D_1(2420)\overline{D}$ arXiv: 1903.08126v1(submit to PRD)
- ✓ Evidence for $Z_c(3900) \rightarrow \rho^+ \eta_c$ (BESIII preliminary) [in BACKUP]

The *X*(3872) state

Discovery of X(3872) $(J^{PC} = 1^{++})$

- ► First observed by Belle in $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}J/\psi$ decay
- → Observed in $X(3872) \rightarrow \gamma J/\psi$ process by Babar and Belle
- Evidence of $X(3872) \rightarrow \omega J/\psi$ reported by Belle and Babar
- \blacktriangleright M(X(3872))=3871.69±0.17 MeV/ c^2
- ► Γ < 1.2 MeV (90% C.L.)</p>
- ► At BESIII, *X*(3872) is observed via $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+ \pi^- J/\psi$

Possible configuration for X(3872)

- > Conventional Charmonium state? χ'_{c1} ?
- ► Molecule-like $X(3872) = (D^{*0}\overline{D}^0 + D^0\overline{D}^{*0})/\sqrt{2}$
- > Tetraquark

۶..

Molecule

Tetraquark

diquark-diantiquark

 $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

arXiv:1901.03992 (accepted by PRL)

Data sample: 9.0 fb^{-1} data from 4.15 to 4.30 GeV

Reconstructed processes:

► Signal channel: $e^+e^- \rightarrow \gamma X(3872)$, $X(3872) \rightarrow \pi^0 \chi_{cJ}$ (with $\chi_{cJ} \rightarrow \gamma J/\psi$, $J/\psi \rightarrow l^+l^-$)

Clear signal of X(3872) in Y(4260) zone, $N_{X(3872)} = 16.9^{+5.2}_{-4.9}$ No X(3872) events outside of Y(4260) zone Clear cluster of $\chi_{c1}(1P)$ events in X(3872) mass window First observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ with significance >5 σ .

 $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

arXiv:1901.03992 (accepted by PRL)

▶ In conventional $c\bar{c}$ hypothesis, $\Gamma(X(3872) \rightarrow \pi^0 \chi_{c1}) \sim 0.06 \text{ keV}$ PRD 77, 014013(2008)

In tetraquark/molecular state hypothesis, the decay width could be sizeable. PRD 92, 034019 (2015)

		-		
	$\pi^+\pi^- J/\psi$	$\pi^0 \chi_{c0}$	$\pi^0\chi_{c1}$	$\pi^0 \chi_{c2}$
Event yield	$84.1^{+10.1}_{-9.4}$	$1.9^{+1.9}_{-1.3}$	$10.8^{+3.8}_{-3.1}$	$2.5^{+2.3}_{-1.7}$
Signal significance (σ)	16.1	1.6	5.2	1.6
Efficiency (no ISR) (%)	32.3	8.8	14.1	12.8
Efficiency ratio (with ISR)		0.272	0.435	0.392
$\mathcal{B}(\chi_{cJ} \to \gamma J/\psi) \times \mathcal{B}(\pi^0 \to \gamma \gamma) \ (\%)$		1.3	33.5	19.0
Total systematic error (%)		17.0	11.9	9.4
$\mathcal{B}(X \to \pi^0 \chi_{cJ}) / \mathcal{B}(X \to \pi^+ \pi^- J/\psi)$		$6.6^{+6.5}_{-4.5} \pm 1.1 \ (19)$	$0.88^{+0.33}_{-0.27} \pm 0.10$	$0.40^{+0.37}_{-0.27} \pm 0.04 \ (1.1)$

■ Using $3.3\% < \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) < 6.4\%$: $\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1}) \sim 3-6\%$.

■ If X(3872) interpret as $\chi_{c1}(2P)$: $\Gamma(X(3872))^{\sim}1.0-2.0$ keV, which is orders of magnitude smaller than all other observed charmonium states.

