

Light meson spectroscopy in heavy flavor decays

 \Box An understanding of light meson spectroscopy is of basic importance for many important physics topics.

 \Box Examples are: Measurement of γ , study and search for CP violations in heavy flavors decays, Dalitz plot analyses of 3-body or 4-body decays, observation of new

exotic resonances.

 \Box The observation of the Z particles in $B \rightarrow \psi/\psi' K\pi$ is strongly correlated with an accurate description of the $K\pi$ S-wave. (Phys.Rev.Lett. 122 (2019) 152002),(Phys.Rev.Lett. 112 (2014) 222002)

$$B^0 \rightarrow J/\psi K^+ \pi^-$$

Dalitz plot analyses of η_c decays.

 \Box Charmonium decays are used to obtain new information on light meson spectroscopy.

 \Box In two-photon interactions we select events in which the e^+ and e^- beam particles are scattered at small angles and remain undetected. Require $p_T < 0.08 \ GeV/c$.

□ We have studied the following final states. □ $\eta_c \rightarrow K_S^0 K^+ \pi^-$,12849 evts with (64.3 ± 0.4)% purity. □ $\eta_c \rightarrow K^+ K^- \eta$, 1161 evts with (76.1±1.3)% purity. □ $\eta_c \rightarrow K^+ K^- \pi^0$, 6494 evts with (55.2±0.6)% purity.

 \Box Purity=Signal/(Signal + Background)

Phys.Rev. D89 (2014) 112004, Phys.Rev. D93 (2016) 012005

Branching fraction and Dalitz plots.

 \Box We measure:

$$\mathcal{R}(\eta_c) = \frac{\mathcal{B}(\eta_c \to K^+ K^- \eta)}{\mathcal{B}(\eta_c \to K^+ K^- \pi^0)} = 0.571 \pm 0.025 \pm 0.051$$

 \Box Dalitz plots.

 \Box Dominated by the presence of scalar mesons.

 \Box In particular, strong contribution from $K_0^*(1430)$ in the three Dalitz plots.

$\eta_c \rightarrow \eta K^+ K^-$ Dalitz plot analysis, Isobar model.

\Box Unbinned maximum likelihood fits.

 \Box Resonances described by Breit-Wigner functions.

(D. Asner, Review of Particle Physics", Phys. Lett. B 592, 1 (2004)).

 \Box Results from the Dalitz analysis and fit projections.

 \Box Charge conjugated amplitudes symmetrized.

Final state	Fraction $\%$	Phase (radians)
$f_0(1500)\eta$	$23.7 \pm 7.0 \pm 1.8$	0.
$f_0(1710)\eta$	$8.9 \pm 3.2 \pm 0.4$	$2.2 \pm 0.3 \pm 0.1$
$f_0(980)\eta$	$10.4 \pm 3.0 \pm 0.5$	$-0.3 \pm 0.3 \pm 0.1$
$f_2^{\prime}(1525)\eta$	$7.3 \pm 3.8 \pm 0.4$	$1.0~{\pm}~0.1~{\pm}~0.1$
$K_0^*(1430)^+K^-$	$16.4 \pm 4.2 \pm 1.0$	$2.3 \pm 0.2 \pm 0.1$
χ^2/ν	87/65	

$\eta_c \rightarrow \pi^0 K^+ K^-$ Dalitz analysis, Isobar model.

 \Box The Dalitz analysis of $\eta_c \rightarrow \pi^0 K^+ K^-$ allows to obtain the parameters of $K_0^*(1430)$ and its relative branching fraction.

 \square We scan the likelihood as a function of the $K_0^*(1430)$ mass and width.

Model Independent Partial Wave Analysis

(Phys. Rev. D 73, 032004 (2006)).

 \Box We perform a Model Independent Partial Wave Analysis of the $\eta_c \rightarrow K_S^0 K^+ \pi^-$ and $\eta_c \rightarrow K^+ K^- \pi^0$.

 \Box The $K\pi$ S-wave (A_1) is taken as the reference amplitude.

$$A = A_1 + c_2 A_2 e^{i\phi_2} + c_3 A_3 e^{i\phi_3} + \dots$$

 \Box The $K\pi$ mass spectrum is divided into 30 equally spaced mass intervals 60 MeV wide and for each bin we add to the fit two new free parameters, the amplitude and the phase of the $K\pi$ S-wave (constant inside the bin).

