

Lepton Flavour Universality in B Decays and Other Recent Results at Belle

$b \rightarrow c \tau \nu_{\tau}$

• Measurement of R(D) and $R(D^*)$ with a semileptonic tagging method

 $R(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \qquad \ell = e, \mu$

□ Measurement of the D^{*-} polarization in the decay $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$

Belle Collab., arXiv:1903.03102

Belle Collab., arXiv:1904.08794

$$b \rightarrow s\ell^+\ell^-$$

Test of lepton flavor universality in $B \to K^* \ell^+ \ell^-$ decays at Belle

$$R(K^*) \equiv \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}$$

Belle Collab., arXiv:1904.02440

Results (still preliminary), are based on the full data set recorded by the Belle detector at $\Upsilon(4S)$.

The 27th International Workshop on Weak Interactions and Neutrino, Bari 3-8 June 2019

Belle experiment

Unique tool to study experimentally challenging B- meson decays, e.g. to multiple neutrinos

> employ B_{tag} - reconstruction techniques to infer more information on B_{sig}

$B \to D^{(*)} \tau \nu_{\tau}$

SM and NP contribute at the tree level

Theoretically well-controlled observables, with complementary sensitivity to NP:

 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \leftarrow \text{signal}$

Common uncertainties (partly) cancel out:

- Theoretical uncertainty of some form factors
- Uncertainty of $|V_{cb}|$
- Experimental uncertainty of efficiencies, partial *BF's...*
- Differential (e.g. q²) distributions
- \succ τ (and D^*) polarization
- Experimentally challenging!
- B-factories exploit B_{tag}- reconstruction techniques
- > Measurements of $R(D^{(*)})$ achieved sensivity that challenges SM and some of it's extensions.

Experimental uncertainties larger than those of the SM predictions => call for improvements

Measurement of R(D) and $R(D^*)$ with semileptonic tagging

▶ Reconstruct B_{tag} decay: $B \rightarrow D^{(*)} \ell \nu$ (BDT-based hierarchical algorithm)

• BDT classifier output, $-2 < \cos \theta_{B,Y}^{\text{tag}} < 1$

$$\cos \theta_{B,Y} = \frac{2E_{\text{beam}}E_Y - m_B^2 - M_Y^2}{2|p_B||p_Y|} \quad Y = D^{(*)}\ell$$

- > Search for $D^{(*)} \ell$ among remaining tracks and clusters
- No extra charged tracks, or π^0 's...
- $\cos \theta_{B,Y}^{\text{sig}} < 1$, $| \boldsymbol{p}_{D^{(*)}} | < 2 \text{ GeV}$
- 4 disjoint data samples: $D^{*+}\ell^-$, $D^{*0}\ell^-$, $D^+\ell^-$, $D^0\ell^-$
- ▶ Distinguish $B \rightarrow D^{(*)} \ell(\tau) \nu$ from background
- $E_{\rm ECL}$ sum of the energies of remaining neutral clusters, $E_{\rm ECL} \approx$ 0 for signal, tends to be higher for background

> Distinguish $B \to D^{(*)} \tau \nu$ from $B \to D^{(*)} \ell \nu$

- BDT classifier with input variables: $\cos \theta_{B,Y}^{\text{sig}}$, $E_{\text{vis}} = \Sigma E_i$, $M_{\text{miss}}^2 = (E_{\text{beam}} - E_{D^{(*)}\ell})^2 - (p_{D^{(*)}\ell})^2$
- Extract R(D) and $R(D^*)$
- Extended maximum likelihood 2-D fit to the BDT classifier output and $E_{\rm ECL}$
- Fit simultaneously $4 D^{(*)} \ell$ samples

Belle Collab., arXiv:1904.08794

Measurement of R(D) and $R(D^*)$ with sl tagging - fit

Belle Collab., arXiv:1904.08794

Fit components

BELLE

 $E_{\rm ECL}$ fit projections; insets show signal enhanced region (class > 0.9)

Measurement of R(D) and R(D*) with sl tagging - results

R(*D*) and *R*(*D**) – 2019

Tension reduced to 3.1σ , but central values consistently above the SM predictions

