Lepton Flavour Universality in B Decays and Other Recent Results at Belle

- **$b \rightarrow c \tau \nu_{\tau}$**
 - Measurement of $R(D)$ and $R(D^*)$ with a semileptonic tagging method
 \[
 R(D^{(*)}) \equiv \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu)}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu)}, \quad \ell = e, \mu
 \]
 - Belle Collab., arXiv:1904.08794

- **$b \rightarrow s \ell^+ \ell^-$**
 - Measurement of the D^{*-} polarization in the decay $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$
 - Belle Collab., arXiv:1903.03102

- **$b \rightarrow c \tau \nu_{\tau}$**
 - Measurement of $R(D)$ and $R(D^*)$ with a semileptonic tagging method
 \[
 R(D^{(*)}) \equiv \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu)}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu)}, \quad \ell = e, \mu
 \]
 - Belle Collab., arXiv:1904.08794

- **$b \rightarrow s \ell^+ \ell^-$**
 - Measurement of the D^{*-} polarization in the decay $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$
 - Belle Collab., arXiv:1903.03102

- Test of lepton flavor universality in $B \rightarrow K^* \ell^+ \ell^-$ decays at Belle
 \[
 R(K^*) \equiv \frac{\mathcal{B}(B \rightarrow K^* \mu^+ \mu^-)}{\mathcal{B}(B \rightarrow K^* e^+ e^-)}
 \]
 - Belle Collab., arXiv:1904.02440

Results (still preliminary), are based on the full data set recorded by the Belle detector at $\Upsilon(4S)$.

The 27th International Workshop on Weak Interactions and Neutrino,
Bari 3-8 June 2019

Maria Różańska, H. Niewodniczański Institute of Nuclear Physics, Kraków, on behalf of the Belle Collaboration
Belle detector: high-hermeticity (86% of solid angle), multi-purpose magnetic spectrometer operating (1999-2010) at KEKB collider, collected 772M $B\bar{B}$ pairs from $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

Unique tool to study experimentally challenging B- meson decays, e.g. to multiple neutrinos.

- employ B_{tag} - reconstruction techniques to infer more information on B_{sig}
$B \rightarrow D^{(*)} \tau \nu_\tau$

$b \rightarrow c \tau \nu_\tau$ transitions

SM and NP contribute at the tree level

Theoretically well-controlled observables, with complementary sensitivity to NP:

- $R(D^{(*)}) = \frac{B(B \rightarrow D^{(*)} \tau \nu)}{B(B \rightarrow D^{(*)} \ell \nu)}$ ← signal
 - normalization
 - Common uncertainties (partly) cancel out:
 - Theoretical uncertainty of some form factors
 - Uncertainty of $|V_{cb}|$
 - Experimental uncertainty of efficiencies, partial BF's...
- Differential ($e.g. q^2$) distributions
- τ (and D^*) polarization

Experimentally challenging!

- B-factories exploit B_{tag} reconstruction techniques
- Measurements of $R(D^{(*)})$ achieved sensitivity that challenges SM and some of its extensions.

Experimental uncertainties larger than those of the SM predictions ⇒ call for improvements

- Measurements of $R(D^{(*)})$ achieved sensitivity that challenges SM and some of its extensions.
- $B_{\text{tag}} \rightarrow \text{hadrons}$
- B^0 & B^+ combined

- Theoretically well-controlled observables, with complementary sensitivity to NP:
 - $R(D^{(*)}) = \frac{B(B \rightarrow D^{(*)} \tau \nu)}{B(B \rightarrow D^{(*)} \ell \nu)}$ ← signal
 - normalization
 - Common uncertainties (partly) cancel out:
 - Theoretical uncertainty of some form factors
 - Uncertainty of $|V_{cb}|$
 - Experimental uncertainty of efficiencies, partial BF's...
- Differential ($e.g. q^2$) distributions
- τ (and D^*) polarization

Experimentally challenging!

- B-factories exploit B_{tag} reconstruction techniques
- Measurements of $R(D^{(*)})$ achieved sensitivity that challenges SM and some of its extensions.