 \Box Interference between the two $K\pi$ modes is determined by Isospin conservation.

 \Box The $K_2^*(1420)$, $a_0(980)$, $a_0(1400)$, $a_2(1310)$, ... contributions are modeled as relativistic Breit-Wigner functions multiplied by the corresponding angular functions.

 \Box Backgrounds are fitted separately and interpolated into the η_c signal regions.

Dalitz plots mass projections

 \Box Dalitz plot projections with fit results for $\eta_c \rightarrow K_S^0 K^+ \pi^-$ (top) and $\eta_c \rightarrow K^+ K^- \pi^0$ (bottom)

 \Box Shaded is contribution from the interpolated background.

Fit fractions from the MIPWA. Comparison with the Isobar Model

	$\eta_{\mathbf{c}} \rightarrow \mathbf{K_S^0 K^+} \pi^-$	$\eta_{\mathbf{c}} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \pi^{0}$
Amplitude	Fraction $(\%)$	Fraction $(\%)$
$(K\pi \ S$ -wave) K	$107.3 \pm 2.6 \pm 17.9$	$125.5 \pm 2.4 \pm 4.2$
$a_0(1950)\pi$	$3.1 \pm 0.4 \pm 1.2$	$4.4 \pm 0.8 \pm 0.7$
$K_2^*(1430)^0 K$	$4.7 \pm 0.9 \pm 1.4$	$3.0 \pm 0.8 \pm 4.4$
$+a_0(980), a_0(1450), a_0(1950)$		
$+a_2(1320), K_2^*(1430)$		
χ_2/N_{cells}	$301/254{=}1.17$	$283.2/233{=}1.22$
	Isobar Model	
$(K_0^*(1430)K)+$	73.6 ± 3.7	63.6 ± 5.6
$(K_0^*(1950)K) +$		
Nonresonant		
$+a_0(980), a_0(1450), a_0(1950)$		
$+a_2(1320), K_2^*(1430)$		
χ_2/N_{cells}	$467/256{=}1.82$	$383/233{=}1.63$

 \square For MIPWA, good agreement between the two η_c decay modes.

 \Box ($K\pi \ S$ -wave)K amplitude dominant with small contributions from $K_2^*(1430)^0 K$ and $a_0(1950)\pi$. \Box Good description of the data with MIPWA.

 \Box Worse description of the data with the Isobar Model.

The I=1/2 $K\pi$ S-wave

□ Fitted amplitude and phase. Average systematic uncertainty is 16%. □ Red: $\eta_c \rightarrow K^+ K^- \pi^0$. Black: $\eta_c \rightarrow K_S^0 K^+ \pi^-$. □ Clear $K^*(1420)$ recompose and corresponding phase motion

 \Box Clear $K_0^*(1430)$ resonance and corresponding phase motion.

 \Box At high mass broad $K_0^*(1950)$ contribution.

 \Box Good agreement between the two η_c decay modes.

Dalitz plot analysis of $J/\psi \rightarrow three \ body \ decays$ xunn $\Box J/\psi$ samples are obtained from the Initial State Radiation (ISR) process. (Phys.Rev. D95 (2017), 072007) \Box Only $J^{PC} = 1^{--}$ states can be produced. 1800 BaBai 1600 $J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ 1400 1200 \Box We study the following reactions: 1000 800 Т Ω

$$e^+e^- \to \gamma_{\rm ISR} \ \pi^+\pi^-\pi^0,$$

$$e^+e^- \to \gamma_{\rm ISR} \ K^+K^-\pi^0,$$

$$e^+e^- \to \gamma_{\rm ISR} \ K^0_S K^{\pm}\pi^{\mp},$$

where γ_{ISR} indicates the (undetected) ISR photon. $\Box J/\psi$ signals.

J/ψ	Signal region	Event	Purity
decay mode	$({ m GeV}/c^2)$	yields	%
$\pi^+\pi^-\pi^0$	3.028 - 3.149	20417	91.3 ± 0.2
$K^+K^-\pi^0$	3.043 - 3.138	2102	88.8 ± 0.7
$K^0_S K^{\pm} \pi^{\mp}$	3.069-3.121	3907	93.1 ± 0.4

 \Box Shaded is the background interpolated by sidebands.