This measurement disfavors the $c\bar{c}$ interpretation of X(3872)

$X(3872) \rightarrow \omega J/\psi$

arXiv:1903.04695 (accepted by PRL)

Data sample: 11.6 fb^{-1} data from 4.008 to 4.600 GeV

Signal process: $e^+e^- \rightarrow \gamma X \rightarrow \gamma \omega J/\psi$, with $\omega \rightarrow \pi^+\pi^-\pi^0$, $J/\psi \rightarrow l^+l^-$

- > An unbinned maximum-likelihood fit performed to $\omega J/\psi$.
- Signal PDF:
- ✓ Three resonances hypothesis: (X(3872), X(3915) and X(3960)) $N_{sig}(X(3872)) = 45 \pm 9 \pm 3$
- Two resonance hypothesis: (X(3872), X(3915)) $N_{sig}(X(3872)) = 40 \pm 8 \pm 2$

	Mass	Width
X(3872)	$3873.3 \pm 1.1 \; (3872.8 \pm 1.2)$	1.2(1.2)
X(3915)	$3926.4 \pm 2.2 \; (3932.6 \pm 8.7)$	$3.8\pm7.5\;(59.7\pm15.5)$
X(3960)	3963.7 ± 5.5	33.3 ± 34.2

Hard to distinguish the two hypotheses since only 2.5σ difference.

$X(3872) \rightarrow \omega J/\psi$

arXiv:1903.04695 (accepted by PRL)

The production cross section of $e^+e^- \rightarrow \gamma X(3872)$ ($\sigma \cdot \mathcal{B}(X(3872) \rightarrow \omega J/\psi)$) is calculated at each energy point.

The line-shape can be described by a single BW resonance Y(4200).

• A simultaneous fit to the $X(3872) \rightarrow \omega J/\psi$ and $\pi^+\pi^- J/\psi$ cross section gives

$$M(Y(4200)) = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2$$

$$\Gamma(Y(4200)) = 115^{+38}_{-26} \pm 12 \text{ MeV}$$

 $\mathcal{R} \equiv \frac{\mathcal{B}(X(3872) \to \omega J/\psi)}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} = 1.6^{+0.4}_{-0.3} \pm 0.2, \text{ agree with the previous measurement.}$ $(0.8 \pm 0.3 \text{ from Babar})$

$X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3686), D^0 \overline{D}^{*0}, \gamma D^+ D^-$

Data sample: 8.5 fb⁻¹ from $\sqrt{s} = 4.178$ to 4.278 GeV

$X(3872) \rightarrow \gamma J/\psi, \gamma \psi(3686), D^0 \overline{D}^{*0}, \gamma D^+ D^-$

▶ Relative branching ratio compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$

mode $D^{*0}\bar{D^0} + c.c.$	$\gamma J/\psi$	$\gamma \psi'$	$\gamma D^+ D^-$	$\omega J/\psi$	$\pi^0\chi_{c1}$
ratio 14.81 ± 3.80	0.79 ± 0.28	< 0.42	< 0.99	$1.7^{+0.4}_{-0.3} \pm 0.2$ [27]	$0.88^{+0.33}_{-0.27} \pm 0.10$ [37]

The Y states

• Y(4260) in $e^+e^- \to \pi^+\pi^- J/\psi$

- Discovery in ISR process by BaBar
- Confirmed by Belle.

	PDG2018
M[Y(4260)]	4230±8 (MeV/c²)
Γ _{tot} [Y(4260)]	55 <u>+</u> 19(MeV)

- At BESIII, two resonant structures are observed in the energy region of Y(4260).
 - Y(4320) observed for the first time with 7.6σ significance.
 - No hint of Y(4008) which is seen in Belle.