Other observables in $B \rightarrow D^{(*)}\tau \nu$ decays

- □ (Inconclusive) hints of a deviation from the Standard Model in $b \rightarrow c \tau v_{\tau}$ transitions
- > $R(D^{(*)})$ systematically above the SM expectations, surprisingly larger effect for $R(D^*)$;
- Measured distributions of q^2 [BaBar PRD **88**,072012(2013), Belle PRD **92**,072014(2015)], p_{D*} and p_l [Belle PRD **94**,072007(2016)] consistent with SM, but statistically limited;
- Angular observables in $B \to D^{(*)} \tau \nu$ decays, basically, not explored yet

$$\frac{\cos \theta_{hel}}{\Gamma} \Rightarrow \tau \text{ polarization } (P_{\tau}^{D^{(*)}})$$

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos \theta_{hel}} = \frac{1}{2} \begin{bmatrix} 1 + \alpha P_{\tau} \cos \theta_{hel} \end{bmatrix} \text{ only } \tau \rightarrow M \nu_{\tau} \text{ decays}$$

$$SM: P_{\tau}^{D^{*}} = -0.497 \pm 0.013$$

$$SM: M. \text{ Tanaka, R. Watanabe, PRD 87, 034028(2013)}$$

$$P_{\tau}(D^{*}\tau\nu) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst})$$

$$\tau \rightarrow \pi \nu_{\tau} (\alpha=1), \tau \rightarrow \rho \nu_{\tau} (\alpha=0.45)$$
Belle PRL 118,211801(2017), PRD 97, 012004 (2018)
$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos \theta_{V}} = \frac{3}{4} \begin{bmatrix} 2 F_{L}^{D^{*}} \cos^{2} \theta_{V} + F_{T}^{D^{*}} \sin^{2} \theta_{V} \end{bmatrix} \text{ all } \tau \text{ decays}$$

$$F_{L}^{D^{*}} + F_{T}^{D^{*}} = 1$$

$$SM: F_{L}^{D^{*}} = 0.47 \pm 0.01$$
SM: P. Gambino, M. Jung, S. Schacht, arXiv:1905.08209 [hep-ph]

Measurement of the D^{*-} polarization in the decay $B^0 o D^{*-} au^+ u_{ au}$

Belle Collab., arXiv:1903.03102

- □ Need efficient reconstruction of B_{tag} in hadronic modes ⇒ do it inclusively Belle PRL 99, 191807 (2007), PRD 82, 072005 (2010)
- Find B_{sig} candidates D^{*−} d⁺_τ τ⁺ → d⁺_τν_τ(ν_ℓ), d_τ = ℓ, π
- > Reconstruct B_{tag} from remaining tracks and clusters
- $M_{\text{tag}} = \sqrt{E_{\text{beam}}^2 |\boldsymbol{p}_{\text{tag}}|^2}; \ \Delta E_{\text{tag}} = E_{\text{tag}} E_{\text{beam}}; \ E_{\text{tag}} = \Sigma_i E_i, \ \boldsymbol{p}_{\text{tag}} = \Sigma_i \boldsymbol{p}_i$ $M_{\text{tag}} > 5.2 \text{ GeV}, -0.30 < \Delta E_{\text{tag}} < 0.05 \text{ GeV}$
- Suppress incorrectly reconstructed B_{tag} 's: total charge=0, no extra ℓ^{\pm} , $N_{\pi^0} + N_{\gamma} < 5$, $N_{K_L^0} = 0$ ($d_{\tau} = \pi$)
- >80%(60%) signal events for $d_{\tau} = \ell(\pi)$ contained at M_{tag} >5.26 GeV

Calibrate background using side-bands

•
$$M_{\text{tag}} < 5.26 \text{ GeV}, \quad X_{\text{mis}} < 0.75 (0.5) \ d_{\tau} = \ell(\pi),$$

 $X_{\text{mis}} = \frac{E_{\text{beam}} - E_{D^* d_{\tau}} - |\mathbf{p}_{D^* d_{\tau}}|}{|\mathbf{p}_B|}$

- Suppress background
- $X_{\rm mis} > 1.5 \ (1.0), E_{\rm vis} < 8.7 \ (8.8) \ {
 m GeV}$, $d_{ au} = \ell(\pi)$
- *M*_{tag} distributions flat for most bkgd
 can be used to extract signal yields