 $J/\psi \rightarrow \pi^+\pi^-\pi^0$ Dalitz plot analysis with Veneziano model

□ The Veneziano model deals with trajectories (Phys.Lett. N737, 283 (2014)). □ The amplitudes are written as: $Re \alpha(s) \upharpoonright_{Re \alpha(s)=a+1}^{Re \alpha(s)}$

$$A_{X \to abc} = \sum_{n,m} c_X \to {}_{abc}(n,m)A_{n,m}$$

with $1 \le m \le n$.

 \Box The complexity of the model is related to n, the number

of Regge trajectories included in the fit.

 \Box The fit requires n=7, with 19 free parameters.

Final state	Amplitude	Isobar fraction $(\%)$	Phase (radians)	Veneziano fraction (%)
$ ho(770)\pi$	1.	$114.2 \pm 1.1 \pm 2.6$	0.	133.1 ± 3.3
$ ho(1450)\pi$	0.513 ± 0.039	$10.9 \pm 1.7 \ \pm 2.7$	$-2.63 \pm 0.04 \pm 0.06$	0.80 ± 0.27
$ ho(1700)\pi$	0.067 ± 0.007	$0.8 \pm 0.2 \ \pm 0.5$	$-0.46 \pm 0.17 \pm 0.21$	2.20 ± 0.60
$ ho(2150)\pi$	0.042 ± 0.008	$0.04 \pm 0.01 \pm 0.20$	$1.70 \pm 0.21 \pm 0.12$	6.00 ± 2.50
$\omega(783)\pi^0$	0.013 ± 0.002	$0.08 \pm 0.03 \pm 0.02$	$2.78 \pm 0.20 \pm 0.31$	
$ ho_3(1690)\pi$				0.40 ± 0.08
Sum		$127.8 \pm 2.0 \pm 4.3$		142.5 ± 2.8
χ^2/ν		687/519 = 1.32		596/508 = 1.17

 \Box The two models have similar quality, but different fractions. The Veneziano model fits better the data.

Study of $\Upsilon(1S)$ radiative decays to $\gamma\pi^+\pi^-$ and γK^+K^-

Physics Motivations: Search for gluonium.
The search for gluonium states is still a hot topic for QCD.

□ Glueball spectrum from Lattice QCD. □ The $J^{PC} = 0^{++}$ glueball is expected in the mass region between 1.5 and 2.0 GeV.

 \square Scalar gluonium candidates are:

 $f_0(500), f_0(1370), f_0(1500), f_0(1710)$

 $\Box J/\psi$ radiative decays have been extensively studied in a search for gluonium states.

 \Box A similar work could be done in $\Upsilon(1S)$ radiative decays.

 \Box Challenging: radiative $\Upsilon(1S)$ decays branching fractions expected to be suppressed by a factor 25 with respect to the corresponding J/ψ branching fractions.

Analysis Strategy

 \Box In the present analysis we make use of $\Upsilon(2S)$ and $\Upsilon(3S)$ decays with integrated luminosities of 13.6 and 28.0 fb⁻¹_{Phys.Rev. D97 (2018) no.11, 112006.}

 \Box We reconstruct the decay chains:

$$\Upsilon(2S)/\Upsilon(3S) \rightarrow \pi_s^+ \pi_s^- \Upsilon(1S) \rightarrow \gamma \pi^+ \pi^-$$

 $\rightarrow \gamma K^+ K^-$

 \Box Require momentum balance and compute the recoiling mass.

 $M_{\rm rec}^2(\pi_s^+\pi_s^-) = |p_{e^+} + p_{e^-} - p_{\pi_s^+} - p_{\pi_s^-}|^2,$

 $\Box \text{ Require: } |M_{\text{rec}}^2(\pi_s^+\pi_s^-) - m(\Upsilon(1S))_f| < 2.5\sigma$ $\Box \text{ Select the } \Upsilon(1S): 9.1 \text{ GeV}/c^2 < m(\gamma h^+h^-) < 9.6 \text{ GeV}/c^2$

Simple Partial Wave Analysis.