 $M_1 = 4222.5 \pm 3.1 \pm 1.4 \text{ MeV/c}^2, \Gamma_1 = 44.1 \pm 4.3 \pm 2.0 \text{ MeV}$

 $M_2 = 4320.0 \pm 10.4 \pm 7.0 \text{ MeV/c}^2$, $\Gamma_2 = 101.4 \substack{+25.3 \\ -19.7 \pm} 10.2 \text{ MeV}$

The Y states

Events /50 MeV/c²

• Y(4360), Y(4660) in $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$

- Discovery in ISR process by Belle
- Confirmed by Babar.
- No evidence for the Y(4260)

	PDG2018		
$\Gamma_{ m tot}$ [Y(4260)]	55 <u>+</u> 19(MeV)		
M[Y(4360)]	4368±13 (MeV/c²)		
$\Gamma_{ m tot}$ [Y(4360)]	96±7(MeV)		
M[Y(4660)]	4643 <u>+</u> 9 (MeV/c²)		
$\Gamma_{ m tot}$ [Y(4660)]	72 <u>+</u> 11(MeV)		

- At BESIII, two resonant structures observed in energy region 4.2-4.4 GeV
 - Y(4220) observed for the first time in this process with significance of 5.8σ
- $M_1 = 4209.5 \pm 7.4 \pm 1.4 \text{ MeV/c}^2$, $\Gamma_1 = 80.1 \pm 24.6 \pm 2.9 \text{ MeV}$

 $M_2 = 4383.8 \pm 4.2 \pm 0.8 \text{ MeV/c}^2$, $\Gamma_2 = 84.2 \pm 12.5 \pm 2.1 \text{ MeV}$

The Y states

Some more Y states observed at BESIII

- > Y(4220), Y(4390) observed in $\pi^+\pi^-h_c$
- > Y(4220) observed in $\omega \chi_{c0}$

Why "exotic"

- No natural place within quark model.
- Strongly coupling to $\pi^+\pi^- J/\psi$ rather charm decay modes.
- Dip on R-value

Theoretical interpretation

- Hybrid charmonium
- Tetraquark
- Hadronic molecule
- ≻ ...

 $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

Phys. Rev. Lett. 122, 102002 (2019)

- Using data sample from 4.05 to 4.60 GeV
- Reconstructed channel: $D^0 \rightarrow K^- \pi^+$
- Using $RM(D^0\pi^+) + M(D^0) m(D^0)$ to select D^{*-} signal
- Peaking background comes from isospin partner $e^+e^- \rightarrow \pi^+ D^- D^{*0}$

- Fit with a coherent sum of three-body PHSP and two BW functions
- Significance of two structures greater than 10σ over one structure assumption

 $M_1 = 4228.6 \pm 4.1 \pm 6.3 \text{ MeV/c}^2$, $\Gamma_1 = 77.1 \pm 6.8 \pm 6.8 \text{ MeV}$

The resonance parameters around 4.40 GeV strongly depend on

the model and need further studies

 $e^+e^- \rightarrow \omega \chi_{c0}$

Phys. Rev. D 99, 091103 (2019)

Data sample: 7 fb⁻¹ from 4.178 to 4.278 GeV

> The χ_{c0} is reconstructed from $\pi^+\pi^-$ and K^+K^-

This observation confirms and improves the previous result

 $M = (4218.5 \pm 1.6 \pm 4.0) \text{ MeV/c}^2$ $\Gamma = (28.2.0 \pm 3.9 \pm 1.6) \text{ MeV}$

$e^+e^- \to \pi^+\pi^-\psi(3770), D_1(2420)\overline{D}$

■ Study the intermediate states of $e^+e^- \to \pi^+\pi^- D^0 \overline{D}{}^0$, $e^+e^- \to \pi^+\pi^- D^+D^ \succ D^0 \to K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^-$ and $K^-\pi^+\pi^+\pi^-\pi^0$ $\succ D^+ \to K^-\pi^+\pi^+, K^-\pi^+\pi^+\pi^0, K^0_s\pi^+, K^0_s\pi^+\pi^0$, and $K^0_s\pi^+\pi^+\pi^-$

- > e^+e^- → $\pi^+\pi^-\psi(3770)$ is observed for the first time at 4.42 GeV.
- → Hints in $\pi^{\pm}\psi(3770)$ mass spectrum at 4.04 and 4.13 GeV/ c^2 in \sqrt{s} = 4.42 GeV data
- > Clear structure in line-shape of $\pi^+\pi^-\psi(3770)$

