27th International Workshop on Weak Interactions and Neutrinos Bari, June 3-8, 2019

Search for forbidden decays of the D⁰ meson and observation of D⁰ \rightarrow K⁻ $\pi^+e^+e^-$

Marcello Rotondo

Laboratori Nazionali di Frascati

On behalf of the BaBar collaboration

WIN 2019

M. Rotondo

Motivation

- Processes that are very rare or forbidden in the Standard Model are powerful probes of new physics
- Radiative decays: suppressed by O(α²)
 - $D^0 \rightarrow K^- \pi^+ e^+ e^-$
- Lepton-flavor violating (LFV): only allowed via neutrino oscillation, BF ~ 10^{-50}
 - $D^0 \rightarrow \pi^- \pi^+ e^{\pm} \mu^{\mp}$
 - $D^0 \rightarrow K^- \pi^+ e^{\pm} \mu^{\mp}$
 - $D^0 \rightarrow K^- K^+ e^{\pm} \mu^{\mp}$
- Lepton-number violating (LNV): forbidden
 - $D^0 \rightarrow \pi^{-}\pi^{-}e^+e^+$, $\pi^{-}\pi^{-}\mu^+\mu^+$, $\pi^{-}\pi^{-}e^+\mu^+$
 - $D^0 \rightarrow K^- \pi^- e^+ e^+$, $K^- \pi^- \mu^+ \mu^+$, $K^- \pi^- e^+ \mu^+$
 - $D^0 \rightarrow K^- K^- e^+ e^+$, $K^- K^- \mu^+ \mu^+$, $K^- K^- e^+ \mu^+$

arXiv:1905.00608 [hep-ex]

PRL 122 (2019) 081802

The BaBar experiment

- Asymmetric B Factory experiment at SLAC-National Accelerator Laboratory
- Collected data from 1999 until 2008
 - Most of the time at Y(4S), "on peak"
 - About 1/10 non-resonant "off peak"
 - Smaller sample at Y(2S) and Y(3S)

The BaBar Detector

Detector optimized for B vertex separation and momentum measurement, K- π particle identification and precision calorimetry

$D^{0} \rightarrow K^{-}\pi^{+}e^{+}e^{-}$

Observation of $D^0 \rightarrow K^-\pi^+e^+e^-$

PRL 122 (2019) 081802

- Radiative D decay, suppressed by $O(\alpha^2)$
- In Standard Model, $BF(D^0 \rightarrow K^-\pi^+\ell^+\ell^-) \sim 1.6 \times 10^{-5}$
 - Dominated by LD contributions D → K*⁰ρ⁰
 Cappiello et al. JHEP 1304,135 (2013)
- Because it is a 4-body decay, various asymmetry can be measured to study new physics: angular analysis, forward-backward, triple-product
- Previous measurements by E791:
 - $BF(D^0 \rightarrow K^-\pi^+e^+e^-) < 38.5 \times 10^{-5} PRL86,3969 (2001)$
- Recent LHCb measurement of muonic mode PLB 757, 558 (2016):
 - BF(D⁰ \rightarrow K⁻ $\pi^{+}\mu^{+}\mu^{-}$)=(4.16 ± 0.12 ± 0.40) x 10⁻⁶
 - In 675 < m($\mu^+\mu^-$) < 875 MeV (around the mass region of the ρ meson)

M. Rotondo

$D^0 \rightarrow K^-\pi^+ e^+ e^-$: analysis strategy

- Reconstruct D^0 from $D^{*+} \rightarrow D^0 \pi^+$
- 5 charged track in the final state
 - Particle identification criteria to all tracks
 - Veto events consistent with $D^0 \rightarrow 4$ -hadrons decays
 - using $m_n = m(K^{-}\pi^{+}\pi^{-}\pi^{-})$ (i.e. assigning π mass to electrons)
 - $m(e^+e^-)>200 \text{ MeV}$ to reject conversions and Dalitz decays in $D \to K\pi\pi^0$ (with $\pi^0 \to e^+e^-\gamma$)
 - P(D⁰) > 2.4 GeV (center-of-mass frame) to reject D mesons from B decays
 - Bremsshtrahlung recovery algorithm applied to electron candidates adding energy of nearby calorimeter clusters to the D⁰ candidate

$D^0 \rightarrow K^-\pi^+e^+e^-$: signal extraction

- Measure branching fraction relative to D⁰→ K⁻π⁺π⁺π⁻ which is reconstructed in a similar way: cancellation of tracking and (some) particle identification systematics
- Signal extracted by a 2-D fit in the variables

 $m_{D} = m(K^{-}\pi^{+}e^{+}e^{-})$ and $\Delta m = m_{D^{+}} - m_{D}$

$$\frac{\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-)}{\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)} = \frac{\hat{\epsilon}_{\text{norm}}}{N_{\text{norm}}} \frac{\mathcal{L}_{\text{norm}}}{\mathcal{L}_{\text{sig}}} \sum_{i}^{N_{\text{sig}}} \frac{1}{\epsilon_{\text{sig}}^i}$$

Signal: double-sided Gaussian Background: polynomial function

• In the fit range $675 < m(e^+e^-) < 875 \text{ MeV}$

M. Rotondo

$D^0 \rightarrow K^-\pi^+e^+e^-$: mass projections

- Projection of signal fit to $m(e^+e^-)$ and $m(K^-\pi^+)$
 - Background subtracted using sPlot technique

 $BF(D^{0} \rightarrow K^{-}\pi^{+}e^{+}e^{-}) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$

