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It is timely to pose a new question  

LBL experiments start 
to be sensitive to the  
CP violating phase δ   

Can sterile neutrinos generate observable CP 
violating effects at LBL experiments?  

Question basically ignored in the past ! 
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Capozzi, Lisi, Marrone, A.P,  
PPNP 102, 48 (2018)
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Figure 3: Global analysis of oscillation data from long-baseline accelerator, solar and Kam-
LAND, short-baseline reactor, and atmospheric neutrino experiments. Line styles and colors
are as in Fig. 1.

Adding atmospheric neutrinos: Global analysis of all oscillation data. Figure 3 is
analogous to Fig. 2, but includes atmospheric neutrino constraints as described in Section 2. With
respect to Fig. 2, the main differences concern the unknown oscillation parameters. There is a more
pronounced preference for θ23 > π/4, although both octants are allowed at < 2σ. The preference for
CP violation with sin δ < 0 is confirmed, while CP conservation is disfavored at > 1.9σ for NO and
> 3.5σ for IO. Remarkably, the sensitivity of atmospheric data to the mass ordering is also consistent
with the hints from previous data sets and leads to

χ
2
min(IO)− χ

2
min(NO) = 9.5 (all oscillation data) , (18)

corresponding to a statistically significant confidence level Nσ � 3.1. The increase from Eq. (17) to
Eq. (18) is mainly due to SK atmospheric data [80], but there is also a synergic contribution (by about
one unit of ∆χ2) from IC-DC data, that will be discussed in Sec. 4.

3.2 Summary and discussion of results

The preference for NO at the level of ∆χ2 ∼ 9 in Eq. (18) represents an interesting result of our work.
This indication emerges consistently for increasingly rich data sets, as shown by the progression in
Eqs. (16)–(18), and thus deserves attention. Taken at face value, a 3σ rejection of IO would imply that
the only relevant scenario is NO, together with its parameter ranges (see Fig. 3).

However, caution should be exercised at this stage, since the value ∆χ2 ∼ 9 derives from two main
contributions of comparable size ∆χ2 � 4–5 (corresponding to ∼ 2σ) but with rather different origin.
One contribution [Eq. (17)] comes basically from long-baseline accelerator data and their interplay
with short-baseline reactor data, where mass-ordering effects can be understood with relatively simple
arguments in terms of θ13 (see next Section). The other incremental contribution [from Eq.(17) to (18)]
comes basically from atmospheric data, where mass-ordering effects are not apparent “at a glance”,
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 STEREO

by observing the characteristic oscillation pattern 

5/6/2019 

Most probably, the discovery of  sterile νs 
can come only from SBL experiments 
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(a) (b)

Figure 5. Allowed regions in the sin2 2ϑee–∆m2
41 plane and marginal ∆χ2’s for sin2 2ϑee and

∆m2
41 obtained from: (a) the combined fit of νe and ν̄e disappearance data; (b) the combined fit

of νe and ν̄e disappearance data and the β-decay constraints of the Mainz [83] and Troitsk [84, 85]
experiments. The best-fit points corresponding to χ2

min in Table 4 are indicated by crosses.
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Figure 6. Sensitivities of future reactor (a) and source (b) experiments compared with the allowed
regions in the sin2 2ϑee–∆m2

41 plane in Fig. 5(b).
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and we have already some hints… 
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   from accelerators 

LSND
[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]
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  LSND 

(unexplained νe appearance in a νµ beam)  

MiniBooNE 
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TABLE I: The expected (unconstrained) number of events for
the 200 < EQE

ν < 1250 MeV neutrino energy range from all
of the backgrounds in the νe and ν̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
probability of 0.26%. The table shows the diagonal-element
systematic uncertainties, which become substantially reduced
in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
cluded. The antineutrino numbers are from a previous analy-
sis [3].

Process Neutrino Mode Antineutrino Mode
νµ & ν̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC π0 501.5 ± 65.4 112.3 ± 11.5
NC ∆ → Nγ 172.5 ±24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other νµ & ν̄µ 89.6 ± 22.9 22.3 ± 3.5

νe & ν̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
νe & ν̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
νe & ν̄e from K0

L Decay 54.5 ± 20.5 51.4 ± 18.0
Other νe & ν̄e 6.0 ± 3.2 6.7 ± 6.0

Unconstrained Bkgd. 1590.5 398.2
Constrained Bkgd. 1577.8± 85.2 398.7± 28.6

Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) νµ → νe 463.1 100.0

energy range for the total 12.84× 1020 POT data. Each
bin of reconstructed EQE

ν corresponds to a distribution
of “true” generated neutrino energies, which can overlap
adjacent bins. In neutrino mode, a total of 1959 data
events pass the νe CCQE event selection requirements
with 200 < EQE

ν < 1250 MeV, compared to a back-
ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5σ effect. Note that the 162.0 event excess in the
first 6.46 × 1020 POT data is approximately 1σ lower
than the average excess, while the 219.2 event excess in
the second 6.38 × 1020 POT data is approximately 1σ
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < EQE

ν < 1250 MeV en-
ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total νe plus ν̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8σ excess. The signif-
icance of the combined LSND (3.8σ) [1] and MiniBooNE
(4.8σ) excesses is 6.1σ. Fig. 2 shows the total event ex-
cesses as a function of EQE

ν in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
ν distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
ν distributions,

corresponding to the total 12.84 × 1020 POT data, for νe
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.

FIG. 2: The MiniBooNE total event excesses as a function
of EQE

ν in both neutrino mode and antineutrino mode, cor-
responding to 12.84 × 1020 POT and 11.27 × 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at ∆m2 = 0.040 eV2 and sin2 2θ = 0.894 with
a χ2/ndf = 35.2/28, corresponding to a probability of
16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.