HFLAV

Summer 2018

- $R(D) = 0.407 \pm 0.039 \pm 0.024 \text{ ~2.3}\sigma$ above the SM (0.299 \pm 0.003)
- $R(D^*) = 0.306 \pm 0.013 \pm 0.007 \text{ ~3.0}\sigma$ above the SM (0.258 \pm 0.05)
- $R(D^*)$ & $R(D)$ \sim3.8σ away from the SM

- $B(B^0 \rightarrow D^{*-} e^+ \nu) = 1.01 \pm 0.01 (\text{stat}) \pm 0.03 (\text{ syst})$

Belle, arXiv:1809.03290

- one of the most precise results is obtained with $B_{\text{tag}} \rightarrow D^* \ell \nu$, only $B^0 \rightarrow D^{*-} \tau^+ \nu$ measured
 ⇒ very promising approach
Measurement of $R(D)$ and $R(D^*)$ with semileptonic tagging

- **Reconstruct B_{tag} decay:** $B \rightarrow D^{(*)} \ell \nu$ (BDT-based hierarchical algorithm)
 - BDT classifier output, $-2 < \cos\theta_{B,Y}^{\text{tag}} < 1$
 \[
 \cos\theta_{B,Y}^{\text{tag}} = \frac{2E_{\text{beam}}E_Y - m_B^2 - M_Y^2}{2|p_B||p_Y|}
 \]
 $Y = D^{(*)}\ell$

- **Search for $D^{(*)} \ell$ among remaining tracks and clusters**
 - No extra charged tracks, or π^0s...
 - $\cos\theta_{B,Y}^{\text{sig}} < 1$, $|p_{D^{(*)}}| < 2$ GeV
 - 4 disjoint data samples: $D^{*+} \ell^-, D^{*0} \ell^-, D^+ \ell^-, D^0 \ell^-$

- **Distinguish $B \rightarrow D^{(*)}\ell(\tau)\nu$ from background**
 - E_{ECL} – sum of the energies of remaining neutral clusters, $E_{\text{ECL}} \approx 0$ for signal, tends to be higher for background

- **Distinguish $B \rightarrow D^{(*)}\tau\nu$ from $B \rightarrow D^{(*)}\ell\nu$**
 - BDT classifier with input variables:
 \[
 \cos\theta_{B,Y}^{\text{sig}} , E_{\text{vis}} = \sum E_i , M_{\text{miss}}^2 = (E_{\text{beam}} - E_{D^{(*)}\ell})^2 - (p_{D^{(*)}\ell})^2
 \]

- **Extract $R(D)$ and $R(D^*)$**
 - Extended maximum likelihood 2-D fit to the BDT classifier output and E_{ECL}
 - Fit simultaneously 4 $D^{(*)}\ell$ samples
Measurement of $R(D)$ and $R(D^*)$ with sl tagging - fit

Fit components

- **Floating**
 - norm: $B \to D(*)\ell\nu$
 - signal: $B \to D(*)\tau\nu$
 - feed-down
 - $B^+ \to D^*\ell\nu \Rightarrow D\ell\nu$
 - $B^0 \to D^*\ell\nu \Rightarrow D\ell\nu$
 - background
 - $B \to D^{**}\ell\nu$

- **Correlated**
 - feed-down
 - $B^+ \to D^*\tau\nu \Rightarrow D\tau\nu$
 - $B^0 \to D^*\tau\nu \Rightarrow D\tau\nu$

- **Fixed**
 - fake $D(*)$
 - calibrated from data
 - other bkgds
 - fixed from MC

E_{ECL} fit projections; insets show signal enhanced region (class > 0.9)

- $D^+\ell^-$
 - $N_{\text{sig}} = 307 \pm 65$

- $D^0\ell^-$
 - $N_{\text{sig}} = 1471 \pm 193$

- $D^{*+}\ell^-$
 - $N_{\text{sig}} = 376 \pm 36$

- $D^{*0}\ell^-$
 - $N_{\text{sig}} = 275 \pm 29$
Measurement of $R(D)$ and $R(D^*)$ with sl tagging - results

$$R(D^*) = \frac{1}{2B(\tau \to \ell \nu \nu)} \times \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \times \frac{N_{\text{sig}}}{N_{\text{norm}}}$$

$$R(D) = 0.307 \pm 0.037 \text{(stat)} \pm 0.016 \text{(syst)}$$
compatible within 0.2σ with SM

$$R(D^*) = 0.283 \pm 0.018 \text{(stat)} \pm 0.014 \text{(syst)}$$
compatible within 1.1σ with SM