Measurement of the D^{*-} polarization in the decay $B^0 o D^{*-} au^+
u_a$

Belle Collab., arXiv:1903.03102

D Measure $\cos \theta_V$ distribution

- Extract signal yields in 3 equidistant bins of $\cos \theta_V$: I[-1, -0.67), II [-0.67, -0.33), III [-0.33, 0]
 - $\cos \theta_V > 0$ excluded because of low reconstruction efficiency of slow π from D^* decay
 - signal yields ectracted from UEML fit to M_{tag} distributions ; simultanoeous fit to all decay chains

Acceptance correction factors: $s_I = 0.98$, $s_{II} = 0.96$, $s_{III} = 1.08$ (SM dynamics assumed)

Measurement of the D^{*-} polarization in the decay $B^0 \rightarrow D^{*-}$

Belle Collab., arXiv:1903.03102

Extract fraction of the longitudinal D^{*-} polarization from the angular distribution:

$$\frac{dN_{\text{sig}}}{d\cos\theta_V} = N_{\text{sig}}\frac{3}{4}\left[2F_L^{D^*}\cos^2\theta_V + (1-F_L^{D^*})\sin^2\theta_V\right]$$

Systematic uncertainties

evaluated assuming SM dynamics

source		$\Delta F_L^{D^*}$
	bkgd combinatori and peaking	al ±0.032
IVIC Statistics	signal shape	±0.010
	bkgd calibr.	±0.001
	D** compositior	n ±0.003
Background modelling	$B \rightarrow D^{**} \tau \nu$	<u>±0.011</u>
	$B \rightarrow hadrons$	±0.005
	2-body $B \rightarrow D^*M$	±0.004
	Form factors	±0.002
Signal	$\cos \theta_V$ resol.	±0.003
modelling	Acceptance non- uniformity	$+0.015 \\ -0.005$
Total		+0.039 -0.037

$F_L = 0.60 \pm 0.08(S(dl) \pm 0.04(SySl))$	SM predictions	Exp vs SN
Can be reduced by adding $B^+ \rightarrow D^{*0} \tau^+ \nu_{\tau}$	$F_L^{D^*} = 0.46 \pm 0.04 [1]$	1.42σ
7 0 1	$F_{L}^{D^{*}} = 0.441 \pm 0.006$ [2]	1.76σ
[1] A.K. Alok, D. Kumar, S. Kumbahar, S.U. Sankar, PRD 95 ,115038(2017)	$F_{D}^{D^{*}} = 0.457 \pm 0.010$ [3]	1.58σ
[2] ZR. Huang, Y. Li, M.A. Paracha, C. Wang, PRD 98 ,095018(2018)	$\Gamma_L^{D*} = 0.47 \pm 0.01$ [4]	1.000
[3] S. Bhattacharya, S. Nandu, S.K. Patra Eur.Phys.J. C 79 ,268 (2019)	$F_{L_{p,*}} = 0.47 \pm 0.01$ [4]	1.440
[4] P. Gambino, M. Jung, S. Schacht, arXiv:1905.08209 [hep-ph]	$F_L^{D^*} = 0.455 \pm 0.009$ [5]	1.60 σ
[5] RX. Shi, LS. Geng, B. Grinstein, S. Jäger, J. M. Camalich, arXiv:1905.08498 [hep-ph]	L	

LFU in $b \rightarrow s \ell^+ \ell^-$

Suppressed in the SM, $BF's \sim 10^{-6}$

Many NP amplitudes can contribute causing complex phenomenology.

Several tensions (~ 3σ from SM) in $b \rightarrow s\ell^+\ell^-$ transitions (angular observables in $\rightarrow K^*\mu^+\mu^-$, *BF*'s of some $b \rightarrow s\ell^+\ell^-$ decays - theoretical uncertainties are still subject of debate) can be fit with NP models that predict $R(K^*) < 1$. e.g. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, J. Virto, JHEP **01**, 093 (2018)

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} \cong 1 \pm \mathcal{O}(10^{-4}(10^{-3})) \text{ robust SM prediction}$$

Precise test of LFU in FCNC

•
$$R(K) \equiv \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)} = 0.846^{+0.060+0.016}_{-0.054-0.014}$$
 $1.1 < q^2 < 6 \text{ GeV}^2$ $q^2 = (M_{\ell^+\ell^-})^2$
compatibility with SM: **2.5** σ