4

FIG. 3: A comparison between the L/EQE
ν distributions for

the MiniBooNE data excesses in neutrino mode (12.84× 1020

POT) and antineutrino mode (11.27×1020 POT) to the L/E
distribution from LSND [1]. The error bars show statistical
uncertainties only. The solid curve shows the best fit to the
LSND and MiniBooNE data assuming standard two-neutrino
oscillations. The excess of MiniBooNE electron-neutrino can-
didate events is consistent with the LSND excess.

A standard two-neutrino model is assumed for the
MiniBooNE oscillation fits. Note, however, that there
are tensions with fits presented here between appearance
and disappearance experiments [10, 12], and other mod-
els [15–19] may provide better fits to the data. The os-
cillation parameters are extracted from a combined fit of
the observed EQE

ν event distributions for muon-like and
electron-like events using the full covariance matrix de-
scribed previously. The fit assumes the same oscillation
probability for both the right-sign νe and wrong-sign ν̄e,
and no significant νµ, ν̄µ, νe, or ν̄e disappearance. Using
a likelihood-ratio technique [3], the confidence level val-
ues for the fitting statistic, ∆χ2 = χ2(point)− χ2(best),
as a function of oscillation parameters, ∆m2 and sin2 2θ,
is determined from frequentist, fake data studies. With
this technique, the best neutrino oscillation fit in neu-
trino mode for 200 < EQE

ν < 1250 MeV occurs at (∆m2,
sin2 2θ) = (0.037 eV2, 0.958), as shown in Fig. 4. The
χ2/ndf is 10.0/6.6 with a probability of 15.4%. The
background-only fit has a χ2-probability of 0.02% relative
to the best oscillation fit and a χ2/ndf = 26.7/8.8 with a
probability of 0.14%. Fig. 4 shows the MiniBooNE closed
confidence level (CL) contours for νe appearance oscilla-
tions in neutrino mode in the 200 < EQE

ν < 1250 MeV
energy range.
Nuclear effects associated with neutrino interactions

on carbon can affect the reconstruction of the neutrino
energy, EQE

ν , and the determination of the neutrino os-
cillation parameters [33]. These effects were studied pre-
viously [3] and were found to not affect substantially the
oscillation fit. In addition, they do not affect the gamma
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FIG. 4: MiniBooNE allowed regions in neutrino mode (12.84×
1020 POT) for events with 200 < EQE

ν < 1250 MeV within
a two-neutrino oscillation model. The shaded areas show the
90% and 99% C.L. LSND ν̄µ → ν̄e allowed regions. The black
circle shows the MiniBooNE best fit point. Also shown are
90% C.L. limits from the KARMEN [34] and OPERA [35]
experiments.

background, which is determined from direct measure-
ments of NC π0 and dirt backgrounds.
Fig. 5 shows the MiniBooNE allowed regions in both

neutrino mode and antineutrino mode [3] for events with
200 < EQE

ν < 1250 MeV within a two-neutrino oscilla-
tion model. For this oscillation fit the entire data set
is used and includes the 12.84 × 1020 POT in neutrino
mode and the 11.27×1020 POT in antineutrino mode. As
shown in the figure, the MiniBooNE favored allowed re-
gion overlaps with the LSND allowed region. Also shown
are 90% C.L. limits from the KARMEN [34] and OPERA
[35] experiments. The best combined neutrino oscillation
fit occurs at (∆m2, sin2 2θ) = (0.041 eV2, 0.958). The
χ2/ndf for the best-fit point is 19.5/15.4 with a prob-
ability of 20.1%, and the background-only fit has a χ2-
probability of 5× 10−7 relative to the best oscillation fit
and a χ2/ndf = 49.3/17.5 with a probability of 0.007%.
Fitting both LSND and MiniBooNE data, the best fit
remains at (∆m2, sin2 2θ) = (0.041 eV2, 0.958) with a
χ2/ndf = 22.4/23.4, corresponding to a probability of
52.0%.

In summary, the MiniBooNE experiment observes a
total νe CCQE event excess in both neutrino and an-

3.8σ	


4.8σ	
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FIG. 4. Illustration of the short baseline reactor antineutrino anomaly. The experimental results are compared to the prediction
without oscillation, taking into account the new antineutrino spectra, the corrections of the neutron mean lifetime, and the
off-equilibrium effects. Published experimental errors and antineutrino spectra errors are added in quadrature. The mean
averaged ratio including possible correlations is 0.937±0.027. The red line shows a 3 active neutrino mixing solution fitting the
data, with sin2(2θ13) = 0.06. The blue line displays a solution including a new neutrino mass state, such as |∆m2

new,R| ! 1
eV2 (for illustration) and sin2(2θnew,R)=0.16.

noted anomalies affecting other short baseline electron
neutrino experiments Gallex, Sage and MiniBooNE, re-
viewed in Ref. [43]. Our goal is to quantify the compati-
bility of those anomalies.
We first reanalyzed the Gallex and Sage calibration

runs with 51Cr and 37Ar radioactive sources emitting
∼1 MeV electron neutrinos. [44], following the method-
ology developed in Ref. [43, 45]. However we decided to
include possible correlations between these four measure-
ments in this present work. Details are given in in Ap-
pendix B. This has the effect of being slightly more con-
servative, with the no-oscillation hypothesis disfavored at
97.73% C.L., instead of 98% C.L in Ref. [43]. Gallex and
Sage observed an average deficit of RG = 0.86±0.05(1σ).
Considering the hypothesis of νe disappearance caused by
short baseline oscillations we used Eq. (11), neglecting
the ∆m2

