

Search for the $\tau \rightarrow 3\mu$ decay at the <u>CMS experiment at LHC</u>

WIN2019 The 27th International Workshop on Weak Interactions and Neutrinos 3-8 June 2019, Bari (Italy),

> Rosamaria Venditti On behalf of the CMS Collaboration

Motivations

Why LFV

- The lepton flavor conservation is not protected by any particular symmetry in Nature.
- Charged Lepton flavor violation (LFV) is allowed in the Standard Model including the neutrino oscillation, with extremely small BR
 - E.g. $B(\tau \rightarrow 3\mu) \sim O(10^{-14})$
- Some extensions of the SM (SUSY, 2HDM) allow for LFV decays with sizeable branching fractions $\sim O(10^{-8})$ that can be probed with the present day esperiments

Why $\tau \to 3 \mu$

- 3-µ decay has very clean final state topology
- BR enahnced in some BSM models
- $\tau \rightarrow 3\mu$ observation is a powerful tool to probe the NP

State of the art

@ e-e+ colliders

BaBar: B($\tau \rightarrow 3\mu$) < 3.3 × 10⁻⁸ at 90% CL Belle: B($\tau \rightarrow 3\mu$) < 2.1 × 10⁻⁸ at 90% CL \rightarrow Best limit!! \rightarrow update expected from Belle-II

• LHC is a τ factory! Proton-proton collisions are a prolific source of τ -leptons

- the expected inclusive production cross section at LHC is about 2×10^{11} fb

The Compact <u>Muon</u> Solenoid Experiment at LHC

- Event reconstruction based on the particle-flow
- Exploits information from all the CMS subdetectors
- Identify and reconstruct individual particle candidates in the event

- The Muon reconstruction combines information from the tracker and the muon system
- Detector Acceptance set by :

•

- Instrumented area→abs(η)<2.4
 - Muon Reco → p>2.5 GeV

$\tau \rightarrow 3\mu$ searches at CMS in 2016 data

Process

- 2016 Data analyzed (pp @ 13 TeV)
 - integrated luminosity of 33 fb⁻¹

Number of τ leptons (33 fb⁻¹)

- Two channels:
 - Heavy Flavour (**HF**) $(D \rightarrow \tau \nu, B \rightarrow \tau \nu..., B \rightarrow D(\tau \nu)...)$
 - W boson production (W $\rightarrow \tau \nu$)
- **HF channel**: $\mathcal{O}(10^{12})$ produced τ leptons
 - $\sim 10^4 \tau \rightarrow 3\mu \, events$ (assuming upper limit by Belle)
 - $\sim 10^2 \tau \rightarrow 3\mu$ events in the CMS detector acceptance
 - Challenging \rightarrow low transverse muon momenta
 - Analysis freezed and Approved
- W channel: $\mathcal{O}(10^9)$ produced τ leptons
 - $\sim 10 \tau \rightarrow 3\mu$ events (assuming upper limit by Belle exp.)
 - Clean final state High-pT muons and large missing energy
 - Analysis in the final step of the review

$\tau \rightarrow 3\mu$ searches at CMS in 2016 data

- 2016 Data analyzed (pp @ 13 TeV)
 - integrated luminosity of 33 fb⁻¹

• Two channels:

- Heavy Flavour (**HF**) $(D \rightarrow \tau \nu, B \rightarrow \tau \nu ..., B \rightarrow D(\tau \nu) ...)$
- W boson production (W $\rightarrow \tau \nu$)
- **HF channel**: $\mathcal{O}(10^{12})$ produced τ leptons
 - ~ $10^4 \tau \rightarrow 3\mu \, events$ (assuming upper limit by Belle)
 - ~ $10^2 \tau \rightarrow 3\mu \text{ events}$ in the CMS detector acceptance
 - Challenging \rightarrow Muons with low transverse momenta
 - Analysis freezed and Approved
- W channel: $\mathcal{O}(10^9)$ produced τ leptons
 - $\sim 10 \tau \rightarrow 3\mu \text{ events}$ (assuming upper limit by Belle exp.)
 - Clean final state High-pT muons and large missing energy
 - Analysis in the final step of the review

$\tau \rightarrow 3\mu$ Search Strategy (HF)

- Search for a bump at nominal τ mass peak in the invariant mass distribution of the 3µ-system
 - We expect a smoothly distributed background.
- The production rate of D and B mesons is obtained from data by measuring the event rate coming from $D_s \rightarrow \Phi \pi \rightarrow \mu \mu \pi$ decays.
- MVA discriminator for signal/background rejection
- Event categorization to improve the search sensitivity. Events are binned in
 - 3µ-system mass resolution
 - MVA discriminator
- The $\tau \rightarrow 3\mu$ signal is extracted by a simultaneous maximum likelihood fit of the thus-formed six unbinned mass distributions.

