Latest results from NA62

Riccardo Lollini

Università degli Studi di Perugia

on behalf of the NA62 Collaboration

WIN 2019 - 27th International Workshop on Weak Interactions and Neutrinos - June 2019

• The NA62 experiment

• The $K \rightarrow \pi \nu \overline{\nu}$ decay

• LNV/LFV searches

This talk will not cover NA62 searches for HNL, ALPs or dark photons (see Lorenza lacobuzio's presentation)

The NA62 experiment

- Fixed target experiment, located in the North Area of the CERN SPS.
- Main goal: BR(K+→π+νν) with 10% precision.
- BR_{th} $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al., JHEP11(2015)033] BR_{exp} $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$ [E949, Phys. Rev D 79, 092004 (2009)]
- ~200 participants from ~30 insitutes: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC.

The NA62 experiment

Status and timeline:

- 2016
 - Commissioning $+ 1^{st}$ physics run.
 - First results presented in March 2018.
- 2017
 - Physics run, better collection efficiency for physics data.
 - 3×10^{12} K⁺ decays recorded (> 20x more than 2016).
- 2018
 - Physics run, better shielding of upstream background.
 - 5 x 10¹² K⁺ decays recorded (> 40x more than in 2016).
- 2019 2020: LHC Long Shutdown 2.

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: theoretical framework

- FCNC processes dominated by Z penguin and box amplitudes: s→d coupling and highest CKM suppression.
- Theoretically clean.

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM Analysis [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: theoretical framework

- Measuring both $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ and $K_{L} \rightarrow \pi^0 \nu \overline{\nu}$ can provide the CKM unitarity triangle independently from the B inputs.
- Dominant uncertainties for SM BR from CKM matrix elements.

$$BR(K^{+} \rightarrow \pi^{+} v \bar{v}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}$$

Buras et al., JHEP 1551
$$BR(K_{L} \rightarrow \pi^{0} v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

NA62 detector

- Primary beam: 400 GeV/c protons from SPS.
- Secondary beam: 75 GeV/c positively charged particles, 70% $\pi^+,$ 23% p, 6% K+.

NA62 detector

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: decay in flight technique at NA62

Main background sources

• The squared missing mass is the main variable used to kinematically separate signal from background:

 $m_{\rm miss}^2 = (P_K - P_\pi)^2$

15 GeV/c < P_{π^+} < 35 GeV/c

- Two signal region on each side of the $K \rightarrow \pi + \pi 0$ peak.
- Cut based analysis (mostly), blind analysis procedure. π ν
- Requirements:
 - O(100 ps) timing between sub-detectors
 - O(10⁴) background suppression with kinematics
 - $O(10^7)$ background muon suppression $(K^+ \rightarrow \mu^+ \nu_{\mu})$
 - $O(10^7)$ photon suppression (K+ $\rightarrow \pi^+\pi^0$)

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: signal and control regions

- Two signal regions kept blinded
- In order to evaluate the background from K decays, the tails of the distribution are extrapolated into the signal regions.
- The control regions are kept blinded too, to validate the procedure.

- Selection:
 - single track in final state
 - π^+ identification
 - photon rejection
 - 110 m $< z_{vertex} < 165$ m
 - 15 GeV/c < $p_{\pi+}$ < 35 GeV/c, in order to have at least E_{miss} = 40 GeV and have an optimal π/μ separation in the RICH.
- Performances:
 - $\epsilon(\mu^+) = 10^{-8} (64\% \pi^+ \text{ efficiency})$

$$- \epsilon(\pi^0) = 3.10^{-8}$$

$$-\sigma(m_{miss}^2) = 10^{-3} \text{ GeV}^2/c^4$$

- $\sigma_t = O(100 \text{ ps})$

K^+ →π⁺νν: Single Event Sensitivity (2016)

• N_{κ} from $K^+ \rightarrow \pi^+ \pi^0$ control trigger: $(1.21 \pm 0.02) \times 10^{11}$

 $N_{K} = \frac{N_{\pi\pi} \cdot R}{A_{\pi\pi} \cdot BR_{\pi\pi}} \qquad (\text{R: reduction factor applied to CTRL trigger})$