31 driven oscillations because of the very short
baselines of order 1 meter. Fitting the data leads to
|∆m2

new,G| > 0.3 eV2 (95%) and sin2(2θnew,G) ∼ 0.26.
Combining the reactor antineutrino anomaly with the
Gallium anomaly gives a good fit to the data and disfa-
vors the no-oscillation hypothesis at 99.7% C.L. Allowed
regions in the sin2(2θnew) −∆m2

new plane are displayed
in Figure 5 (left). The associated best-fit parameters are
|∆m2

new,R&G| > 0.7 eV2 (95%) and sin2(2θnew,R&G) ∼
0.16.
We then reanalyzed the MiniBooNE electron neutrino

excess assuming the very short baseline neutrino os-
cillation explanation of Ref. [43]. Details of our re-
production of the latter analysis are provided in Ap-
pendix B. The best fit values are |∆m2

new,MB| = 1.9

Experiment(s) sin2(2θnew) |∆m2
new| (eV

2) C.L. (%)
Reactors (no ILL-S,R∗) 0.02-0.23 >0.2 95.0

Gallium (G) 0.06-0.4 >0.3 97.7
MiniBooNE (M) — — 72.4

ILL-S — — 68.2
R∗ + G 0.07-0.24 >1.5 99.7
R∗ + M 0.04-0.23 >1.4 97.5

R∗ + ILL-S 0.04-0.23 >2.0 97.1
ALL 0.06-0.25 >2.0 99.93

TABLE III. Best fit parameter intervals or limits at (95%)
for (sin2(2θnew), ∆m2

new) and significance of the sterile neu-
trino oscillation hypothesis in %, for different combinations of
the reactor experiment rates only (R∗), the ILL-energy spec-
trum information (ILL-S), the Gallium experiments (G), and
MiniBooNE-ν (M) re-analysis of Ref. [43].

eV2 and sin2(2θnew,MB) ∼ 0.2, but are not significant
at 95% C.L. The no-oscillation hypothesis is only dis-
favored at the level of 72.4% C.L., less significant than
the reactor and gallium anomalies. Combining the re-
actor antineutrino anomaly with our MiniBooNE re-
analysis leads to a good fit with the sterile neutrino
hypothesis and disfavors the absence of oscillations at
97.5% C.L., dominated by the reactor experiments’ data.
Allowed regions in the sin2(2θnew) − ∆m2

new plane are
displayed in Figure 5 (right). The associated best-fit
parameters are |∆m2

new,R&MB | > 1.4 eV2 (95%) and

sin2(2θnew,R&MB) ∼ 0.1.

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]
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(unexplained νe disappearance)  
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…and recently also from reactor spectra 
NEOS arXiv:1610:05134
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NEOS
[arXiv:1610.05134]
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� Hanbit Nuclear Power Complex in
Yeong-gwang, Korea.

� Thermal power of 2.8 GW.

� Detector: a ton of Gd-loaded
liquid scintillator in a gallery
approximately 24 m from the
reactor core.

� The measured antineutrino event
rate is 1976 per day with a signal
to background ratio of about 22.

C. Giunti − SBL Neutrino Anomalies − IFIC − 7 March 2017 − 16/55

Figure 6: Distance between positron and neutron reconstructed
positions. Errors are smaller than sizes of points.

Figure 7: Time between prompt and delayed signals. Errors are
smaller than sizes of points.

systematic error studies. This is the most important back-
ground. It constitutes 2.7 % of the IBD rate at the top
detector position.

The energy spectrum of the background from fast neu-
trons produced outside the detector shielding is estimated
by a linear extrapolation from a (10—16) MeV region to
lower energies. This background calculation and subtrac-
tion is performed separately for the positron candidate
energy spectra with and without muon veto. This back-
ground constitutes ∼ 0.1% of the IBD signal in the (1—
8) MeV region.

A background from 9Li and 8He produced by cosmic
muons was estimated using the time distribution between
cosmic events with the energy deposit in the detector big-
ger than 800 MeV and the IBD candidates. No sign of the
exponential decay component with known 9Li decay time
of 257.2 ms was found. The corresponding upper limit
on this type of background is 5.4 events/day at the 90%
confidence level.

Figure 8: Positron energy distributions measured at different de-
tector positions. Statistical errors only.

The shape of the positron spectrum agrees roughly
with the MC predictions based on the ν̃e spectrum from
[14, 4]. However, a quantitative comparison requires ad-
ditional studies of calibration and systematic errors and
improvements in the MC simulation of the detector. Since
the results of the present analysis practically do not de-
pend on the ν̃e spectrum shape and normalization we post-
pone these studies till a forthcoming paper.

Figure 9 shows the ratio of positron energy spectra at
the bottom and top detector positions.
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is the prediction for 3ν case (χ2 = 35.0, 24 degrees of freedom). The
solid curve is the prediction for the best fit in the 4ν mixing scenario
(χ2 = 21.9, sin2 2θ14 = 0.05, ∆m2

14 = 1.4 eV2). The dotted curve is
the expectation for the optimum point from the RAA and GA fit [5]
(χ2 = 83, sin2 2θ14 = 0.14, ∆m2

14 = 2.3 eV2)

The exclusion area in the sterile neutrino parameter
space was calculated using the Gaussian CLs method [15]
assuming only one type of sterile neutrinos. For a grid
of points in the ∆m2

14, sin
2 2θ14 plane predictions for the
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Figure 6: Distance between positron and neutron reconstructed
positions. Errors are smaller than sizes of points.

Figure 7: Time between prompt and delayed signals. Errors are
smaller than sizes of points.

systematic error studies. This is the most important back-
ground. It constitutes 2.7 % of the IBD rate at the top
detector position.

The energy spectrum of the background from fast neu-
trons produced outside the detector shielding is estimated
by a linear extrapolation from a (10—16) MeV region to
lower energies. This background calculation and subtrac-
tion is performed separately for the positron candidate
energy spectra with and without muon veto. This back-
ground constitutes ∼ 0.1% of the IBD signal in the (1—
8) MeV region.

A background from 9Li and 8He produced by cosmic
muons was estimated using the time distribution between
cosmic events with the energy deposit in the detector big-
ger than 800 MeV and the IBD candidates. No sign of the
exponential decay component with known 9Li decay time
of 257.2 ms was found. The corresponding upper limit
on this type of background is 5.4 events/day at the 90%
confidence level.
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Figure 8: Positron energy distributions measured at different de-
tector positions. Statistical errors only.