 $e^+e^- \to \pi^+\pi^-\psi(3770), D_1(2420)\overline{D}$

- > Three different decay channels $(D^0\pi^+\pi^-, D^{*+}\pi^-, and D^+\pi^+\pi^-)$ are used to search for $D_1(2420)$
- → Clear structure in the line-shape of $e^+e^- \rightarrow D_1(2420)\overline{D}$

Parameters of the Peaks in e⁺e⁻ Cross Sections

Summary

BESIII has achieved great progress recently in Charmonium system, especially in XYZ studies, which help discriminate different theoretical interpretation.

- > New decay mode $X(3872) \rightarrow \pi^0 \chi_{c1}$ is observed
- > First firm observation of $X(3872) \rightarrow \omega J/\psi$
- Exclusive decays of X(3872) is searched
- > Two enhancement observed in the lineshape of $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$
- > Improved measurement of process $e^+e^- \rightarrow \omega \chi_{c0}$
- ≻ Line-shape measured for process $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$, $D_1(2420)\overline{D}$
- There are still many remain unanswered questions.
- BESIII continues taking data and increasing the beam energy, more results in Charmonium system are foreseen.

The Z states

- Discovery of a resonant structure decaying to $J/\psi \pi^{\pm}$ in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ by BESIII, and observed via ISR in Belle.
- Absolutely exotic !
 - > Decays to $J/\psi =>$ contain $c\bar{c}$
 - > Electrically charged => contains $u\bar{d}$
 - > Very close to the DD^* threshold

Z states at BESIII

$Z_c(3900)^\pm\to\rho^\pm\eta_c$

The ratio of $\mathcal{B}(Z_c \to \rho \eta_c) / \mathcal{B}(Z_c \to \pi J/\psi)$ can be used to discriminate between the molecule and tetraquark scenarios.

The green band and yellow band show the 1σ and 2σ confidence range of the corresponding theoretical model

$Z_c(3900)^\pm \to \rho^\pm \eta_c$

- $\pi^{+}\pi^{-}\pi^{0}\eta_{c} \text{ final state is studied with } \eta_{c} \text{ reconstructed from 9 hadronic decay} \\ \text{modes: } (p\bar{p}, 2(K^{+}K^{-}), K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{0}, p\bar{p}\pi^{0}, K_{s}K\pi, \pi^{+}\pi^{-}\eta, K^{+}K^{-}\eta \\ \text{and } \pi^{+}\pi^{-}\pi^{0}\pi^{0})$
- First evidence for the $Z_c(3900)^{\pm} \rightarrow \rho^{\pm}\eta_c$ is observed with 3.9 σ significance at 4.226 GeV.
- No significant signal is observed in $Z_c(4020)^{\pm} \rightarrow \rho^{\pm}\eta_c$

$Z_c(3900)^\pm \to \rho^\pm \eta_c$

► The production Born cross section is calculated at 4.226 GeV: $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c) = (46 \pm 12 \pm 10) \text{ pb}$ $\sigma(e^+e^- \rightarrow \pi Z_c, Z_c \rightarrow \rho\eta_c) = (47\pm11\pm11) \text{ pb}$

	$\sqrt{s} = 4.226 \mathrm{GeV}$	$\sqrt{s} = 4.258 \mathrm{GeV}$	$\sqrt{s} = 4.358{\rm GeV}$	Type-I	Type-II	Molecule
$R_{Z_c(3900)}$	2.2 ± 0.9	< 5.6		230^{+330}_{-140}	$0.27^{+0.40}_{-0.17}$	$0.046^{+0.025}_{-0.017}$
$R_{Z_c(4020)}$	< 1.6	< 0.9	< 1.4	6.6	$+56.8 \\ -5.8$	$0.010^{+0.006}_{-0.004}$

This measurement doesn't agree with both molecular Zc and tetraquark Zc Type-1 assumptions.