 \Box In a simplified procedure, the Y_L^0 moments are related to the S and D waves by the system of equations:

$$\begin{split} &\sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + D^2, \\ &\sqrt{4\pi} \langle Y_2^0 \rangle = 2SD \cos \phi_{SD} + 0.639D^2, \\ &\sqrt{4\pi} \langle Y_4^0 \rangle = 0.857D^2, \end{split}$$

 \square The system can be solved directly for S and D waves:

 \Box We obtain an estimate of the S-wave $\rightarrow \pi^+\pi^-$ yield

 $N(S-\text{wave}) = 629 \pm 128,$

 \Box The K^+K^- mass spectrum shows evidence for both $f_0(1500)$ and $f'_2(1525)$.

Measured $\Upsilon(1S) \rightarrow \gamma R$ branching fractions

 \Box We label with $f_J(1500)$ the total enhancement in the 1500 MeV mass region.

Resonance	$\mathcal{B}(10^{-5})~(B\!\!A\!B\!\!A\!\!R)$	CLEO (Phys.Rev. D73 (2006) 032001)
$\pi\pi$ S-wave	$4.63 \pm 0.56 \pm 0.48$	$(f_0(980)) \ 1.8^{+0.8}_{-0.7} \pm 0.1$
$f_2(1270)$	$10.15 \pm 0.59 \ {}^{+0.54}_{-0.43}$	$10.2 \pm 0.8 \pm 0.7$
$f_0(1710) \rightarrow \pi\pi$	$0.79 \pm 0.26 \pm 0.17$	
$f_J(1500) \rightarrow K\bar{K}$	$3.97 \pm 0.52 \pm 0.55$	$3.7^{+0.9}_{-0.7} \pm 0.8$
$f_{2}'(1525)$	$2.13 \pm 0.28 \pm 0.72$	
$f_0(1500) \rightarrow K\bar{K}$	$2.08 \pm 0.27 \pm 0.65$	
$f_0(1710) \rightarrow K\bar{K}$	$2.02 \pm 0.51 \pm 0.35$	$0.76 \pm 0.32 \pm 0.08$

□ For $f_0(1710)$, reference (R. Zhu, JHEP 1509, 166 (2015)), in the gluonium hypothesis, computes a branching fraction of $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma f_0(1710) = 0.96^{+0.55}_{-0.23} \times 10^{-4})$. □ For $f_0(1500) \rightarrow K\bar{K}$, ref. (X. G. He et al., Phys. Rev. D 66, 074015 (2002)) expects $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma f_0(1500))$ in the range $2 \sim 4 \times 10^{-5}$, consistent with our measurement. □ Ref. (R. Zhu, JHEP 1509, 166 (2015)) estimates for $f_0(1370)$ a branching fraction of $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma f_0(1370)) = 3.2^{+1.8}_{-0.8} \times 10^{-5}$, in the range of our measurement of the branching fraction of $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma(\pi \pi S$ -wave)).

Backup Slides.

Overall fit of LASS and η_c data.

□ K-matrix fit (preliminary). (A. Palano, M. Pennington, arXiv:1701.04881)

Data fitted in terms of Real and Imaginary parts of the complex amplitudes.
Solution A for the LASS data.

 \Box Curves are fit results. Red: Imaginary, Blue: Real.

 \Box Measured pole positions.

Pole 1	$E_{P1} = 659 - i302 \mathrm{MeV}$	on Sheet II
Pole 2	$E_{P2} = 1409 - i128 \mathrm{MeV}$	on Sheet III
Pole 3	$E_{P3} = 1768 - i107 \mathrm{MeV}$	on Sheet III

 \Box Pole 1 is identified with the κ , the pole position of which was found to be at $[(658 \pm 7) - i \ (278 \pm 13)]$ MeV, in the dispersive analysis of (arXiv:0310283, Eur.Phys.J. C33, 409 (2004)).

 \square Pole 2 is identified with $K_0^*(1430)$, to be compared with $[(1438 \pm 8 \pm 4) - i (105 \pm 20 \pm 12)]$ MeV using the Breit-Wigner form.

 \Box Pole 3 may be identified with the $K_0^*(1950)$ with a pole mass closer to that of the reanalysis of the LASS by Anisovich (Phys. Lett.B413, 137 (1997)) with a pole at $E = (1820 \pm 20) - i(125 \pm 50)$ MeV.