Combined $R(D)$&$R(D^*)$ compatible within ~1.2σ with SM

Systematic uncertainties (%)

<table>
<thead>
<tr>
<th>source</th>
<th>$\Delta R(D)$</th>
<th>$\Delta R(D^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^{**} composition</td>
<td>0.76</td>
<td>1.41</td>
</tr>
<tr>
<td>Fake $D^{(*)}$ calibr.</td>
<td>0.19</td>
<td>0.11</td>
</tr>
<tr>
<td>B_{tag} calibr.</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Feed-down factors</td>
<td>1.69</td>
<td>0.44</td>
</tr>
<tr>
<td>Efficiency factors</td>
<td>1.93</td>
<td>4.12</td>
</tr>
<tr>
<td>Lepton eff. & fake rate</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>Slow π efficiency</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>PDF shapes</td>
<td>4.39</td>
<td>2.25</td>
</tr>
<tr>
<td>B decay form fact.</td>
<td>0.55</td>
<td>0.28</td>
</tr>
<tr>
<td>$\mathcal{B}(B \to D^{(*)}\ell \nu)$</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>$\mathcal{B}(D)$</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>$\mathcal{B}(D^*)$</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>$\mathcal{B}(\tau \to \ell \nu \nu)$</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>BFs of $\Upsilon(4S)$</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>5.21</td>
<td>4.94</td>
</tr>
</tbody>
</table>

Preliminary Belle average

$$R(D) = 0.326 \pm 0.034$$

$$R(D^*) = 0.284 \pm 0.018$$
correlation: $\rho = -0.47$
compatible within ~2σ with SM

New SM prediction: $R(D^) = 0.253 \pm 0.006 \sim 1.3\sigma$

$R(D)$ and $R(D^*)$ – 2019

$R(D) = 0.340 \pm 0.027 \pm 0.013$

$R(D^*) = 0.295 \pm 0.011 \pm 0.008$

$\sim 1.4\sigma$ above the SM

$\sim 2.5\sigma$ above the SM

Tension reduced to 3.1σ, but central values consistently above the SM predictions
Other observables in $B \rightarrow D^{(*)}\tau\nu$ decays

- (Inconclusive) hints of a deviation from the Standard Model in $b \rightarrow c\tau\nu_\tau$ transitions
 - $R(D^{(*)})$ systematically above the SM expectations, surprisingly larger effect for $R(D^*)$;
 - Angular observables in $B \rightarrow D^{(*)}\tau\nu$ decays, basically, not explored yet

$\cos \theta_{hel} \Rightarrow \tau$ polarization ($P^D_{\tau} (\alpha=1)$), $\tau \rightarrow \rho \nu_\tau \ (\alpha=0.45)$

$\cos \theta_V \Rightarrow D^*$ polarization (F^D_L)

$\cos \theta_{hel}$ and $\cos \theta_V$ can be reconstructed at B-factories using hadronic decays of B_{tag}

\[\tilde{p}_{sig} = - \tilde{p}_{tag} \]
Need efficient reconstruction of B_{tag} in hadronic modes

⇒ do it inclusively

Find B_{sig} candidates $D^{*-} d^+_\tau \tau^+ \rightarrow d^+_\tau \nu_\tau (\nu_\ell)$, $d_\tau = \ell, \pi$

Reconstruct B_{tag} from remaining tracks and clusters

- $M_{\text{tag}} = \sqrt{E_{\text{beam}}^2 - |p_{\text{tag}}|^2}$; $\Delta E_{\text{tag}} = E_{\text{tag}} - E_{\text{beam}}$; $E_{\text{tag}} = \Sigma_i E_i$, $p_{\text{tag}} = \Sigma_i p_i$
- $M_{\text{tag}} > 5.2 \text{ GeV}$, $-0.30 < \Delta E_{\text{tag}} < 0.05 \text{ GeV}$
- Suppress incorrectly reconstructed B_{tag}'s:
 - total charge=0, no extra ℓ^\pm, $N_{\pi^0} + N_Y < 5$, $N_{K_L^0} = 0$ ($d_\tau = \pi$)
- >80%(60%) signal events for $d_\tau = \ell (\pi)$ contained at $M_{\text{tag}} > 5.26 \text{ GeV}$