•
$$R(K^{*0}) = 0.66^{+0.11}_{-0.07} \pm 0.03$$
 $0.45 < q^2 < 1.1 \text{ GeV}^2$
 $R(K^{*0}) = 0.69^{+0.11}_{-0.07} \pm 0.05$ $1.10 < q^2 < 6 \text{ GeV}^2$
compatibility with SM: **2.2–2.3** σ (low q^2), **2.4–2.5** σ (central q^2) LHCb Collab., JHEP 08,055(2017)
Belle: Solver statistics, Solve good performance for e^{\pm} modes

▶ Reconstruction & selection of $B \to K^* \ell^+ \ell^-$

 $\begin{array}{ll} B^{0} \to K^{*0} \,\ell^{+} \ell^{-}, & K^{*0} \to K^{+} \pi^{-}, K^{0}_{S} \pi^{0} \\ B^{+} \to K^{*+} \,\ell^{+} \ell^{-}, & K^{*+} \to K^{+} \pi^{0}, K^{0}_{S} \pi^{+} \end{array}$

- hierarchical NN reconstruction
- $\mathcal{P}_{e/\mu} \equiv \frac{\mathcal{L}_{e/\mu}}{\mathcal{L}_{e/\mu} + \mathcal{L}_{\pi}} > 0.9$
- Background suppression
- Multivariate method utilizing event topology and NN outputs
- Irreducible background from $B \to J/\psi K^*$ and $B \to \psi(2S)K^*$ reduced by rejecting events in the relevant $M_{\ell^+\ell^-}$ windows
- Signal extraction
- UEML fit to $M_{\rm bc} \equiv \sqrt{E_{\rm beam}^2 |\boldsymbol{p}_B|^2}$ in several bins of q^2 : [0.045, 1.1], [1.1, 6], [0.1, 8], [15, 19], [0.045,] GeV²
- \blacktriangleright Control sample: data in the veto region of J/ψ

 $\frac{\mathcal{B}(B \to J/\psi(\to \mu^+ \mu^-)K^*)}{\mathcal{B}(B \to J/\psi(\to e^+ e^-)K^*)} = 1.015 \pm 0.025 \pm 0.038$

Example fit for $q^2 > 0.045 \text{ GeV}^2$

Measurement of $R(K^*)$

Belle Collab., arXiv:1904.02440

Systematic uncertainties for $B^{+/0}$ modes and $q^2 > 0.045$ GeV ²						
source	$\Delta R(K^*)$					
e,μ efficiency	0.061					
MC size	0.004					
Classifier	0.013					
Signal shape	0.008					
Tracking eff.	0.016					
Peaking bkgr.	0.031					
Charmonia bkgr.	0.023					
total	0.075					

q^2 in GeV ² /c ⁴	All modes	B ⁰ modes	B ⁺ modes
[0.045, 1.1]	$0.52^{+0.36}_{-0.26}\pm 0.05$	$0.46^{+0.55}_{-0.27}\pm 0.07$	$0.62^{+0.60}_{-0.36}\pm0.10$
[1.1,6]	$0.96^{+0.45}_{-0.29} \pm 0.11$	$1.06^{+0.63}_{-0.38} \pm 0.13$	$0.72^{+0.99}_{-0.44} \pm 0.18$
[0.1,8]	$0.90^{+0.27}_{-0.21} \pm 0.10$	$0.86^{+0.33}_{-0.24} \pm 0.08$	$0.96^{+0.56}_{-0.35} \pm 0.14$
[15, 19]	$1.18^{+0.52}_{-0.32}\pm 0.10$	$1.12^{+0.61}_{-0.36}\pm 0.10$	$1.40^{+1.99}_{-0.68} \pm 0.11$
[0.045,]	$0.94^{+0.17}_{-0.14}\pm 0.08$	$1.12^{+0.27}_{-0.21} \pm 0.09$	$0.70^{+0.24}_{-0.19}\pm0.07$

⇐	first	mea	sure	eme	nts

Measurement of $R(K^*)$

							Karlsruhe I
	2.0		I		Be	lle prelimin	ary
		Results consisten	t wit	h SM		ŢŢ]
	1.5	and with other m	neasi	urem	ents		-
\frown		-				\downarrow	
$(\mathbf{k}^*$	1.0		۱ T				
R			Ţ		⊢∓-	⊥ ⊥ ∟ Belle]
	0.5				. I	LHCb]
						BaBar	-
		-				SM	-
	0.0	0 5	. 1	0		15	20
		q^2	[Ge\	/ ²]			

