WIN 2019

Bari, 5 June 2019

Exploring Light sterile vs with LBL experiments

Antonio Palazzo University of Bari & INFN

Outline

Introduction

Interference effects mediated by sterile neutrinos

LBL constraints on new CP phases: present

LBL constraints on new CP phases: future

Conclusions

Introduction

It is timely to pose a new question

Capozzi, Lisi, Marrone, A.P, PPNP 102, 48 (2018)

LBL experiments start to be sensitive to the CP violating phase δ

Can sterile neutrinos generate observable CP violating effects at LBL experiments?

Question basically ignored in the past !

Most probably, the discovery of sterile vs can come only from SBL experiments

STEREO

Gariazzo et al., 1703.00860

by observing the characteristic oscillation pattern and we have already some hints...

from accelerators

(unexplained ν_{e} appearance in a ν_{μ} beam)

from reactor rates and solar calibration

(unexplained v_e disappearance)

Mention et al. arXiv:1101:2755 [hep-ex]

SAGE coll., PRC 73 (2006) 045805

...and recently also from reactor spectra

Best fit points very similar: $(\sin^2 2\theta, \Delta m^2) \simeq (0.05, 1.4 \text{eV}^2)$

Antonio Palazzo, UNIBA & INFN

However, SBL have an intrinsic limitation

At SBL atm/sol oscillations are negligible

$$\frac{L}{E} \sim \frac{m}{\text{MeV}} \qquad \qquad \Delta_{12} \simeq 0 \\ \Delta_{13} \simeq 0 \qquad \qquad \Delta_{ij} = \frac{\Delta m^2_{ij} L}{4E}$$

Impossible to observe phenomena of interference between the new frequency ($\Delta_{14} \sim 1$) and atm/sol ones

This limitation can be overcome at LBL's...

Interference effects mediated by sterile vs

N. Klop & A.P., PRD 91 073017 (2015) arXiv: 1412.7524

How to enlarge the 3-flavor scheme

At LBL the effective 2-flavor SBL description is no more valid and calculations should be done in the 3+1 (or $3+N_s$) scheme

Mixing Matrix in the 3+1 scheme $U = \tilde{R}_{34} R_{24} \tilde{R}_{14} R_{23} \tilde{R}_{13} R_{12}$ 3v

$$R_{ij} = \begin{bmatrix} c_{ij} & s_{ij} \\ -s_{ij} & c_{ij} \end{bmatrix} \qquad \tilde{R}_{ij} = \begin{bmatrix} c_{ij} & \tilde{s}_{ij} \\ -\tilde{s}_{ij}^* & c_{ij} \end{bmatrix} \qquad \begin{array}{c} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \\ \tilde{s}_{ij} = s_{ij} e^{-i\delta_{ij}} \end{array}$$

 $\begin{array}{c} 3\nu \\ 3\nu \\ 1 \text{ Dirac phase} \\ 2 \text{ Majorana phases} \end{array} \begin{array}{c} 3+1 \\ 3 \\ 3 \end{array} \left\{ \begin{array}{c} 6 \\ 3 \\ 3 \end{array} \right. 3+N \\ \begin{array}{c} 3+3N \\ 1+2N \\ 3 \end{array} \right. \right.$

In general, we have additional sources of CPV

LBL transition probability in 3-flavor

$$P^{3\nu}_{\nu_{\mu} \to \nu_{e}} = P^{\text{ATM}} + P^{\text{SOL}} + P^{\text{INT}}$$

In vacuum:

PATM leading $\rightarrow \theta_{13} > 0$

PINT subleading \rightarrow dependency on δ

P^{SOL} negligible

T2K osc. maximum E = 0.6 GeV

A new interference term in the 3+1 scheme

N. Klop & A.P., PRD (2015)

- Δ_{14} >> 1 : fast oscillations are averaged out
- But interference of $\Delta_{14}\, \&\, \Delta_{13}\, \text{survives}$ and is observable

 $P^{4\nu}_{\mu e} \simeq P^{\rm ATM} + P^{\rm INT}_{\rm I} + P^{\rm INT}_{\rm II}$

$$S_{13} \sim S_{14} \sim S_{24} \sim 0.15 \sim \varepsilon$$

 $\alpha = \delta m^2 / \Delta m^2 \sim 0.03 \sim \varepsilon^2$

$$\begin{cases} P^{\text{ATM}} \simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta & \sim \epsilon^2 \\ P_{\text{I}}^{\text{INT}} \simeq 8s_{13} s_{23} c_{23} s_{12} c_{12} (\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{13}) & \sim \epsilon^3 \\ P_{\text{II}}^{\text{INT}} \simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta + \delta_{13} - \delta_{14}) & \sim \epsilon^3 \end{cases}$$

