Recent **BESIII** results in open charm

Krishnakumar Ravindran

Indian Institute of Technology Madras, Chennai (on behalf of BESIII collaboration)

WIN 2019, Bari, Italy

- BESIII experiments and dataset
- Latest results
 - (Semi)leptonic decays
 - Hadronic
 - Λ_c
- Summary

Also see progress on charmonium and XYZ states at BESIII- Xiaorong Zhou

Flavor and precision physics :Experiments- Bostjan Golob

BESIII experiment

BEPCII

- Two ring symmetric e⁺e⁻ collider; circumference: 240 m and with a design instantaneous luminosity of 1×10³³ cm⁻²s⁻¹.
- \checkmark \sqrt{s} : 2 4.6 GeV.
- Beam crossing angle 22 mrad.

BESIII

- Hermeticity 93% of 4π
- MDC: σ_p/p= 0.5% at 1 GeV
- ToF system: $\sigma = 80 \text{ ps (110 ps) in barrel (endcap)}$
- ECL: $\sigma_E/E = 2.5$ % at 1 GeV
- ► Superconducting solenoid (SSM): ⇒ 1 T

Singletag and doubletag techniques

Threshold production \Rightarrow no other particles are produced along with a $D\overline{D}$, $D^0\overline{D^0}$, $\Lambda_c^+\Lambda_c^-$.

Single tag \Rightarrow reconstruct only one *D* meson.

Double tag \Rightarrow full reconstruction of events.

 $\Delta E = E_D - E_{beam}$

$$\Delta M_{BC} = \sqrt{E_{beam}^2 - p_D^2}$$

Advantages

- Absolute BF measurements possible.
- Full kinematic constraints: possible to reconstruct ν and K₁⁰.
- Low background.

Disadvantage

• Low reconstruction efficiency.

Leptonic decays of a
$$D^{\pm}, D_s^{\pm}$$

* f function of four momentum of W

 V_{cs}/V_{cd}

▶ Take $f_{D_s}^+/f_{D^+}^+$ from LQCD and get

Test of unitarity.

$f_{D_s}^+/f_{D^+}^+$

- ▶ Input V_{cs}/V_{cd} get $f_{D_s}^+/f_{D^+}^+$.
- Test LQCD.
- Precision of experiments still limited compared to LQCD.

Lepton flavor universality(LFU)

Hints of LFU violation in B decays (PRD 94, 072007 (2016), JHEP.08 (2017) 055).

$D_s^+ o \mu^+ u_\mu$ (PRL 122 071802 (2019))

- More precise measurement than previous BESIII result (PRD 94, 072004).
- D_s^{\pm} reconstructed in 14 different ST modes.

$$\begin{split} \mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) &= (5.49 \pm 0.16 \pm 0.15) \times 10^{-3} \\ f_{D_s^+} |V_{cs}| &= 246.2 \pm 3.6 \pm 3.5 \text{ MeV} \end{split}$$

Input $|V_{cs}|$: 0.97359^{+0.00010}_{-0.00011}

 $f_{D_c^+} = 252.9 \pm 3.7 \pm 3.6 \text{ MeV}$

Input $f_{D_s^+}$:0.249.9 \pm 0.4 MeV

 $|V_{cs}| = 0.985 \pm 0.014 \pm 0.014$

Using PDG value of $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$

 $\frac{\mathcal{B}(D_{s}^{+} \to \tau^{+} \nu_{\tau})}{\mathcal{B}(D_{s}^{+} \to \mu^{+} \nu_{\mu})} = 9.98 \pm 0.52$

Krishnakumar

 \star Consistent with SM prediction 9.74 \Rightarrow no evidence of LFU violation observed.

Analysis in $\tau^+ \nu_{\tau}$ ongoing.