Calibrate background using side-bands

- $M_{\text{tag}} < 5.26 \text{ GeV}$, $X_{\text{mis}} < 0.75$ (0.5) $d_\tau = \ell (\pi)$
- $X_{\text{mis}} = \frac{E_{\text{beam}} - E_{D^*+d_\tau} - |p_{D^*d_\tau}|}{|p_B|}$

Suppress background

- $X_{\text{mis}} > 1.5$ (1.0), $E_{\text{vis}} < 8.7$ (8.8) GeV, $d_\tau = \ell (\pi)$
- M_{tag} distributions flat for most bkgd
 - can be used to extract signal yields
Measure \(\cos \theta_V \) distribution

- Extract signal yields in 3 equidistant bins of \(\cos \theta_V \):
 - \(I [-1, -0.67) \)
 - \(II [-0.67, -0.33) \)
 - \(III [-0.33, 0) \)
- \(\cos \theta_V > 0 \) excluded because of low reconstruction efficiency of slow \(\pi \) from \(D^* \) decay
- Signal yields extracted from UEML fit to \(M_{\text{tag}} \) distributions; simultaneous fit to all decay chains

Fit projections in bins of \(\cos \theta_V \):

- \(\tau \rightarrow \pi \)
- \(\tau \rightarrow e \)
- \(\tau \rightarrow \mu \)

\[N_{\text{sig}}^I = 151 \pm 21 \quad N_{\text{sig}}^{II} = 125 \pm 19 \quad N_{\text{sig}}^{III} = 55 \pm 15 \]

Acceptance correction factors: \(s_I = 0.98 \), \(s_{II} = 0.96 \), \(s_{III} = 1.08 \) \((\text{SM dynamics assumed})\)
Measurement of the D^{*-} polarization in the decay $B^0 \rightarrow D^{*-}\tau^+\nu_\tau$

- Extract fraction of the longitudinal D^{*-} polarization from the angular distribution:

$$\frac{dN_{\text{sig}}}{d\cos\theta_V} = N_{\text{sig}} \frac{3}{4} [2 F^D_L \cos^2 \theta_V + (1 - F^D_L) \sin^2 \theta_V]$$

- Result (preliminary):

$$F^D_L = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{syst})$$

- Can be reduced by adding $B^+ \rightarrow D^{*0}\tau^+\nu_\tau$

<table>
<thead>
<tr>
<th>Systematic uncertainties evaluated assuming SM dynamics</th>
<th>ΔF^D_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td></td>
</tr>
<tr>
<td>MC statistics</td>
<td>±0.032</td>
</tr>
<tr>
<td>bkgd combinatorial and peaking</td>
<td>±0.010</td>
</tr>
<tr>
<td>signal shape</td>
<td>±0.010</td>
</tr>
<tr>
<td>bkgd calibr.</td>
<td>±0.001</td>
</tr>
<tr>
<td>Background modelling</td>
<td>±0.003</td>
</tr>
<tr>
<td>D^{**} composition</td>
<td>±0.011</td>
</tr>
<tr>
<td>$B \rightarrow D^{**}\tau\nu$</td>
<td>±0.005</td>
</tr>
<tr>
<td>$B \rightarrow$ hadrons</td>
<td>±0.005</td>
</tr>
<tr>
<td>2-body $B \rightarrow D^{*}M$</td>
<td>±0.004</td>
</tr>
<tr>
<td>Signal modelling</td>
<td>±0.002</td>
</tr>
<tr>
<td>Form factors</td>
<td>±0.003</td>
</tr>
<tr>
<td>$\cos\theta_V$ resol.</td>
<td>±0.003</td>
</tr>
<tr>
<td>Acceptance non-uniformity</td>
<td>±0.015</td>
</tr>
<tr>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>±0.039</td>
</tr>
<tr>
<td>-0.037</td>
<td></td>
</tr>
</tbody>
</table>

Exp vs SM

$$\begin{cases} F^D_L = 0.46 \pm 0.04 & [1] \\ F^D_L = 0.441 \pm 0.006 & [2] \\ F^D_L = 0.457 \pm 0.010 & [3] \\ F^D_L = 0.47 \pm 0.01 & [4] \\ F^D_L = 0.455 \pm 0.009 & [5] \end{cases}$$

1.42σ, 1.76σ, 1.58σ, 1.44σ, 1.60σ

Several tensions (~3σ from SM) in $b \to s \ell^+ \ell^-$ transitions (angular observables in $\to K^* \mu^+ \mu^-$, BF's of some $b \to s \ell^+ \ell^-$ decays - theoretical uncertainties are still subject of debate) can be fit with NP models that predict $R(K^*) < 1$.