The shape of the positron spectrum agrees roughly
with the MC predictions based on the ν̃e spectrum from
[14, 4]. However, a quantitative comparison requires ad-
ditional studies of calibration and systematic errors and
improvements in the MC simulation of the detector. Since
the results of the present analysis practically do not de-
pend on the ν̃e spectrum shape and normalization we post-
pone these studies till a forthcoming paper.

Figure 9 shows the ratio of positron energy spectra at
the bottom and top detector positions.

Figure 9: Ratio of positron energy spectra measured at the bottom
and top detector positions (statistical errors only). The dashed line
is the prediction for 3ν case (χ2 = 35.0, 24 degrees of freedom). The
solid curve is the prediction for the best fit in the 4ν mixing scenario
(χ2 = 21.9, sin2 2θ14 = 0.05, ∆m2

14 = 1.4 eV2). The dotted curve is
the expectation for the optimum point from the RAA and GA fit [5]
(χ2 = 83, sin2 2θ14 = 0.14, ∆m2

14 = 2.3 eV2)

The exclusion area in the sterile neutrino parameter
space was calculated using the Gaussian CLs method [15]
assuming only one type of sterile neutrinos. For a grid
of points in the ∆m2

14, sin
2 2θ14 plane predictions for the

5
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χ2
4ν − χ2

3ν = −13.1χ2
4ν − χ2

3ν = −6.5

Best fit points very similar: (sin2 2θ, ∆m2) � (0.05, 1.4eV2)
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At SBL atm/sol oscillations are negligible 

∆13 � 0
∆12 � 0L

E
∼ m

MeV

Impossible to observe phenomena of  interference 
between the new frequency (Δ14 ~ 1) and atm/sol ones 

However, SBL have an intrinsic limitation  

Δij =  
Δm2

ij L 

4E  
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This limitation can be overcome at LBL’s…  
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Interference effects  
mediated by sterile νs 
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Antonio Palazzo, UNIBA & INFN 



|Us4| ~ 1 

 Δmsol
 

 Δmatm
 2 

2 

3ν scheme  

3+1 scheme 

How to enlarge the 3-flavor scheme 

 Δm14   ~ 1 eV 
2      

2  
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At LBL the effective 2-flavor SBL description is no more valid 
and calculations should be done in the 3+1 (or 3+Ns) scheme      
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Mixing Matrix in the 3+1 scheme  

U = R34 R24 R14 R23 R13 R12 
∼ 

In general, we have additional sources of  CPV 

charged current part, the Lagrangian is invariant under the following global phase

transformations:

νkL → eiφkνkL, νkR → eiφkνkR (k = 1, 2, 3) (66)

�αL → eiφα�αL, �αR → eiφα�αR (α = e, µ, τ) (67)

A 3 × 3 Dirac mixing matrix therefore depends on three mixing angles and one CP-

violating phase. In the Majorana case, the mass term is not invariant under the phase

transformation in equation 66. Hence in the Majorana case, the mixing matrix depends

on two extra Majorana phases, which makes three mixing angles and three CP-violating

phases. In this case, the mixing matrix can be written as

U = UDDM
(68)

where UD
is the mixing matrix of the Dirac case and DM

is a diagonal unitary matrix

with two independent phases:

DM
= diag(eiλ1 , eiλ2 , eiλ3), λ1 = 0. (69)

The oscillation probability however is independent of the Majorana phases. The mixing

matrix elements in the Majorana case are written as

Uαk = UD
αke

iλk . (70)

The product of the mixing matrix that appears in the oscillation probability therefore

becomes

U∗
αkUβkUαjU

∗
βj = UD∗

αk e
−iλkUD

βke
iλkUD

αje
iλjUD∗

βj e
−iλj = UD∗

αk U
D
βkU

D
αjU

D∗
βj . (71)

Hence, neutrino oscillations do not depend on the Majorana phases and the Majorana

phases cannot be measured by neutrino oscillation experiments. The oscillation prob-

ability for Dirac and Majorana neutrinos is identical, so from now on we will not treat

them as different cases anymore.

The mixing matrix U can be parameterized by the multiplication of the real orthogonal

matrices Rjk
. These matrices perform a rotation of an angle θjk in the j–k plane. For

a 2× 2 matrix, they are simply given by:

Rij =

�
cij sij
−sij cij

�
, R̃ij =

�
cij s̃ij
−s̃∗ij cij

�
(72)

sij = sin θij s̃ij = sije
−iδij

cij = cos θij

For mixing matrices with higher dimensions, the matrices Rjk
can be constructed from:
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∼ ∼ {

3ν	


3 mixing angles  
1 Dirac phase  
2 Majorana phases  

3+3N   
1+2N  
2+N   

3+N   3ν	
{	
 {6   
3  
3   

3+1   {
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PATM leading à θ13 > 0 

LBL transition probability in 3-flavor  

5.3 νµ → νe appearance in T2K, the three-neutrino case in

vacuum

In this section, the transition probability for νµ → νe is derived in the LBL approxi-
mation. In this approximation, we use that |∆m

2
31| � |∆m

2
21| and that |Ue3| is small.

In the calculation, the following definitions are used:

∆ =
∆m

2
31L

4E
, α =

∆m
2
21

∆m
2
31

. (146)

From current three-flavour global fits we know that α ∼ 0.03. For normal hierarchy

∆m
2
32 = ∆m

2
31 −∆m

2
21. (147)

Taking into account that in the T2K setup ∆ is O(1), we can use the approximate
relation

sin∆α � ∆α. (148)

The following goniometric identities are used:

sin(a− b) = sin a cos b− cos a sin b (149a)

cos(a+ b) = cos a cos b− sin a sin b (149b)

cos 2a = 1− 2 sin2
a (149c)

sin 2a = 2 sin a cos a. (149d)

We assume that |α| and s13 have similar magnitude � as described in [66]. Using
the elements from the 3 × 3 mixing matrix of equation 76 and the expression for
the probability of equation 61, we calculate the approximate transition probability to
second order in �. Therefore, only terms proportional to {s13,α,α2

,αs13, s
2
13} remain.