SM fit	PDG18	0.97359±0.00011	· · · · · ·	
DELPHI	PLB439,209, W ⁺ → cs	0.94±0.32±0.13		
CLEO/Belle/BaBar/BESIII PDG 18, D→K I*v 0.975±0.007±0.025				
CLEO	PRD79,052002, $D_s^* \rightarrow \tau_{evv}^v$	0.981±0.043±0.021	+	
CLEO	PRD80,112004, D [*] _s →τ _{pv} ν	1.001±0.052±0.020		
CLEO	PRD79,052001, $D_s^* \rightarrow \tau_{xv} v$	1.080±0.068±0.016		
BaBar	PRD82,091103, D [*] →τ _{ev v,µv}	V 0.949±0.035±0.055		
Belle	JHEP1309,139, D [*] _s →τ _{evv,µv}	v.v.v 1.017±0.019±0.028	-	
BESIII	PRD94,072004, $D_{a}^{*} \rightarrow \mu v, \tau_{xv}$	0.936±0.063±0.025		
CLEO	PRD79,052001, D [*] _s →µν	1.000±0.040±0.016	-	
BaBar	PRD82,091103, $D_s^+ \rightarrow \mu v$	1.032±0.033±0.029		
Belle	JHEP1309,139, D [*] _s →μν	0.969±0.026±0.019	+	
BESIII@4.178(pre.)	D _s [*] →ηe [*] ν _e	0.925±0.085±0.158 -		
BESIII@4.178(pre.)	D [*] _s →ηe [*] ν _e	1.030±0.012±0.080		
BESIII	arXiv:1810.03127, D ⁰ →K ⁻ µ	[•] ν _µ 0.955±0.006±0.024	-	
BESIII	arXiv:1811.10890, D _s →µv	0.985±0.014±0.014	+	
BESIII	Expected (6 fb ⁻¹), D [*] →µv	0.985±0.010±0.012		
-1.5 -	1 -0.5	0 0.5	1	
		0.0		

 $D^0 \to K^- \mu^+ \nu_\mu$ (PRL 122(2019)011804)

DT analysis with 3 pseudoflavor tags.

 $D^0 \to \pi^- \mu^+ \nu_\mu$ (PRL 121(2018)171803)

ST analysis with 3 pseudo-flavor tags for D^0 and 6 hadronic decay modes for D^+ .

$$\begin{array}{l} \mathcal{B}(D^0 \to \pi^- \mu^+ \nu_\mu) = (0.272 \pm 0.008 \pm 0.006)\% \\ \mathcal{B}(D^+ \to \pi^0 \mu^+ \nu_\mu) = (0.350 \pm 0.011 \pm 0.010)\% \end{array}$$

$$\mathcal{B}(D^{0} \to K^{-} \mu^{+} \nu_{\mu}) = (3.413 \pm 0.019 \pm 0.035)\%$$

$$f_{F}^{K}(0) = 0.7327 \pm 0.0039 \pm 0.0030$$

$$|V_{cs}| = 0.955 \pm 0.005 \pm 0.004 \pm 0.024$$

$$\mathcal{R}^{0} = \frac{\mathcal{B}(D^{0} \to K^{-} \mu^{+} \nu_{\mu})}{\mathcal{B}(D^{0} \to K^{-} \mu^{+} \nu_{e})} = 0.974 \pm 0.007 \pm 0.012$$

$$\mathcal{R}^{0} = \frac{\mathcal{B}(D^{0} \to K^{-} \mu^{+} \nu_{\mu})}{\mathcal{B}(D^{0} \to K^{-} e^{+} \nu_{e})} = 0.974 \pm 0.007 \pm 0.012$$

$$\mathcal{R}^{0} = 0.985 \pm 0.002 \text{ (SM)}$$

$$\mathcal{R}^{0} = 0.985 \pm 0.002 \text{ (SM)}$$

$$\mathcal{R}^{0} = 0.985 \pm 0.002 \text{ (SM)}$$

$D_s^+ ightarrow K^0 e^+ u_e$ and $K^{*0} e^+ u_e$ PRL 122, 061801 (2019)

Hadronic decays

- Different final states possible: PP, VP, SP, AP , TP...
- Absolute BF measurements.
- ▶ Testing asymmetry in decay of $D^0 \to K^0_{S,L}X$ (X = $\eta, \eta', \omega, \phi$).

Amplitude analysis

- Theoretical treatment of weak decays of charm quark is very challenging
 - Not light enough to apply chiral perturbation theory reliably.
 - Not heavy enough to apply heavy quark expansion tools.
- Better understanding the resonant substructures of sub decay modes
 - Inputs phenomenological models for charm meson decays.
 - Explore various binning to measure c_i and s_i.