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ acceptance: $(4.0 \pm 0.1) \times 10^{-2}$
- Random veto efficiency: 0.76 ± 0.04
- Trigger efficiency: 0.87 ± 0.2

$$SES = \frac{1}{N_{K} \cdot \sum_{j} \left(A_{\pi\nu\nu}^{j} \cdot \epsilon_{\text{trig}}^{j} \cdot \epsilon_{\text{RV}}^{j}\right)}$$
$$N_{\pi\nu\nu}^{\text{expected}}(\text{SM}) = \frac{BR_{\pi\nu\nu}(\text{SM})}{SES}$$

Source	δ SES (10^{-10})
Random veto	± 0.17
Definition of $\pi^+\pi^0$ region	± 0.10
Simulation of π^+ interactions	± 0.09
N_{κ}	± 0.05
Trigger efficiency	± 0.04
Extra activity	± 0.02
GTK pileup simulation	± 0.02
Momentum spectrum	± 0.01
Total	±0.24

$$SES = (3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \cdot 10^{-10}$$
$$N_{\pi\nu\nu}^{\text{expected}}(\text{SM}) = 0.267 \pm 0.001_{\text{stat}} \pm 0.020_{\text{syst}} \pm 0.032_{\text{extr}}$$

Process	Expected events in R1+R2
$\mathrm{K}^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\textit{stat}}\pm0.01_{\textit{syst}}$
$\mathrm{K^+} ightarrow \pi^+ \pi^0(\gamma) \mathrm{IB}$	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$\mathrm{K}^+ ightarrow \mu^+ \nu(\gamma) IB$	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$\mathrm{K}^+ \to \pi^+ \pi^- \mathrm{e}^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$\mathrm{K^+} \to \pi^+\pi^+\pi^-$	$0.002\pm0.001_{stat}\pm0.002_{syst}$
Upstream background	$0.050^{+0.090}_{-0.030} _{stat}$

K^+ → π^+ νν: results (2016)

Signal events expected in signal region (SM) $0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{extr}$ Background events expected in signal region $0.15 {\pm} 0.09_{stat} {\pm} 0.01_{syst}$

K^+ → π^+ ν $\overline{\nu}$: results (2016)

- Upper limits on the Branching Ratio: $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 11 \cdot 10^{-10}$ @90%CL $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14 \cdot 10^{-10}$ @95%CL
- Standard Model prediction on the Branching Ratio:

$$BR(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: 2017 data sample

- Higher beam intensity
- 2016-like selection
- Performances are comparable to 2016
 - Better pile-up treatment in IRC/SAC
 - 40% better π^0 rejection (does not depend on intensity)
 - Slightly improved usage of RICH variables.
- 2 signal regions, like in 2016
- 3 control regions used to evaluate the background
- Signal and control regions kept masked, as well as the region below the K→µv used to validate the upstream background.

Single Event Sensitivity

$$N_{K} = (1.3 \pm 0.1) \cdot 10^{12}$$
 (~10 × 2016)
 $SES = (0.34 \pm 0.04) \cdot 10^{-10}$ (scales linearly with intensity)
 $N_{\pi \mu \nu}^{\text{expected}}(SM) = 2.5 \pm 0.4$

Process	Expected events in signal regions
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.35\pm0.02_{stat}\pm0.03_{syst}$
$K^+ o \mu^+ \nu(\gamma)$ IB	$0.16\pm0.01_{stat}\pm0.05_{syst}$
$K^+ \to \pi^+\pi^- e^+ \nu$	$0.22\pm0.08_{stat}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.015 \pm 0.008_{stat} \pm 0.015_{syst}$
$K^+ ightarrow \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$
$K^+ ightarrow l^+ \pi^0 u_l$	$0.012\pm0.012_{syst}$
Upstream Background	Analysis on–going

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: conclusions

- One event observed in region 2 in 2016
- This result is compatible with the Standard Model:

 $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14.10^{-10} @95\% CL$

- Published here: [Phys. Lett. B 791 (2019) 156-166]
- The analysis of 2017 data is ongoing and results are expected very soon.
 - A factor 10 with respect to 2016 is expected from statistics
 - Signal over background ratio does not degrade with intensity
 - Strong effort to improve the analysis
- Branching ratio measurement expected in the next few years.

LNV and LFV

- In the Standard Model, if neutrinos are massless, lepton flavour numbers (L_e , L_μ , L_τ) and the total lepton number (L) are conserved quantities.
- Neutrino oscillation experiments proved that individual lepton numbers are not conserved.
- Neutrino masses are non-zero and different, and the weakly interacting neutrinos are superpositions of the mass eigenstates.
- Oscillations don't necessarily imply the total lepton number violation, that is expected only if neutrinos are Majorana fermions.