$\tau \rightarrow 3\mu$ Search Strategy (HF)

- Search for a bump at nominal τ mass peak in the invariant mass distribution of the 3µ-system
 - We expect a smoothly distributed background.
- The production rate of D and B mesons is obtained from data by measuring the event rate coming from $D_s \rightarrow \Phi \pi \rightarrow \mu \mu \pi$ decays.
- MVA discriminator for background rejection
- Event categorization to improve the search sensitivity. Events are binned in
 - 3µ-system mass resolution
 - MVA discriminator
- The $\tau \rightarrow 3\mu$ signal is extracted by a simultaneous maximum likelihood fit of the thus-formed six unbinned mass distributions.

HF Channel: Event selections

Online Selections

- L1: 3 muons or 2 muons with kin requirement
- Dedicated High Level Trigger
 - two collimated muon tracks with common vertex and $p_T > 3 \text{ GeV}$
 - one track compatible with the 2 μ vertex and p_{T} > 1.2 GeV
 - invariant mass (2µ+trk) in the range 1.60-2.02 GeV
 - vertex(2µ+trk) displaced from beam-spot by >2 sigma

Offline Selections

- <u>Muon Selections</u>
 - at least 3µ w/ p_T > 2 GeV per event, identified with Global algorithm
 - dR(2µ) < 0.8 & dz(2µ) < 0.5 cm
 - custom track-based isolation applied
- <u>3µ system selections</u>
 - charge = ± 1
 - fiducial invariant mass window: [1.62-2.00] GeV
 - High quality secondary vertex
 - primary vertex refit removing the 3µ tracks
 - Veto on muon pairs with inv. mass close to $\Phi(1020)$

Mass resolution of the 3µ system

- The uncertainty on the mass of 3µ system varies since the muon momentum resolution depends strongly on the muon pseudorapidity
- The method has been studied and calibrated in the $H \rightarrow ZZ \rightarrow 4\mu$ search
- Event categorization based on the resolution of the 3µ system mass

Background to signal discrimination

- Main source of background is the dacay of B mesons into resonance that decays in muon pairs, with the third muon coming from mis-identified pions or kaons
- Multivariate approach to discriminate signal to background → A BDT is trained
 - Signal: MC with properly mixed the D and B meson
 - Background from data using the 3µ-mass sidebands.

BDT Input variables

<u>3µ system variables</u>

- vertex fit chi²/ndof
- vertex displacement significance w.r.t PV
- angle between V(3µ)-PV and 3µ vector
- additional track closest distance to V(3µ)

<u>Additional muon variables</u>

- Inner track "Kink"
- track and STA muon position matching chi²
- track and muon segment compatibility
- Relative isolation
- Transverse I.P. significance (*)
- muon momentum

(*the smallest of the three)

Event categorization

- Additional categories introduced according to the BDT score.
- Keep the two categories with best signal-to-background purities, while excluding the background like phase space region.
- Category boundaries defined with a procedure based on the optimization of the signal significance simoultaneoulsy in all categories

• The expected $\tau \rightarrow 3\mu$ signal event yield associated with D_s can be written as:

 $N_{\rm sig(D)} = \mathcal{L}\sigma(\rm pp \to D_s) \ \mathcal{B}(\rm D_s \to \tau\nu) \ \mathcal{B}(\tau \to 3\mu) \ \mathcal{A}_{3\mu(D)} \ \epsilon_{\rm reco}^{3\mu} \epsilon_{\rm trig(sig)}^{2\mu}$

• The expected $\tau \rightarrow 3\mu$ signal event yield associated with D_s can be written as:

$$N_{sig(D)} = \mathcal{L}\sigma(pp \to D_s) \mathcal{B}(D_s \to \tau\nu) \mathcal{B}(\tau \to 3\mu) \mathcal{A}_{3\mu(D)} \epsilon_{reco}^{3\mu} \epsilon_{trig(sig)}^{2\mu}$$

Number of Ds. How to estimate? BR from PDG

Acceptances and efficiencies from MC

• The expected $\tau \rightarrow 3\mu$ signal event yield associated with D_s can be written as:

- <u>Number of produced Ds</u> can be derived from data, by selecting events compatible with the $Ds \rightarrow \Phi \pi \rightarrow \mu \mu \pi$
- Same triggers and selections as in signal region excepts:
 - two opposite signs muons
 - di-muon invariant mass is in the range 1.00– 1.04 GeV
 - 1 high quality track
- The number of $Ds \rightarrow \Phi\pi \rightarrow \mu\mu\pi$ events, N, can be easily extracted from the area below the rightmost peak.
- Uncertainty computation
 - 10% statistics
 - The ratio of the number of Ds $\rightarrow \Phi \pi \rightarrow \mu \mu \pi$ events to the number of 3µ events in the sideband in seven different run periods has been measured
 - Max variations not exceeding 10%

Signal normalization – B channel

• Direct $B \rightarrow \tau + \dots$ decays are the second largest source of τ leptons.

$$N_{\rm sig(B)} = \mathcal{L}\sigma(\rm pp \to B) \ \mathcal{B}(B \to \tau + ...) \ \mathcal{B}(\tau \to 3\mu) \ \mathcal{A}_{3\mu(B)} \ \epsilon_{\rm reco}^{3\mu} \ \epsilon_{\rm trig(sig)}^{2\mu}$$

 $f = \frac{\sigma(pp \to B)\mathcal{B}(B \to D_s + ...)}{\sigma(pp \to D_s)} \quad \begin{array}{l} \text{Fraction on } D_s \text{ mesons produced from B decay and promptly} \\ \text{(MC, normalization channel f=0.24)} \end{array}$

$$N_{\text{sig}(B)} = Nf \frac{\mathcal{B}(B \to \tau + ...)}{\mathcal{B}(D_{\text{s}} \to \phi\pi \to \mu\mu\pi)\mathcal{B}(B \to D_{\text{s}} + ...)} \frac{\mathcal{A}_{3\mu(B)}}{\mathcal{A}_{2\mu\pi}} \frac{\epsilon_{\text{reco}}^{3\mu}}{\epsilon_{\text{reco}}^{2\mu\pi}} \frac{\epsilon_{\text{trig},\text{sig}}^{2\mu}}{\epsilon_{\text{trig}(\mu\mu\pi)}^{2\mu}} \mathcal{B}(\tau \to 3\mu)$$

- f estimation validated in data, based on the $B \rightarrow D_s \rightarrow \Phi \pi \rightarrow \mu \mu \pi$ decay events
- Template fit method used, with the proper decay lenght distribution
- Events coming from $B \rightarrow Ds + ...$ are expected to have a longer tail wrt directly-produced D_s mesons.
 - Proper decay Lenght: <u>L</u>=L M/p
- Difference between data and MC is taken as sys. (11%)

Signal normalization – B channel

• Direct $B \rightarrow \tau + \dots$ decays are the second largest source of τ leptons.

$$N_{\rm sig(B)} = \mathcal{L}\sigma(\rm pp \to B) \ \mathcal{B}(B \to \tau + ...) \ \mathcal{B}(\tau \to 3\mu) \ \mathcal{A}_{3\mu(B)} \ \epsilon_{\rm reco}^{3\mu} \ \epsilon_{\rm trig(sig)}^{2\mu}$$

 $f = \frac{\sigma(pp \to B)\mathcal{B}(B \to D_s + ...)}{\sigma(pp \to D_s)} \frac{\text{Fraction on } D_s \text{ mesons produced from B decay and promptly}}{(MC, \text{ normalization channel } \textbf{f=0.24})}$

$$N_{\text{sig}(B)} = Nf \frac{\mathcal{B}(B \to \tau + ...)}{\mathcal{B}(D_{\text{s}} \to \phi\pi \to \mu\mu\pi)\mathcal{B}(B \to D_{\text{s}} + ...)} \frac{\mathcal{A}_{3\mu(B)}}{\mathcal{A}_{2\mu\pi}} \frac{\epsilon_{\text{reco}}^{3\mu}}{\epsilon_{\text{reco}}^{2\mu\pi}} \frac{\epsilon_{\text{trig},\text{sig}}^{2\mu}}{\epsilon_{\text{trig}(\mu\mu\pi)}^{2\mu}} \mathcal{B}(\tau \to 3\mu)$$