Systematic uncertainties for $B^{+/0}$ modes and $q^2 > 0.045$ GeV ²						
source	$\Delta R(K^*)$					
<i>e</i> , μ efficiency	0.061					
MC size	0.004					
Classifier	0.013					
Signal shape	0.008					
Tracking eff.	0.016					
Peaking bkgr.	0.031					
Charmonia bkgr.	0.023					
total	0.075					

Belle Collab., arXiv:1904.02440

q^2 in GeV ² /c ⁴	All modes	B ⁰ modes	B ⁺ modes
[0.045, 1.1]	$0.52^{+0.36}_{-0.26}\pm 0.05$	$0.46^{+0.55}_{-0.27}\pm0.07$	$0.62^{+0.60}_{-0.36}\pm0.10$
[1.1,6]	$0.96^{+0.45}_{-0.29}\pm0.11$	$1.06^{+0.63}_{-0.38} \pm 0.13$	$0.72^{+0.99}_{-0.44} \pm 0.18$
[0.1,8]	$0.90^{+0.27}_{-0.21} \pm 0.10$	$0.86^{+0.33}_{-0.24} \pm 0.08$	$0.96^{+0.56}_{-0.35} \pm 0.14$
[15, 19]	$1.18^{+0.52}_{-0.32} \pm 0.10$	$1.12^{+0.61}_{-0.36}\pm 0.10$	$1.40^{+1.99}_{-0.68} \pm 0.11$
[0.045,]	$0.94^{+0.17}_{-0.14}\pm0.08$	$1.12^{+0.27}_{-0.21}\pm 0.09$	$0.70^{+0.24}_{-0.19}\pm0.07$

	⊨	first	measurements
--	---	-------	--------------

Summary and outlook

□ New measurement of $R(D^{(*)})$ using semileptonic B_{tag} decays

 $R(D) = 0.307 \pm 0.037(stat) \pm 0.016(syst)$

- $R(D^*) = 0.283 \pm 0.018(stat) \pm 0.014(syst)$
- first measurement of R(D) with semileptonic tagging
- most precise $R(D^{(*)})$ measurements to date
- results consistent with SM within ${\sim}1.3\sigma$
- tension between SM and experimental world averages reduced 3.8 $\sigma \Rightarrow {\sim} 3.1 \sigma$
- □ Measurement of D^{*-} polarization in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

 $F_L^{D^*} = 0.60 \pm 0.08(stat) \pm 0.04(syst)$

- first measurement of D^* polarization in semitauonic decay
- the measured value consistent with SM within ~1.5 σ
- experimental accuracy can be further improved with Belle data by including $B^+ \rightarrow D^* \tau \nu_{\tau}$
- $\frac{d^2\Gamma}{dq^2d\cos\theta_V}$ feasible at Belle II (enhanced sensitivity to NP, reduced acceptance effects)

□ New measurements of $R(K^*)$ in several bins of q^2 : [0.045, 1.1], [1.1, 6], [0.1, 8], [15, 19], [0.045,] GeV²

$$R(K^*) = 0.94^{+0.17}_{-0.14}(stat) \pm 0.08(syst)$$
, for $q^2 > 0.045 \text{ GeV}^2$

- first measurement of $R(K^{*+})$
- all results compatible with SM and other measurements
- Experimental accuracy limited by statistics ⇒ good prospects for Belle II, with expected 50× larger data sample.