We calculate the probability in multiple steps using

P
LBL

νµ→νe
=− 4�[U∗

µ3Ue3Uµ1U
∗
e1] sin

2

�
∆m

2
31L

4E

�

+ 2�[U∗
µ3Ue3Uµ1U

∗
e1] sin

�
∆m

2
31L

2E

�
(150a)

− 4�[U∗
µ2Ue2Uµ1U

∗
e1] sin

2

�
∆m

2
21L

4E

�

+ 2�[U∗
µ2Ue2Uµ1U

∗
e1] sin

�
∆m

2
21L

2E

�
(150b)

− 4�[U∗
µ3Ue3Uµ2U

∗
e2] sin

2

�
∆m

2
32L

4E

�

+ 2�[U∗
µ3Ue3Uµ2U

∗
e2] sin

�
∆m

2
32L

2E

�
. (150c)

51

where the plus sign is for neutrinos and the minus sign for antineutrinos. From equation
158 it can be seen that CP-violation can only take place when all three mixing angles
are different from zero. The third term in the probability has a different sign for
neutrinos and antineutrinos. Therefore, oscillations occur differently for neutrinos and
antineutrinos, violating CP. By comparing the results of the appearance channel with
both neutrinos and antineutrinos, it should be possible to observe CP violation, which
would be the first observation of CP-violation in the lepton sector ever.

When we change from normal hierarchy to inverted hierarchy, ∆m
2
31 changes sign,

with the following effects:

∆m
2
31 → −∆m

2
31

∆ → −∆

α → −α (159)

α∆ → α∆ (unchanged).

The neutrino probability in vacuum for LBL experiments can be written as the sum
of three distinct components: the atmospheric term, the solar term and the term that
comes from the interference between the two:

P
3ν
νµ→νe

= P
ATM + P

SOL + P
INT

, (160)

where

P
ATM = 4s223s

2
13 sin

2 ∆

P
SOL = 4c212c

2
23s

2
12(α∆)2 (161)

P
INT = 8s23s13c12c23s12(α∆) sin∆ cos(∆+ δCP ).

These components are plotted in figure 14 as a function of sin 2θ13, where the other
parameters are fixed at the best fit values from table 2 and the neutrino energy is fixed
at Eν = 0.6 GeV. The interference term P

INT is taken at his maximal value by fixing
δCP such that cos(∆+ δCP ) = 1.
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In vacuum: 

Δ ∼ π/2 	


α ∼ 0.03 	


PSOL negligible 

PINT subleading à dependency on δ	


sin 2θ13 

Pµe 

ATM 
INT 
SOL 

  best θ13 
 estimate 

T2K osc. maximum E = 0.6 GeV 
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- Δ14 >> 1 : fast oscillations are averaged out    

- But interference of  Δ14 & Δ13 survives and is observable    

s13 ~ s14 ~ s24 ~ 0.15 ~ ε    

  

P 4ν
µe � PATM + P INT

I + P INT
II

P INT
I � 8s13s23c23s12c12(α∆) sin∆ cos(∆+ δ13)

P INT
II � 4s14s24s13s23 sin∆ sin(∆+ δ13 − δ14)

∼ ε2	


∼ ε3	


∼ ε3	

{

α = δm2/Δm2  ~ 0.03 ~ ε2    

  Sensitivity to the new CP-phase δ14   

PATM � 4s223s
2
13 sin

2 ∆

_ 

_ _ _ 

_ 
_ 
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A new interference term in the 3+1 scheme 
N. Klop & A.P., PRD (2015)
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sin2 2θµe = 4|Ue4|2|Uµ4|2

|P  |INT 

PSTR 

I 

II  

|P   |INT 

Psol 
III 

sin 2θµe 

PATM 

|P |INT 

SBL T2K 
θ13 = 9o   
E = 0.6 GeV 

3ν limit 

  

Amplitude of  the new interference term 

Pµe 
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Numerical examples of  4ν probability 

Different line styles 
⇔  

  Different values of  δ14 

The fast oscillations get 
averaged out due to the 
finite energy resolution  

10

FIG. 7: Probability of νµ → νe transition in the 3+1 scheme.
The thin blue line represents the numerical result, while the
red line represents the averaged probability obtained using
Eq. (37). In both cases the hierarchy is normal and the mixing
angles are fixed at the values s214 = s224 = 0.025.

(solid), δ14 = π (long-dashed), δ14 = π/2 (short-dashed),
and δ14 = −π/2 (dotted).
While the 3-flavor elements S̄ee and S̄eµ can be evalu-

ated numerically (as we have done) approximate expres-
sions already existing in the literature in various limits

FIG. 8: Probability of νµ → νe transition in the 3+1 scheme
for normal hierarchy. The four panels correspond to four dif-
ferent values of the standard CP-phase δ13. In each panel, the
black thick solid line represents the 3-flavor case (θ14 = θ24 =
0), while the colored lines represent the 4-flavor case (with
s214 = s224 = 0.025) for the following four different values of
the nonstandard CP-phase: δ14 = 0 (solid), δ14 = π (long-
dashed), δ14 = π/2 (short-dashed), and δ14 = −π/2 (dotted).

may help to further simplify the expression of the tran-
sition probability in Eq. (37), which, for small values of
the two mixing angles θ14 and θ24, takes the form

P 4ν
µe " (1 − s214 − s224)P̄

3ν
µe (38)

− 2s14s24Re(e
−iδ14 S̄eeS̄

∗
eµ)

+ s214s
2
24(1 + P̄ 3ν

ee ) .