Analysis of $D_S^+ \to K_S^0 K^+$ and $D_S^+ \to K_L^0 K^+$ (arXiv:1903.04164)

Interference of $D \to \bar{K}^0 X$ (CF) and $D \to K^0 X$ (DCS) transitions results in measurable $K_S^{0-}K_L^0$ asymmetry. (PLB 349, 363, (1995))

Validation of various phenomenological models of K_5^0 - K_L^0 asymmetry. (PRD 81 014026 (2010), PRD 81 074021 (2010), PRD 91 014019 (2015), PRD 92 014004 (2017))

$$MM^{2} = (P_{e^{+}e^{-}} - P_{D_{s}^{-}} - P_{\gamma} - P_{K^{+}})^{2}$$

 ${\cal B}(D_s^+ \to K_0^5 K^+) = (1.425 \pm 0.038 \pm 0.031)\%$ (consistent with WA) ${\cal B}(D_s^+ \to K_L^0 K^+) = (1.485 \pm 0.039 \pm 0.046)\%$ (First measurement; consistent)

 $\frac{\mathcal{B}(D_s^+ \to K_0^{\mathsf{T}} \mathsf{K}^+) - \mathcal{B}(D_s^+ \to K_L^{\mathsf{D}} \mathsf{K}^+)}{\mathcal{B}(D_s^+ \to K_0^{\mathsf{T}} \mathsf{K}^+) + \mathcal{B}(D_s^+ \to K_l^{\mathsf{D}} \mathsf{K}^+)} = (-2.1 \pm 1.9 \pm 1.6)\% \text{ (First measurement; consistent)}$

Amplitude analysis of $D_S^+ \rightarrow \pi^+ \pi^0 \eta$ (arXiv: 1903.04118)

$$\begin{array}{c} \mathcal{B}(D_5^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28 \pm 0.41)\% \\ \mathcal{B}(D_5^+ \to a_0(980)^{+(0)} \pi^{0(+)}), (a_0(980)^{+(0)} \to \pi^{+(0)} \eta) = (1.46 \pm 0.15 \pm 0.23)\% \end{array}$$

Λ_c physics

- Lightest in the family singly charmed meson: Σ_c, Ξ_c, Ω_c.
- Proposed in 1975 and observed in 1980 by Mark II (PRL 44,10,(1980))
- ► Many observations and first measurement from LHCb, BaBar, Belle and BESIII ⇒ resurgence in interest in charmed baryons.
- Precision test of strong and weak interaction complimentary to charmed meson.
- Charmed baryonic modes are the most favourable decay of beauty baryon.
- Known exclusive decays accounts only about 60% of the total BF

 $\Lambda_c \to \Sigma^+ \eta$ and $\Sigma^+ \eta'$ (arXiv: 1811.08028)

- CF decays proceeds through non-factorizable internal W emission and exchange.
- Singletag analysis with $\Lambda \rightarrow \Sigma^+ \eta, \Sigma^+ \eta', \Sigma^+ \pi^0, \Sigma^+ \pi^0$

 $\mathcal{B}(\Lambda_c o \Sigma^+ \eta) = (0.41 \pm 0.19 \pm 0.05)\%$ $\mathcal{B}(\Lambda_c o \Sigma^+ \eta') = (1.34 \pm 0.53 \pm 0.21)\%$ M_{BC} and ΔE as selection variable.

Additional variable $\Delta Q \equiv \Delta E - k.(M_{p\pi^0} - m_{\Sigma^+}).$

K determined from 2D fit to ΔE vs $M_{p\pi^0}$ with linear function.

Weak decay asymmetries of $\Lambda_c \to pK_S^0, \Lambda \pi^+, \Sigma^+ \pi^0, \Sigma^0 \pi^+$ (arXiv: 1905.04707)

- First study of transverse polarisation of Λ⁺_c.
- *pK*_S⁰ and Σ⁰π⁺ asymmetry parameter. measured for the first time.