$R\left(K^{(*)}\right) = \frac{\mathbb{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathbb{B}(B \to K^{(*)}e^+e^-)} \cong 1 \pm \mathcal{O}(10^{-4}(10^{-3})) \quad \text{robust SM prediction}$

Precise test of LFU in FCNC

- $R(K) \equiv \frac{\mathbb{B}(B \to K\mu^+\mu^-)}{\mathbb{B}(B \to Ke^+e^-)} = 0.846^{+0.060+0.016}_{-0.054-0.014} \quad 1.1 < q^2 < 6 \text{ GeV}^2 \quad q^2 = (M_{\ell^+\ell^-})^2$

 compatibility with SM: 2.5σ

- $R(K^{*0}) = 0.66^{+0.11}_{-0.07} \pm 0.03 \quad 0.45 < q^2 < 1.1 \text{ GeV}^2$
 $R(K^{*0}) = 0.69^{+0.11}_{-0.07} \pm 0.05 \quad 1.10 < q^2 < 6 \text{ GeV}^2$
 compatibility with SM: 2.2–2.3σ (low q^2), 2.4–2.5σ (central q^2)

Belle: 😞 lower statistics, 😊 good performance for e^\pm modes
Measurement of $R(K^*)$

- **Reconstruction & selection of $B \rightarrow K^* \ell^+ \ell^-$**

 $B^0 \rightarrow K^*0 \ell^+ \ell^-$, $K^*0 \rightarrow K^+\pi^-, K_S^0\pi^0$

 $B^+ \rightarrow K^+\ell^+ \ell^-$, $K^+ \rightarrow K^+\pi^0, K_S^0\pi^+$

 - hierarchical NN reconstruction

 - \(P_{e/\mu} \equiv \frac{L_{e/\mu}}{L_{e/\mu}+L_\pi} > 0.9 \)

- **Background suppression**

 - Multivariate method utilizing event topology and NN outputs

 - Irreducible background from $B \rightarrow J/\psi K^*$ and $B \rightarrow \psi(2S)K^*$ reduced by rejecting events in the relevant $M_{\ell^+\ell^-}$ windows

- **Signal extraction**

 - UEML fit to $M_{bc} \equiv \sqrt{E_{beam}^2 - |p_B|^2}$

 in several bins of q^2: [0.045, 1.1], [1.1, 6], [0.1, 8], [15, 19], [0.045,] GeV2

- **Control sample: data in the veto region of J/ψ**

 \[
 \frac{B(B \rightarrow J/\psi(\rightarrow\mu^+\mu^-)K^*)}{B(B \rightarrow J/\psi(\rightarrow e^+e^-)K^*)} = 1.015 \pm 0.025 \pm 0.038
 \]
Measurement of $R(K^*)$

Results consistent with SM

Systematic uncertainties for $B^+/0$ modes and $q^2 > 0.045$ GeV2

<table>
<thead>
<tr>
<th>source</th>
<th>$\Delta R(K^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e, μ efficiency</td>
<td>0.061</td>
</tr>
<tr>
<td>MC size</td>
<td>0.004</td>
</tr>
<tr>
<td>Classifier</td>
<td>0.013</td>
</tr>
<tr>
<td>Signal shape</td>
<td>0.008</td>
</tr>
<tr>
<td>Tracking eff.</td>
<td>0.016</td>
</tr>
<tr>
<td>Peaking bkgr.</td>
<td>0.031</td>
</tr>
<tr>
<td>Charmonia bkgr.</td>
<td>0.023</td>
</tr>
<tr>
<td>total</td>
<td>0.075</td>
</tr>
</tbody>
</table>