First, it can be noted that for small values of s13 ∼ ε and
α∆ ∼ ε2 one has [37]

S̄ee " 1−O(ε2) . (39)

Since we are interested to terms up to O(ε4), we can
assume S̄ee = 1. Moreover, as discussed above, the
nonstandard matter effects are completely negligible and
only the small standard matter effects are relevant. In
this approximation, the 3-flavor amplitude S̄eµ has the
well-known (see, for example, [37]) form

S̄eµ " Asm13 sin∆
m +B(α∆) , (40)

where A and B are two complex coefficients with O(1)
modulus, given by

A = −2 i s23e
−i(∆+δ13) , (41)

B = −2 i c23s12c12 , (42)

and (sm13,∆
m) are the approximated expressions of

(s13,∆) in matter

sm13 " (1 + v)s13 , (43)

∆m " (1− v)∆ , (44)

with v = VCC/|k13| " 0.05. Making use of Eqs. (39)-
(44) in the expression of the transition probability in
Eq. (38), in the limit case v = 0 we recover, in an al-
ternative way, the fourth-order expansion of the vacuum
formula in Eq. (13) presented in Sec. II. For v $= 0, one
sees that the structure of the transition probability re-
mains the same as in vacuum, containing six terms of
which three are of the interference type. The only im-
pact of matter effects (at least for the T2K setup) is to
break the degeneracy between NH and IH, exactly as it
occurs in the 3-flavor case, because of the shifts s13 → sm13
and ∆ → ∆m in Eqs. (43),(44).
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LBL constraints change in the 3+1 scheme 

- The level of  (dis-)agreement of  LBL & Rea. depends on δ14  

- In this analysis θ14 and θ24 are fixed at the SBL best fit values   

- These results call for a more refined analysis … 

3ν: T2K + NOνA (IH) 

4ν	
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Joint SBL and LBL constraints on  [θ14,θ24,δ14] 

   

- [θ14, θ24] determined by SBL experiments   

- δ14 constrained by LBL experiments	

    

5/6/2019 

SBL + LBL 
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FIG. 1: Regions allowed by the combination of the SBL and
LBL data (T2K and NOνA) together with the θ13-sensitive
reactor results for the NH case. The left-bottom panel re-
ports the projection on the plane of the two mixing angles
(θ14, θ24). The other two panels display the constraints in
the plane formed by each one of these two mixing angles and
the new CP-phase δ14. The confidence levels correspond to
68%, 90% and 95% for 2 d.o.f (∆χ2 = 2.3, 4.6, 6.0), and the
best-fit points are marked with a red point.

VI. NUMERICAL RESULTS

A. Constraints on the new mixing angles (θ14, θ24)
and the new CP-phase δ14

Figure 1 and 2 represent the bidimensional projections
of the ∆χ2 for normal hierarchy (NH) and inverted hier-
archy (IH) in the planes [sin2 θ14, δ14], [sin

2
θ14, sin

2
θ24]

and [δ14, sin
2
θ24] for the top left, bottom left and bot-

tom right panels respectively. The three contours are
drawn for ∆χ2 = 2.3, 4.6, 6.0, corresponding to 68%,
90% and 95% for 2 d.o.f. The allowed regions in the
[sin2 θ14, sin

2
θ24] plane are almost the same of those (not

shown) that we obtain from the fit of the SBL data taken
alone. This finding can be understood by observing that
the SBL experiments currently dominate over the LBL
ones in the determination of the two new mixing an-
gles. We find that the overall goodness of fit is satis-
factory (GoF = 24%), while the parameter goodness of
fit (see [76] for its definition), which measures the statis-
tical compatibility between the (discordant) appearance
and disappearance data sets, is lower (GoF = 7%). This
implies that even if the closed contours presented for the
two new mixing angles θ14 and θ24 exclude zero with high
significance (more than six standard deviations), one can-
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FIG. 2: Regions allowed by the combination of the SBL and
LBL data (T2K and NOνA) together with the θ13-sensitive
reactor results for the IH case. The left-bottom panel re-
ports the projection on the plane of the two mixing angles
(θ14, θ24). The other two panels display the constraints in
the plane formed by each one of these two mixing angles and
the new CP-phase δ14. The confidence levels correspond to
68%, 90% and 95% for 2 d.o.f (∆χ2 = 2.3, 4.6, 6.0), and the
best-fit points are marked with a red point.

not naively interpret this circumstance as an evidence
for sterile neutrinos. In addition, we mention that light
sterile neutrinos, unless dressed with new properties, are
in strong tension with cosmological data (see for exam-
ple [77–81]).

The preferred values of sin2 θ14 and sin2 θ24 lie in
the range [0.01-0.03], which means that the new mix-
ing angles θ14 and θ24 are of the same order of magni-
tude of the standard mixing angle θ13 (we recall that
sin2 θ13 � 0.025). A quick estimate of the amplitude of
the new interference term in Eq. (9) reveals that its size
is similar to that of the standard interference term in
Eq. (8). Therefore, it is quite natural to expect that the
LBL data will posses some sensitivity to the new CP-
phase δ14. This qualitative conclusion is validated by
our numerical results displayed in the top left and bot-
tom right panels of Figs. 1 and 2. It is important to
observe that the input from the SBL experiments is es-
sential for the extraction of the information on δ14 from
the LBL setups, since these last ones have a very scarce
sensitivity to θ14 and θ24, and therefore are unable to
constrain the amplitude of the new interference term in
Eq. (9). In addition, we underline that also the precise
determination of θ13 attained independently by the reac-
tor experiments Daya Bay and RENO, plays a relevant

90, 95, 99% C.L. 2 dof  

PRD (2017) 

Antonio Palazzo, UNIBA & INFN 



Constraints on the two CP-phases 

   

- δ13 is more constrained than δ14   

- Best fit values: δ13     δ14     -π/2  ~ 
- This information cannot be extracted from SBL alone !    