- f estimation validated in data, based on the $B \rightarrow D_s \rightarrow \Phi \pi \rightarrow \mu \mu \pi$ decay events
- Template fit method used, with the proper decay lenght distribution
 - Events coming from $B \rightarrow Ds + ...$ are expected to have a longer tail wrt directlyproduced D_s mesons.
 - Proper decay Lenght: <u>L</u>=L M/p
- Difference between data and MC is taken as sys. (11%)

Systematics

Signal modeling uncertainties

Source of uncertainty		Yield	Shape	-
Uncertainty on D _s normalization [10%]	5.3	10%		Stability across different data
Relative uncertainty in $\mathcal{B}(D_{s} o au u)$ [4%]	~	3%		taking periods of the ratio N(Ds $\rightarrow \Phi \pi \rightarrow \mu \mu \pi)/N(Ds \rightarrow \tau \rightarrow 3\mu)$
Relative uncertainty in $\mathcal{B}(D_s \to \phi \pi \to \mu \mu \pi)$ [8%]		8%		
Relative uncertainty in $\mathcal{B}(B o D_s +)$ [16%]	From PDG	5%		Difference from estimation in
Relative uncertainty in $\mathcal{B}(B \to \tau +)$ [11%]		3%		data an MC
Uncertainty in f (B/D ratio) [11%] \checkmark	,	3%		Measured in the 3µ mass
Uncertainty on D ⁺ as a source of τ [100%]		3%		sidebands
Uncertainty on B_s as a source of τ [100%]		4%		Estimated by changing PDE sets
Uncertainty in number of events triggered by trimuo	n trigger [8%]	2%		in signal simulated events.
Uncertainty in the ratio of acceptances $A_{sig}/A_{2\mu\pi}$ [19	%]	1%		Estimated in 1/44 - 144 avants
Muon reconstruction efficiency [1.5%]		1.5%		with Tag and Probe technique.
Charged pion reconstruction efficiency [2.3%]		2.3%		
BDT cut efficiency [5%]		5%		
Mass scale uncertainty [0.07%]		_	yes	Estimated in Ds $\rightarrow \phi \Pi \rightarrow \mu \mu \Pi$
Mass resolution uncertainty [2.5%]	\checkmark	_	yes	

Background Modeling uncertainties

- The <u>statistical</u> uncertainties on the observed number of background events in the signal region vary from <u>3 to 15%</u>, depending on the event subcategry.
- The <u>systematic</u> uncertainty is associated with the choice of the functional form →The net effect does not exceed 1% among all event subcategories.

Signal extraction

- Signal is extracted from a maximum likelihood fit to the 3µ system invariant mass, in each
 of the six event categories.
 - MC signal is parametrized with Crystal Ball functions
 - exponential plus a polynomial is used to model the background.
- Systematics uncertainties are treated as nuisance paramters in the fit.
- No signal excess is observed

Results

• No significant event excess is observed in the signal region.

• Upper limits on the branching fraction $BR(\tau \rightarrow 3\mu)$ are set using the modified frequentist CLs criterion

- Qualitative representation of the analysis power to observe a signal over background
- Obtained by combining the mass distributions in the six categories, scaled by S/(S+ B) ratios in each category
- Expected signal (S) and background (B) event rates are extracted from the 3μ-mass distribution, assuming exactly the τ lepton mass.

CL	Expected BR($ au ightarrow$ 3 μ)	Observed BR($ au ightarrow 3\mu$)
90%	9.9 × 10⁻ ⁸	8 .9 × 10⁻ ⁸
95%	1.2 × 10-7	1.1 × 10-7

Conclusions and perspectives

- Search for CLFV $\tau \rightarrow 3\mu$ decay done for the first time at CMS
- 2016 pp collisions data analyzed, \mathcal{L} = 33/fb \sqrt{s} =13 TeV
- Upper limits $Br(\tau \rightarrow 3\mu) < 8.9 \times 10^{-8}$ at 90% CL.
- Analysis in the W channel is ongoing \rightarrow Combination of the results foreseen

Thanks for your attention

D and B meson decay branching fractions

Process	Branching ratio	Reference
$D_s ightarrow au u$	$5.48\pm0.23\%$	PDG [13]
${ m B}^+ ightarrow au + u + { m D}^{0(*)}$	$2.7\pm0.3\%$	PDG [13]
Other $B^+ \rightarrow \tau + X$ decays	0.7%	pythia [5]
$\mathrm{B}^0 ightarrow au + u + \mathrm{D}^{+(*)}$	$2.7\pm0.3\%$	PDG [13]
Other $\mathrm{B}^0 o au + X$ decays	0.7%	pythia [5]
${ m B}^+ ightarrow { m D}_{ m s} + X$	$9.0\pm1.5\%$	PDG [13]
${ m B}^0 ightarrow { m D}_{ m s} + X$	$10.3\pm2.1\%$	PDG [13]
$D_s \rightarrow \phi(\mu\mu)\pi$	$1.3(\pm 0.1) imes 10^{-5}$	PDG [13]