q^2 in GeV$^2/c^4$

<table>
<thead>
<tr>
<th>q^2 range</th>
<th>All modes</th>
<th>B^0 modes</th>
<th>B^+ modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.045, 1.1]</td>
<td>0.52\pm0.36\pm0.05</td>
<td>0.46\pm0.55\pm0.07</td>
<td>0.62\pm0.60\pm0.10</td>
</tr>
<tr>
<td>[1.1, 6]</td>
<td>0.96\pm0.45\pm0.11</td>
<td>1.06\pm0.63\pm0.13</td>
<td>0.72\pm0.99\pm0.18</td>
</tr>
<tr>
<td>[0.1, 8]</td>
<td>0.90\pm0.27\pm0.10</td>
<td>0.86\pm0.33\pm0.08</td>
<td>0.96\pm0.35\pm0.14</td>
</tr>
<tr>
<td>[15, 19]</td>
<td>1.18\pm0.32\pm0.10</td>
<td>1.12\pm0.36\pm0.10</td>
<td>1.40\pm1.99\pm0.11</td>
</tr>
<tr>
<td>[0.045,]</td>
<td>0.94\pm0.17\pm0.08</td>
<td>1.12\pm0.27\pm0.09</td>
<td>0.70\pm0.24\pm0.07</td>
</tr>
</tbody>
</table>

\Rightarrow first measurements

References:
Belle Collab., arXiv:1904.02440

Results consistent with SM
Measurement of $R(K^*)$

Results consistent with SM and with other measurements

Systematic uncertainties for $B^+/0$ modes and $q^2 > 0.045 \text{ GeV}^2$

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta R(K^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e, μ efficiency</td>
<td>0.061</td>
</tr>
<tr>
<td>MC size</td>
<td>0.004</td>
</tr>
<tr>
<td>Classifier</td>
<td>0.013</td>
</tr>
<tr>
<td>Signal shape</td>
<td>0.008</td>
</tr>
<tr>
<td>Tracking eff.</td>
<td>0.016</td>
</tr>
<tr>
<td>Peaking bkgr.</td>
<td>0.031</td>
</tr>
<tr>
<td>Charmonia bkgr.</td>
<td>0.023</td>
</tr>
<tr>
<td>Total</td>
<td>0.075</td>
</tr>
</tbody>
</table>

q^2 in GeV2/c4:
- [0.045, 1.1]: $0.52_{-0.26}^{+0.36} \pm 0.05$ for all modes, $0.46_{-0.27}^{+0.55} \pm 0.07$ for B^0 modes
- [1.1, 6]: $0.96_{-0.29}^{+0.45} \pm 0.11$ for all modes, $1.06_{-0.38}^{+0.63} \pm 0.13$ for B^0 modes
- [0.1, 8]: $0.90_{-0.21}^{+0.27} \pm 0.10$ for all modes, $0.86_{-0.24}^{+0.33} \pm 0.08$ for B^0 modes
- [15, 19]: $1.18_{-0.32}^{+0.52} \pm 0.10$ for all modes, $1.12_{-0.36}^{+0.61} \pm 0.10$ for B^0 modes
- [0.045,]: $0.94_{-0.14}^{+0.17} \pm 0.08$ for all modes, $1.12_{-0.21}^{+0.27} \pm 0.09$ for B^0 modes

B^+ modes:
- $0.62_{-0.36}^{+0.60} \pm 0.10$
- $0.72_{-0.44}^{+0.99} \pm 0.18$
- $0.96_{-0.35}^{+0.56} \pm 0.14$
- $1.40_{-0.68}^{+1.99} \pm 0.11$
- $0.70_{-0.24}^{+0.24} \pm 0.07$

Results consistent with SM and with other measurements.
Summary and outlook

- New measurement of $R(D(\ast))$ using semileptonic B_{tag} decays

 $R(D) = 0.307 \pm 0.037\,(\text{stat}) \pm 0.016\,(\text{syst})$

 $R(D\ast) = 0.283 \pm 0.018\,(\text{stat}) \pm 0.014\,(\text{syst})$

 - first measurement of $R(D)$ with semileptonic tagging
 - most precise $R(D(\ast))$ measurements to date
 - results consistent with SM within $\sim 1.3\sigma$
 - tension between SM and experimental world averages reduced $3.8\sigma \Rightarrow \sim 3.1\sigma$