Decay asymmetry parameter for $\Lambda \rightarrow BP$: α^+_{BP}

 $\alpha_{BP}^{+} = \frac{2Re(s.p)}{|s|^2 + |p|^2}$

s: parity violating *s*-wave amplitude *p*: parity conserving p-wave amplitude.

final state	α_{BP}^+
pK_S^0	$0.18 \pm 0.43 \pm 0.14$
$\Lambda \pi^+$	-0.80 \pm 0.11 \pm 0.02
$\Sigma^+\pi^0$	$-0.57 \pm 0.10 \pm 0.07$
$\Sigma^0 \pi^+$	-0.73 \pm 0.17 \pm 0.07

 Negative sign of α⁺_{Σ⁺π⁰} confirmed and deviates by 8σ from model predictions. (PRD 48, 4188 (1993), PRD 10, 1042 (1992), PRD 50, 5787, (1994))

 $\star \ \ \, \text{No theoretical prediction consistent with} \\ \text{experiment for } \alpha^+_{p \kappa^0_S}, \ \alpha^+_{\Sigma^+ \pi^0} \ \, \text{and} \ \ \alpha^+_{\Sigma^0 \pi^+}.$

Summary

In this talk

Leptonic decays $D_{\epsilon}^{+} \rightarrow \mu^{+} \nu_{\mu}$

Semi Leptonic decays

$$\begin{array}{l} D^0 \rightarrow {\cal K}^- \mu^+ \nu_\mu \\ D^0 \rightarrow \pi^- \mu^+ \nu_\mu \\ D^+_s \rightarrow {\cal K}^{(*)0} e^+ \nu_e \end{array}$$

Amplitude analyses

$$D_S^+ \to \pi^+ \pi^0 \eta$$

 Λ_c

$$\begin{array}{l} \Lambda_{c} \rightarrow \Sigma^{+}\eta, \Sigma^{+}\eta' \\ \Lambda_{c} \rightarrow \textit{pK}_{S}^{0}, \Lambda\pi^{+}, \Sigma^{+}\pi^{0}, \Sigma^{0}\pi^{+} \end{array}$$

Highlights

- Improved branching fraction measurements.
- LFU: no violation with current level of statistics.
- ▶ Decay asymmetry of $D_S^+ \to K_S^0 K^+$ and $D_S^+ \to K_L^0 K^+$ were measured for first time and is consistent with the theoretical prediction.
- ▶ Weak decay asymmetry of $\Lambda_c \rightarrow pK_5^0, \Lambda \pi^+, \Sigma^+ \pi^0, \Sigma^0 \pi^+$ were presented theoretical value inconsistent with experiment.

Mainly focused on BF and decay constant measurements.

$$\begin{array}{l} D_{S}^{+} \to p\bar{n} \\ (\text{PRD 99, 03101 (2019)}) \\ D_{S}^{+} \to \omega \pi^{+}, D_{S}^{+} \to \omega K^{+} \\ (\text{arXiv: 1811.00392}) \\ D^{0} \to \bar{K}^{0}\pi^{-}e^{+}\nu_{e}, \\ (\text{PRD. 99 011103 (2019)}) \\ D \to \pi\pi e\nu_{e} \\ (\text{PRL 122 062001 (2019)}) \\ D^{+} \to \eta^{(\prime)}e^{+}\nu_{e} \\ (\text{PRL 122 062001 (2019)}) \\ D_{s}^{+} \to \eta^{(\prime)}e^{+}\nu_{e} \\ (\text{PRL 122 062001 (2019)}) \\ D_{s}^{+} \to \eta^{(\prime)}e^{+}\nu_{e} \\ (\text{PRL 122 121801 (2019)}) \\ \Lambda_{c}^{+} \to \Lambda\eta\pi^{+}, \Lambda\Sigma^{+} (1385)\eta \\ (\text{PRD 99 032010 (2019)}) \end{array}$$

Many more open charm results in progress will appear soon.

Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$ (arXiv: 1903.06316)

 K3π modes with two or more π⁰'s are not measured so far.

$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = 8.86 \pm 0.13 \pm 0.19\%$ $D^0 \to K^- a.(1260) \to \text{dominant amplitude 28\% of total fit fraction}$ Krishakumar Recent BESIII results in open charm

$$\frac{\Gamma(D_s^+ \to \eta' e^+ \nu_e) / \Gamma(D_s^+ \to \eta e^+ \nu_e)}{\Gamma(D^+ \to \eta' e^+ \nu_e) / \Gamma(D^+ \to \eta e^+ \nu_e)} \simeq \cot^4 \Phi_{\rm P}$$
$$\Phi_{\rm P} = (40.1 \pm 2.1 \pm 0.7)^{\circ}$$