5/6/2019 

~ 

SBL + LBL 

20 

6

1.0− 0.5− 0.0 0.5 1.0
1.0−

0.5−

0.0

0.5

1.0

1.0− 0.5− 0.0 0.5 1.0
1.0−

0.5−

0.0

0.5

1.0

1.0− 0.5− 0.0 0.5 1.0 1.0− 0.5− 0.0 0.5 1.01.0−

0.5−

0.0

0.5

1.0

π
14δ

π
14δ

π
13δ

Normal hierarchy Inverted hierarchy

FIG. 3: Regions allowed by the combination of the SBL and
LBL data (T2K and NOνA) together with the θ13-sensitive
reactor results for NH (left panel) and IH (right panel) in
the plane spanned by the two CP phases δ13 and δ14. The
confidence levels are the same ones used in Fig. 1.

role in constraining the new CP-phase δ14, because it
helps to constrain the magnitude of the leading term in
Eq. (7) (proportional to s213) and the amplitude of the
two standard interference terms (which are both propor-
tional to s13). A comparison of our results with those
presented in [1, 2] shows that the 68% and 90% bounds
on δ14 are slightly weaker, despite the improved statis-
tics accumulated in the LBL data. This is due to having
taken into account the uncertainty on θ14 and θ24, which
in [1, 2] were both fixed to sin2 θ14 = sin2 θ24 = 0.025.

B. Correlation between the two CP-phases
δ13 and δ14

Figure 3 shows the constraints in the plane of the two
CP-phases [δ14, δ13] for NH (IH) left panel (right panel).
Also in this figure, the regions are obtained combining
the SBL data, the LBL results from NOνA and T2K,
and the data from Daya-Bay and RENO. In both mass
hierarchies the CP-conserving cases δ13 = 0,π are disfa-
vored at ∆χ2 � 2.7. The best fit value δ13 � −π/2, is
basically the same obtained in the 3-flavor case (see the
analyses [3–6]). This preference comes from the observa-
tion of an excess (deficit) of νe (ν̄e) events with respect
to the expectations for the appearance channel νµ → νe

(ν̄µ → ν̄e), when assuming a value of θ13 equal to the best
fit point of reactor experiments. In fact, Eq. (8) shows
that, around the first oscillation maximum (∆ = π/2),
the standard interference term is proportional to sin δ13.2

This implies that this term is maximized (minimized) for
neutrinos (antineutrinos) for δ13 = −π/2 in agreement
with the observed pattern. Our numerical analysis in the
3+1 scheme reveals that the presence of the new inter-

2
We recall that the when passing from neutrino to antineutrino

probability one has to invert the sign of all the CP-phases.

ference terms does not spoil this picture. This behavior
can be explained by observing that at the first oscillation
maximum (∆ = π/2) the new interference term is pro-
portional to cos(δ13 − δ14), and therefore (in contrast to
the standard term) its sign is the same for neutrinos and
antineutrinos. We observe that for δ13 � δ14 � −π/2,
the new interference term assumes its maximal positive
value (for both neutrinos and antineutrinos). In the fit
the neutrino dataset dominates over the (lower statistics)
antineutrino data set and, as a consequence, the excess
of νe’s wins over the deficit of ν̄e’s, driving the new CP-
phase to a best fit value close to δ14 � −π/2. Finally,
we note that the constraints on the new CP-phase δ14

are very weak. This is imputable to the smaller ampli-
tude of the new interference term when compared to the
standard interference term.

C. Impact of sterile neutrinos on the standard
neutrino properties

In the previous subsections we have focused our dis-
cussion on the new parameters of the 3+1 scheme and
to the correlation among the two CP-phases. However,
it is of interest to see what happens to the estimates of
the standard parameters, which were marginalized in the
figures shown until now. In particular, it seems of par-
ticular interest to assess the robustness/fragility of the
estimate of the CP-phase δ ≡ δ13, the mass hierarchy
and the mixing angle θ23, which all are at the center of
current investigations.
Figure 4 displays the regions allowed in the plane

[sin2 2θ13, δ13] by the joint analysis of all the SBL exper-
iments and the two LBL experiments T2K and NOνA.
The two upper panels correspond to the 3-flavor frame-
work,3 while the two lower ones are obtained in the 4-
flavor scheme. The two left (right) panels refer to NH
(IH). The interval of θ13 identified by the reactor ex-
periments at 68% C.L. (represented by the green vertical
band) is displayed for the sake of comparison. In all cases
∆m2

32 and the mixing angle θ23 are marginalized away.
In addition, in the 4-flavor case, we marginalize over the
two mixing angles (θ14, θ24) and the CP-phase δ14. The
contours represented in the plots correspond to the same

3
It should be noted that at the SBL experiments the 3-flavor

effects are completely negligible. Consequently, one can adopt

two different approaches when considering the 3-flavor scheme:

i) include the SBL data in the fit, ii) exclude them from the fit.

What changes between the two approaches is only the value of

the absolute minimum of the χ2
. Following the first option, one

obtains a much higher value than following the second one. This

just corresponds to the fact that in the 3+1 scheme the goodness

of fit increases, because the sterile oscillations are able to fit

the SBL data. However, when one is interested in parameter

estimation, only the expansion of the χ2
around its absolute

minimum matters and the choice of including or not including

the SBL data in the fit is irrelevant.
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FIG. 5: Regions allowed in the plane [sin2 θ23, ∆m2
32] by the

joint analysis of all the SBL, the LBL data (T2K and NOνA),
together with the θ13-sensitive reactor results. The left (right)
panels represent the NH (IH) case. The upper (lower) panels
refer to the 3-flavor (4-flavor) scheme. The confidence levels
are the same reported in Fig. 1.

shown in [82], leads to a loss of sensitivity to the octant
of θ23.