- Measurement of D_{\ast}^{-} polarization in $B^{0} \rightarrow D_{\ast}^{-}\tau^{+}\nu_{\tau}$

 $F_{L}^{D_{\ast}} = 0.60 \pm 0.08\,(\text{stat}) \pm 0.04\,(\text{syst})$

 - first measurement of D^{\ast} polarization in semitauonic decay
 - the measured value consistent with SM within $\sim 1.5\sigma$
 - experimental accuracy can be further improved with Belle data by including $B^{+} \rightarrow D^{\ast}\tau\nu_{\tau}$
 - $\frac{d^{2}\Gamma}{dq^{2}d\cos\theta_{V}}$ feasible at Belle II (enhanced sensitivity to NP, reduced acceptance effects)

- New measurements of $R(K^{\ast})$ in several bins of q^{2}: [0.045, 1.1], [1.1, 6], [0.1, 8], [15, 19], [0.045,] GeV2

 $R(K^{\ast}) = 0.94^{+0.17}_{-0.14}\,(\text{stat}) \pm 0.08\,(\text{syst})$, for $q^{2} > 0.045$ GeV2

 - first measurement of $R(K^{\ast+})$
 - all results compatible with SM and other measurements

- Experimental accuracy limited by statistics \Rightarrow good prospects for Belle II, with expected 50× larger data sample.
Backup slides
<table>
<thead>
<tr>
<th>Source</th>
<th>ΔR(D) (%)</th>
<th>ΔR(D*) (%)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D** composition</td>
<td>0.76</td>
<td>1.41</td>
<td>-0.41</td>
</tr>
<tr>
<td>Fake D(s) calibration</td>
<td>0.19</td>
<td>0.11</td>
<td>-0.76</td>
</tr>
<tr>
<td>B_{tag} calibration</td>
<td>0.07</td>
<td>0.05</td>
<td>-0.76</td>
</tr>
<tr>
<td>Feed-down factors</td>
<td>1.69</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>Efficiency factors</td>
<td>1.93</td>
<td>4.12</td>
<td>-0.57</td>
</tr>
<tr>
<td>Lepton efficiency and fake rate</td>
<td>0.36</td>
<td>0.33</td>
<td>-0.83</td>
</tr>
<tr>
<td>Slow pion efficiency</td>
<td>0.08</td>
<td>0.08</td>
<td>-0.98</td>
</tr>
<tr>
<td>MC statistics</td>
<td>4.39</td>
<td>2.25</td>
<td>-0.55</td>
</tr>
<tr>
<td>B decay form factors</td>
<td>0.55</td>
<td>0.28</td>
<td>-0.60</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.10</td>
<td>0.04</td>
<td>-0.58</td>
</tr>
<tr>
<td>B(B → D(s)ℓν)</td>
<td>0.05</td>
<td>0.02</td>
<td>-0.69</td>
</tr>
<tr>
<td>B(D)</td>
<td>0.35</td>
<td>0.13</td>
<td>-0.65</td>
</tr>
<tr>
<td>B(D*)</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.51</td>
</tr>
<tr>
<td>B(τ̄ → ℓ−νμτ)</td>
<td>0.15</td>
<td>0.14</td>
<td>-0.11</td>
</tr>
<tr>
<td>Total</td>
<td>5.21</td>
<td>4.94</td>
<td>-0.52</td>
</tr>
</tbody>
</table>

electron:

\[\mathcal{R}(D) = 0.281 \pm 0.042 \pm 0.017 \]
\[\mathcal{R}(D^*) = 0.304 \pm 0.022 \pm 0.016 \]

muon:

\[\mathcal{R}(D) = 0.373 \pm 0.068 \pm 0.030 \]
\[\mathcal{R}(D^*) = 0.245 \pm 0.035 \pm 0.020 \]
$R(K^*)$: Systematics