Expected number of tau leptons

Process	Number of τ leptons (33 fb ⁻¹)
$pp \rightarrow c \ \bar{c} +$	
$D \rightarrow \tau \nu$	$4.0 imes 10^{12}$ (95% D $_{ m s}$, 5% D $^{\pm}$)
$pp \rightarrow b\overline{b} +$	
$B \rightarrow \tau \nu +$	$1.5 \times 10^{12} (44\% \text{ B}^{\pm}, 45\% \text{ B}^{0}, 11\% \text{ B}^{0}_{\text{s}}, 0\% \text{ B}^{\pm}_{\text{c}})$
$B \rightarrow D(\tau \nu) +$	$6.3 imes 10^{11}~(98\%~{ m D_s},2\%~{ m D^\pm})$

Signal and data yields

- The signal yields are shown for $B(\tau \rightarrow 3\mu) = 10-7$.
- The data yields inside parentheses are in the mass ranges of 1.78 GeV $\pm 2\sigma$, where σ is the mass resolution (12 MeV, 19 MeV, and 25 MeV for the category A, B, and C respectively).

	Signal		Data		
	sub-category 1	sub-category 2	sub-category 1	sub-category 2	
Category A	6.3	10.3	360(44)	2502(319)	
Category B	3.9	18.5	110(27)	2229(449)	
Category C	9.4	9.6	389(107)	1549(400)	

HF $\tau \rightarrow 3\mu$ Search @ HL-LHC

Table 8.3: The expected numbers of signal and background events in mass window 1.55–2.00 GeV for integrated luminosity L = 3000 fb⁻¹ (for signal, $B(\tau \rightarrow 3\mu) = 2 \times 10^{-8}$ is assumed). In absence of a signal, the projected limits on $B(\tau \rightarrow 3\mu)$ are for 90% CL, which are obtained using the standard CL_s methodology [140–142].

	Category 1	Category 2
Number of background events	$2.4 imes10^6$	$2.6 imes10^6$
Number of signal events	4580	3 6 4 0
Trimuon mass resolution	18 MeV	31 MeV
$B(\tau \rightarrow 3\mu)$ limit per event category	$4.3 imes10^{-9}$	$7.0 imes10^{-9}$
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	$3.7 \times$	10^{-9}
$B(\tau \rightarrow 3\mu)$ for 3σ -evidence	$6.7 imes10^{-9}$	
$B(\tau \rightarrow 3\mu)$ for 5 σ -observation	$1.1 imes10^{-8}$	

The CMS Forward Muon System Challenge

- The CMS Muon System performed excellently up to the end of the LHC Run2
- Nevertheless, the forward region is characterized by:
 - 1. Smaller magnetic field
 - 2. Higher neutron-induced background vs low hit multiplicity
- à trigger rate is dominated by soft muons reconstructed as high p_T muons
- à This effect will be increased in the HL-LHC scenario (200 pile-up interactions per BX)
- à Adding a new muon station in front of ME1/1 could be a powerful tool to improve the muon p_T precision

Present CMS Muon System slice, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015

A new tool in the endcap Muon system: the GE1/1 Station

- Present forward muon system challenges:
 - 1. Small magnetic field
 - 2. High neutron-induced background vs low hit multiplicity
- Key role of the first muon station with small scattering and higher magnetic field → muon p_T estimation presently relies entirely on the CSC
- à trigger rate is dominated by junk muons reconstructed as high p_T muons
- à Adding a new muon station in front of ME1/1 could be a powerful tool to improve the muon p_T precision

Large lever arm + magnetic field + good positions resolutions results in excellent discriminating power against soft muons from the bending angle

The CMS Experiment towards HL-LHC

New phase space accessible for physics:

- Higgs precision era (properties and couplings)
- Electroweak precision measurement
- New physics: high mass resonance, displaced signatures dark matter
- Key role of muon final state signatures

The price to pay:

- Particle densities $x5-10 \rightarrow Radiation damage$ x10
- 50(200) pile-up interactions per BX

Intensive program of detector upgrade with the goal to keep the same performance as in Run2