Backup slides

$D^+\ell^-$	$B \to D \tau \nu$	307 ± 65	TABLE I. Systematic	uncertainties contribu	ting to the $\mathcal{R}(D^{(*)})$ resp	ults.
	$B \to D\ell\nu$ $B^0 \to D^*\ell\nu$	6800 ± 179 6370 ± 225	Source	$\Delta R(D)$ (%)	$\Delta R(D^*)$ (%)	Correlation
	$B^0 \to D^* \tau \nu$	269 ± 24	D^{**} composition	0.76	1.41	-0.41
	$B \to D^{**} \ell \nu$ Fake D	413 ± 110 3072 ± 129 (Fixed)	Fake $D^{(*)}$ calibration	0.19	0.11	-0.76
	Other	506 ± 23 (Fixed)	$B_{\rm tag}$ calibration	0.07	0.05	-0.76
$D^0\ell^-$	$\begin{array}{c} B \to D\tau\nu \\ B \to D\ell\nu \end{array}$	$1471 \pm 193 \\ 16096 \pm 436$	Feed-down factors	1.69	0.44	0.53
	$B^+ \to D^* \ell \nu$	45042 ± 563	Efficiency factors	1.93	4.12	-0.57
	$B^0 \to D^* \ell \nu$	2302 ± 531	Lepton efficiency and fake rate	0.36	0.33	-0.83
	$B^+ \rightarrow D^+ \tau \nu$ $B^0 \rightarrow D^* \tau \nu$	1704 ± 177 123 ± 11	Slow pion efficiency	0.08	0.08	-0.98
	$B \to D^{**} \ell \nu$	3595 ± 252	MC statistics	4.39	2.25	-0.55
	Fake D Other	8708 ± 418 (Fixed) 2131 ± 83 (Fixed)	B decay form factors	0.55	0.28	-0.60
$D^{*+}\ell^-$	$B \to D^* \tau \nu$	376 ± 36	Luminosity	0.10	0.04	-0.58
	$\begin{array}{c} B \to D^* \ell \nu \\ B \to D^{**} \ell \nu \end{array}$	$9794 \pm 109 \\ 314 \pm 65$	$\mathcal{B}(B \to D^{(*)}\ell\nu)$	0.05	0.02	-0.69
	Fake D^*	754 ± 39 (Fixed)	$\mathcal{B}(D)$	0.35	0.13	-0.65
$D^{*0}\ell^{-}$	$\frac{\text{Other}}{B \to D^* \tau \nu}$	287 ± 13 (Fixed) 275 ± 29	$\mathcal{B}(D^*)$	0.04	0.02	-0.51
	$B \to D^* \ell \nu$	7148 ± 100	$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.15	0.14	-0.11
	$B \to D^{**} \ell \nu$ Fake D^*	406 ± 64 1993 ± 122 (Fixed)	Total	5.21	4.94	-0.52
	Other	187 ± 7 (Fixed)				

electron:

 $\mathcal{R}(D) = 0.281 \pm 0.042 \pm 0.017$ $\mathcal{R}(D^*) = 0.304 \pm 0.022 \pm 0.016$

<u>muon:</u>

 $\mathcal{R}(D) = 0.373 \pm 0.068 \pm 0.030$ $\mathcal{R}(D^*) = 0.245 \pm 0.035 \pm 0.020$

q^2 in GeV ² / c ⁴	\pmb{e}, μ eff.	MC size	classifier	sig. shape	tracking	peaking bkg.	<i>c</i> ̄c bkg.	total
all modes								
- [0.045, None] -	0.061	0.004	0.013	0.008	0.016	0.031	0.023	0.075
- [0.1, 8] -	0.058	0.005	0.029	0.002	0.016	0.054	0.051	0.100
- [15, 19] -	0.090	0.012	0.012	0.014	0.020	0.003	0.003	0.095
- [0.045, 1.1] -	0.027	0.006	0.008	0.025	0.009	0.026	0.001	0.047
- [1.1, 6] -	0.065	0.008	0.048	0.033	0.017	0.070	0.013	0.114
B ⁰ modes								
- [0.045, None] -	0.073	0.006	0.030	0.018	0.022	0.031	0.021	0.092
- [0.1, 8] -	0.058	0.006	0.040	0.019	0.017	0.033	0.018	0.084
- [15, 19] -	0.091	0.013	0.007	0.012	0.022	0.007	0.001	0.096
- [0.045, 1.1] -	0.024	0.007	0.044	0.005	0.009	0.049	0.001	0.071
- [1.1, 6] -	0.082	0.010	0.040	0.062	0.021	0.070	0.012	0.133
B ⁺ modes								
- [0.045, None] -	0.044	0.005	0.032	0.018	0.010	0.025	0.023	0.068
- [0.1, 8] -	0.060	0.010	0.039	0.040	0.014	0.048	0.107	0.144
- [15, 19] -	0.089	0.028	0.016	0.041	0.021	0.008	0.002	0.106
- [0.045, 1.1] -	0.033	0.013	0.067	0.060	0.009	0.006	0.000	0.097
- [1.1, 6] -	0.045	0.010	0.137	0.060	0.011	0.086	0.009	0.179

R(**K**^{*}): Systematics

Acceptance effects in $B \rightarrow D^* \tau \nu$

 $\theta_{hel}(D^*) \equiv \theta_V$