LNV and LFV

- Violation of these conservation laws in models BSM via Majorana neutrinos (U).
- E.g. K+ $\rightarrow \pi$ -l+l+ (l = e, μ), with $\Delta L = 2$ and $\Delta L_e = 2$ or $\Delta L_{\mu} = 2$. [JHEP 0905 (2009) 030], [Phys.Lett. B491 (2000) 285-290]

- Previous experimental results (@90% CL):
 - $BR_{th}(K^{+} \rightarrow \pi^{-} e^{+} e^{+}) < 6.4 \cdot 10^{-10}$
 - $BR_{th}(K^+ \rightarrow \pi^- \mu^+ \mu^+) < 8.6 \cdot 10^{-11}$

BNL E865 [PRL 85 2877 (2000)] NA48/2 [Phys. Lett. B769 67 (2017)]

LNV and LFV: NA62 search

- Subset of 2017 data, corresponding to 3 months of data taking.
 - 3 times more data still to be analyzed.
- Blind analysis
- Normalization from corresponding SM channels
- Triggers: L0 (hardware) + L1 (software)
- Main background from π^+ misID and π^+ decays in flight (e.g. from $K^+ \rightarrow \pi^+ \pi^+ \pi^-$).

Trigger Name	Description	Use in LNV/LFV Searches
Di-Muon	3 tracks with 2 μ candidates (MUV3)	Collect SM $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ & LNV $K^+ \rightarrow \pi^- \mu^+ \mu^+$
Multi-Track e	3 tracks with 20 GeV energy deposit in LKr	Collect SM $K^+ \rightarrow \pi^+ e^+ e^-$ & LNV $K^+ \rightarrow \pi^- e^+ e^+$
Multi-Track	Minimum bias 3-track trigger	Control samples for background studies

LNV and LFV: NA62 search

Search for $K^+ \rightarrow \pi^- e^+ e^+$

SM: $K^+ \rightarrow \pi^+ e^+ e^-$ (m_{ee} > 140 MeV/c²)

- Bkg prediction: $N_{\rm bkg}$ = 0.16±0.03
- Observed: $n_{obs} = 0$
- $N_{K} = (2.14 \pm 0.07) \times 10^{11}$
- SES = $(0.94 \pm 0.03) \times 10^{-10}$

LNV: $K^+ \rightarrow \pi^- e^+ e^+$ (no event observed)

 $BR(K^+ \rightarrow \pi^- e^+ e^+) < 2.2 \times 10^{-10} @90\% \text{ CL}$ $PDG < 6.4 \times 10^{-10} @90\% \text{ CL}$

LNV and LFV: NA62 search

Search for $K^+ \rightarrow \pi^- \mu^+ \mu^+$

SM: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

- Bkg prediction: $N_{\rm bkg}~=~0.91\pm0.41$
- Observed: $n_{obs} = 1$
- $N_{K} = (7.94 \pm 0.23) \times 10^{11}$
- SES = $(1.28 \pm 0.03) \times 10^{-11}$

LNV: $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (1 event observed)

 $BR(K^+ \rightarrow \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11} @90\% \text{ CL}$ $PDG < 8.6 \times 10^{-11} @90\% \text{ CL}$

LNV and LFV: results

- New NA62 results with a subset of 2017 data improve world upper limits on the BR of $K^+ \rightarrow \pi^-e^+e^+$ and $K^+ \rightarrow \pi^-\mu^+\mu^+$.
- No new physics observed.
- Very low background in both searches.

Decay	BR UL @ 90% CL	PDG UL @ 90% CL
$K^+ \rightarrow \pi^- e^+ e^+$	2.2×10^{-10}	6.4×10 ⁻¹⁰ (E865)
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	4.2×10^{-11}	8.6×10 ⁻¹¹ (NA48/2)

arXiv:1905.07770

Conclusions

- The decay in flight technique to measure $BR(K+\rightarrow \pi+\nu\overline{\nu})$ works:
 - 1 event observed in 2016 data
 - BR $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14 \cdot 10^{-10}$ @95%CL
 - 2017 analysis ongoing, BR measurement expected in a few years.
- First results from LNV/LFV searches improve world upper limits on the BR of the K+ $\rightarrow \pi$ -e+e+ and K+ $\rightarrow \pi$ - μ + μ + decays (3x more data still to be analyzed).
- Running after LS2 will allow to fully exploit the possibilities of the detector with minimal upgrades.

THANK YOU!