Sensitivity to the new CP-phase δ_{14}

Amplitude of the new interference term

N. Klop & A.P., PRD (2015)

 3ν limit

Numerical examples of 4v probability

The fast oscillations get averaged out due to the finite energy resolution

Different line styles \Leftrightarrow Different values of δ_{14}

The modifications induced by δ_{14} are almost as large as those induced by the standard CP-phase δ_{13}

LBL constraints on sterile vs: present

A.P., PRD (RC) 91, 091301 (2015) arXiv:1503.03966

A.P., PLB 757, 142 (2016) arXiv:1509.03148

Capozzi, Giunti, Laveder & **A.P.**, PRD 95 (2017) arXiv:1612.07764

- The level of (dis-)agreement of LBL & Rea. depends on δ_{14}
- In this analysis θ_{14} and θ_{24} are fixed at the SBL best fit values
- These results call for a more refined analysis ...

Joint SBL and LBL constraints on $[\theta_{14}, \theta_{24}, \delta_{14}]$

- [θ_{14} , θ_{24}] determined by SBL experiments
- δ_{14} constrained by LBL experiments

Constraints on the two CP-phases

SBL + LBL

- δ_{13} is more constrained than δ_{14}

PRD (2017)

- Best fit values: $\delta_{13} \sim \delta_{14} \sim -\pi/2$
- This information cannot be extracted from SBL alone !

Impact of sterile neutrinos on θ_{23}

Indication for non-maximal θ_{23} persists in 3+1 scheme Preference for θ_{23} octant disappears in 3+1 scheme Octant fragility seems to be a general feature (see later)

Looking to the future

Agarwalla, Chatterjee, Dasgupta, **A.P.**, arXiv: 1601.05995 (JHEP 2016)

Agarwalla, Chatterjee, **A.P.**, arXiv: 1603.03759 (JHEP 2016) arXiv: 1607.01745 (PLB 2016) arXiv: 1605.04299 (PRL 2017) arXiv: 1801.04855 (JHEP 2018) arXiv: 1906.XXXX (in preparation)

CPV discovery potential

JHEP 2016

- Sensitivity to CPV induced by δ_{13} reduced in 3+1 scheme
- Potential sensitivity also to the new CP-phases $\delta_{14} e \delta_{34}$
- Clear hierarchy in the sensitivity: $\delta_{13} > \delta_{14} > \delta_{34}$ for $\theta_{14} = \theta_{24} = \theta_{34} = 9^0$

Reconstruction of the CP phases in DUNE

JHEP 2016

Reconstruction of the CP phases in T2HK

JHEP 2018

Discovery potential of mass hierarchy

JHEP 2016

Degradation of sensitivity but 4σ level preserved

Octant of θ_{23} in danger with a sterile neutrino

PRL 2017

Distinct ellipses (3v) become overlapping blobs (3+1) For unfavorable combinations of δ_{13} & δ_{14} sensitivity is lost

Conclusions

- Sterile neutrinos are sources of additional CPV
- Consequences for the LBL estimates of the standard parameters (MH, CP-phase δ , octant of θ_{23})
- Full exploration of new CP-phase (δ_{14},δ_{34}) possible only with LBL's
- LBL experiments complementary to the SBL ones

Thank you for your attention!

Back up slides

CPV and averaged oscillations

$$A_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$A_{\alpha\beta}^{\rm CP} = -16J_{\alpha\beta}^{12}\sin\Delta_{21}\sin\Delta_{13}\sin\Delta_{32}$$
if $\Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1$
osc. averaged out by finite E resol.
$$\langle \sin^2 \Delta \rangle = 1/2$$

It can be:

$$A_{\alpha\beta}^{\rm CP} \neq 0$$

if sin
$$\delta = \emptyset$$
)

The bottom line is that if one of the three v_i is ∞ far from the other two ones this does not erase CPV (relevant for the 4v case)

No anomaly in v_{μ} disappearance

SBL & MINOS (NC)

IceCube

Global SBL data fit in the 3+1 scheme

There is strong internal tension

Tension in all v_s models

arXiv:1107.1452

$$\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2 |U_{\mu4}|^2$$

Impact on the standard parameters [θ_{13}, δ_{13}]

- Allowed range for θ_{13} from LBL alone gets enlarged
- Values preferred for $\delta_{13}{\equiv}\delta$ basically unaltered
- Mismatch (in IH) of LBL and Reactors decreases in 3+1