<table>
<thead>
<tr>
<th>q^2 in GeV$^2 / c^4$</th>
<th>e, μ eff.</th>
<th>MC size</th>
<th>classifier</th>
<th>sig. shape</th>
<th>tracking</th>
<th>peaking bkg.</th>
<th>$c\bar{c}$ bkg.</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>all modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- [0.045, None] -</td>
<td>0.061</td>
<td>0.004</td>
<td>0.013</td>
<td>0.008</td>
<td>0.016</td>
<td>0.031</td>
<td>0.023</td>
<td>0.075</td>
</tr>
<tr>
<td>- [0.1, 8] -</td>
<td>0.058</td>
<td>0.005</td>
<td>0.029</td>
<td>0.002</td>
<td>0.016</td>
<td>0.054</td>
<td>0.051</td>
<td>0.100</td>
</tr>
<tr>
<td>- [15, 19] -</td>
<td>0.090</td>
<td>0.012</td>
<td>0.012</td>
<td>0.014</td>
<td>0.020</td>
<td>0.003</td>
<td>0.003</td>
<td>0.095</td>
</tr>
<tr>
<td>- [0.045, 1.1] -</td>
<td>0.027</td>
<td>0.006</td>
<td>0.008</td>
<td>0.025</td>
<td>0.009</td>
<td>0.026</td>
<td>0.001</td>
<td>0.047</td>
</tr>
<tr>
<td>- [1.1, 6] -</td>
<td>0.065</td>
<td>0.008</td>
<td>0.048</td>
<td>0.033</td>
<td>0.017</td>
<td>0.070</td>
<td>0.013</td>
<td>0.114</td>
</tr>
<tr>
<td>B^0 modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- [0.045, None] -</td>
<td>0.073</td>
<td>0.006</td>
<td>0.030</td>
<td>0.018</td>
<td>0.022</td>
<td>0.031</td>
<td>0.021</td>
<td>0.092</td>
</tr>
<tr>
<td>- [0.1, 8] -</td>
<td>0.058</td>
<td>0.006</td>
<td>0.040</td>
<td>0.019</td>
<td>0.017</td>
<td>0.033</td>
<td>0.018</td>
<td>0.084</td>
</tr>
<tr>
<td>- [15, 19] -</td>
<td>0.091</td>
<td>0.013</td>
<td>0.007</td>
<td>0.012</td>
<td>0.022</td>
<td>0.007</td>
<td>0.001</td>
<td>0.096</td>
</tr>
<tr>
<td>- [0.045, 1.1] -</td>
<td>0.024</td>
<td>0.007</td>
<td>0.044</td>
<td>0.005</td>
<td>0.009</td>
<td>0.049</td>
<td>0.001</td>
<td>0.071</td>
</tr>
<tr>
<td>- [1.1, 6] -</td>
<td>0.082</td>
<td>0.010</td>
<td>0.040</td>
<td>0.062</td>
<td>0.021</td>
<td>0.070</td>
<td>0.012</td>
<td>0.133</td>
</tr>
<tr>
<td>B^+ modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- [0.045, None] -</td>
<td>0.044</td>
<td>0.005</td>
<td>0.032</td>
<td>0.018</td>
<td>0.010</td>
<td>0.025</td>
<td>0.023</td>
<td>0.068</td>
</tr>
<tr>
<td>- [0.1, 8] -</td>
<td>0.060</td>
<td>0.010</td>
<td>0.039</td>
<td>0.040</td>
<td>0.014</td>
<td>0.048</td>
<td>0.107</td>
<td>0.144</td>
</tr>
<tr>
<td>- [15, 19] -</td>
<td>0.089</td>
<td>0.028</td>
<td>0.016</td>
<td>0.041</td>
<td>0.021</td>
<td>0.008</td>
<td>0.002</td>
<td>0.106</td>
</tr>
<tr>
<td>- [0.045, 1.1] -</td>
<td>0.033</td>
<td>0.013</td>
<td>0.067</td>
<td>0.060</td>
<td>0.009</td>
<td>0.006</td>
<td>0.000</td>
<td>0.097</td>
</tr>
<tr>
<td>- [1.1, 6] -</td>
<td>0.045</td>
<td>0.010</td>
<td>0.137</td>
<td>0.060</td>
<td>0.011</td>
<td>0.086</td>
<td>0.009</td>
<td>0.179</td>
</tr>
</tbody>
</table>
Acceptance effects in $B \to D^* \tau \nu$

$$\theta_{hel}(D^*) \equiv \theta_V$$