675 < m(e⁺e⁻) < 875 MeV

Consistent with theory and with LHCb results on $D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$ in the same m($\ell^+ \ell^-$) range

$D^0 \rightarrow K^-\pi^+e^+e^-$: other m(e⁺e⁻) regions

PRL 122 (2019) 081802

- For m(e⁺e⁻) in the non-resonant mass windows (non-shaded regions in plot)
 - Cleaner probe of short-distance contributions (and hence new physics)
 - 19 ± 7 events after subtraction of 9.9 ± 0.9 events expected from the ρ^0 tail

BF(D⁰→ K⁻ $\pi^+e^+e^-$) = (1.6 ± 0.6 ± 0.7) x 10⁻⁶ BF(D⁰→ K⁻ $\pi^+e^+e^-$) < 3.1 x 10⁻⁶ at 90% CL First study in the non-resonant region

WIN 2019

M. Rotondo

$D^{0} \rightarrow hh' \ell \ell'$

$D^0 \rightarrow hh' \ell \ell'$

- $D^{*+} \rightarrow D^0 \pi^+$
- $D^0 \rightarrow h h' \ell \ell'$ where h= K, π and ℓ = e, μ

- Lepton-flavor violating (LFV)
 - $D^0 \rightarrow \pi^- \pi^+ e^{\pm} \mu^{\mp}$
 - $D^0 \rightarrow K^- \pi^+ e^{\pm} \mu^{\mp}$
 - $D^0 \rightarrow K^- K^+ e^{\pm} \mu^{\mp}$
- Lepton-number violating (LNV)
 - $D^0 \rightarrow \pi^- \pi^- e^+ e^+$, $\pi^- \pi^- \mu^+ \mu^+$, $\pi^- \pi^- e^+ \mu^+$
 - $D^0 \rightarrow K^- \pi^- e^+ e^+$, $K^- \pi^- \mu^+ \mu^+$, $K^- \pi^- e^+ \mu^+$
 - $D^0 \rightarrow K^- K^- e^+ e^+$, $K^- K^- \mu^+ \mu^+$, $K^- K^- e^+ \mu^+$

Measured relative to corresponding normalization modes

- $D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$
- $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$
- $D^0 \rightarrow K^- K^+ \pi^- \pi^+$

$D^0 \rightarrow hh' \ell \ell'$: selection

- Veto events consistent with $D^0 \rightarrow 4$ -hadrons decays
 - using $m_D = m(K^{-}\pi^{+}\pi^{+}\pi^{-})$ (i.e. assigning π mass to electrons)
- Background from e⁺e⁻→ multi-leptons suppressed by PID on hh'
- Significant background from semileptonic charm decays in which a hadron is misidentified as a lepton
- Fisher discriminant using kinematic and event shape variables
 - 90% signal efficiency

```
• Signal extracted from a fit to \Delta m after

cutting on m<sub>D</sub> around nominal D mass m_D = m(h h' \ell \ell')

\Delta m = m_{D^*} - m_D

(2 e) 1.848

(1 e) 1.852

(0 e) 1.856 \} < m(D) < 1.874 \text{ GeV} 0.141 < \Delta m < 0.201 \text{ GeV} (2 K)

0.141 < \Delta m < 0.149 \text{ GeV} (<2 K)
```

$D^0 \rightarrow hh' \ell' \ell'$: fit results

- After all selection criteria: < 100 events per signal mode
- Signal yield determined for each mode from unbinned ML fit to Δm
 - Signal: Cruijff function
 - $F(x) = e^{-(x-x_0)^2/[2\sigma_{L,R}^2 + \alpha_{L,R}(x-x_0)^2]}$
 - Background: Argus function
- No significant signal seen
- Signal Upper limits determined compared with normalization modes

Decay mode	$N_{ m norm}$	Syst.
$D^0 \rightarrow$	(candidates)	(%)
$K^-\pi^+\pi^+\pi^-$	260870 ± 520	4.7
$K^-K^+\pi^+\pi^-$	8480 ± 110	6.6
$\pi^-\pi^+\pi^+\pi^-$	28470 ± 220	6.8

$D^0 \rightarrow hh' \ell \ell'$: BF limits

From E791 PRL 86 3969 (2001)

Decay mode	$N_{ m sig}$	$\epsilon_{ m sig}$	${\mathcal B}$	${\cal B}$ 90% U.L.	Previous best limit
$D^0 \rightarrow$	(candidates)	(%)	$(\times 10^{-7})$	$(\times 10^{-7})$	$(\times 10^{-7})$
$\pi^-\pi^-e^+e^+$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^-\pi^-e^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6	790
$\pi^-\pi^+ e^\pm \mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1	150
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0	2060
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
$K^-\pi^+ e^\pm \mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0	950
$K^-K^-e^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8	570
$K^-K^+e^\pm\mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

Improvements of 1-3 order of magnitude on BF limits

- New BaBar results from searches for rare and forbidden charm decays
- First observation of $D^0 \rightarrow K^{-}\pi^{+}e^{+}e^{-}$
 - BF(D⁰→ K⁻π⁺e⁺e⁻) = (4.0 ± 0.5 ± 0.2 ± 0.1) x 10⁻⁶ in the rho mass range
 - Consistent with LHCb for BF($D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$)
 - Non-resonant BF($D^0 \rightarrow K^- \pi^+ e^+ e^-$) < 3.1 x 10⁻⁶ at 90% CL
- Limits on 12 LFV and LNV decays $D^0 \rightarrow h h' \ell \ell'$
 - BF limits ranging from $(1 30) \times 10^{-7}$
 - Improvements over previous limits of 1-3 order of magnitudes