Figure 5 reports the allowed regions in the plane
[sin2 θ23,∆m2

32], all the other parameters having being
marginalized away. The left (right) panels refer to nor-
mal (inverted) hierarchy, while the upper (lower) panels
refer to the 3-flavor (4-flavor) case. In both schemes we
have included in the analysis all the SBL data, the LBL
results from T2K and NOνA (both appearance and dis-
appearance channels) and the θ13-sensitive reactor exper-
iments. The results reported in the upper panels show a
weak preference for non-maximal mixing in the 3-flavor
scenario. We note that there is a change in the preferred
octant when switching from normal to inverted hierar-
chy. This is a consequence of the anticorrelation between
θ13 and θ23, introduced by the appearance data set: the
lower θ13 the higher the value of θ23. In NH we find a
negligible preference for the lower octant (θ23 < 450).
In IH the effect is more pronounced and the higher oc-
tant (θ23 > 450) is favored at a non-negligible statisti-
cal level. The two lower panels depict how the situation
changes in the 4-flavor scheme. We can observe that
the allowed regions becomes basically symmetric around
maximal mixing. As expected from the discussion above,
in the 4-flavor scheme, the sensitivity to the θ23 octant
gets lost.

In order to clarify this picture, we present in Fig. 6
the marginalized ∆χ2 as a function of sin2 θ23. The left
(right) panel corresponds to NH (IH). The black solid
line indicates the 3-flavor case, while the red dashed line
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FIG. 6: Marginalized ∆χ2 for the parameter sin2 θ23 for NH
(left panel) and IH (right panel). The black solid line indicates
the 3-flavor case, while the red dashed line refers to the 3+1
scheme.

refers to the 3+1 scheme. In both NH and IH cases, in
the 4-flavor scheme non-maximal mixing is disfavored
approximately at ∆χ2 � 2.5 (corresponding almost to
90% C.L. for 1 d.o.f.). Therefore, the weak preference
for non-maximal θ23 originating from (part of) the
disappearance channel data is a stable feature, which is
independent of the scheme adopted (3-flavor or 4-flavor).
In contrast, we see that the preference for θ23 > 450

found in IH completely disappears in the 3+1 scheme.
We finally note that this behavior is in line with the
results of the sensitivity study performed in [82], where
it has been shown that even in a future experiment
like DUNE, which will make use of a high-intensity
broad-band neutrino beam, the sensitivity to the octant
drastically decreases in the 3+1 scheme. Our analysis
performed with the real data confirms such a general
behavior, showing that the indication on the octant of
θ23 becomes a fragile feature in the 3+1 framework.

VII. CONCLUSIONS

We have shown that, within the 3+1 scheme, the com-
bination of the existing SBL data with the LBL re-
sults coming from the two currently running experiments
NOνA and T2K, enables us to simultaneously constrain
two active-sterile mixing angles θ14 and θ24 and two CP-
phases δ13 ≡ δ and δ14, although the constraints on this
last CP-phase are still weak. The two mixing angles are
basically determined by the SBL data, while the two CP-
phases are identified by the LBL experiments, once the
information coming from the SBL setups is taken into
account. We have also assessed the robustness/fragility
of the estimates of the standard 3-flavor properties in the
more general 3+1 scheme. To this regard we found that:
i) the indication of CP-violation found in the 3-flavor
analyses persists also in the 3+1 scheme, with δ13 ≡ δ

having still its best fit value around −π/2; ii) the 3-flavor
weak hint in favor of the normal hierarchy becomes even
less significant when sterile neutrinos come into play; iii)

Preference for θ23 octant disappears in 3+1 scheme  

Impact of  sterile neutrinos on θ23  

Octant fragility seems to be a general feature (see later) 
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CPV discovery potential 

- Potential sensitivity also to the new CP-phases δ14 e δ34    
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Figure 7. The bands displayed in the left, middle and right panels represent the discovery
potential of the CPV induced, respectively, by sin δ13, sin δ14 and sin δ34 in the 3+1 scheme. The
thinner (magenta) bands correspond to the case in which all the three new mixing angles have the
identical value θ14 = θ24 = θ34 = 90. The thicker (green) bands correspond to the case in which
θ14 = θ24 = 90 and θ34 = 300. In each panel the two undisplayed CP-phases are assumed to be
unknown and have been marginalized away. The left panel also reports the 3-flavor curve (black
dashed line) for the sake of comparison.

the discovery potential assumes the maximal value, it can decrease from the ∼ 5σ level

(3-flavor case) to the ∼ 4σ level (3+1 case).

In the 3+1 scheme one expects CPV to come also from the two new phases δ14 and

δ34. In the second and third panels of Figure 7 we display the discovery potential of the

CPV induced by such two phases. In the first panel, for the sake of comparison, we report

the discovery potential of the standard CP-phase δ13 so that one can have a global view

of the sensitivities. The thinner (magenta) bands correspond to the case in which all the

three new mixing angles have the identical value θ14 = θ24 = θ34 = 90. The thicker (green)

bands correspond to the case in which θ14 = θ24 = 90 and θ34 = 300. In each panel the

two undisplayed CP-phases are assumed to be unknown and have been marginalized away.

From the comparison of the three panels we can see that if the three mixing angles have

all the same value θ14 = θ24 = θ34 = 90 (see the magenta bands), there is a clear hierarchy

in the sensitivity to the three CP-phases. The standard phase δ13 comes first, δ14 comes

next, and δ34 is the last one, inducing a negligible amount of CPV. In particular, we see

that, in the less optimistic cases, corresponding to the lower border of the bands, only

the standard CP-phase δ13 can give rise to a signal stronger than 3σ for an appreciable

fraction of the true values of the phase. This fraction appreciably decreases if θ34 increases

(compare the red band in the left panel of Figure 6 with the two bands in the left panel

of Figure 7). In Table 2, for completeness, we report such a fraction for the three values

of θ34 = 00, 90 and 300 as well as for the 3-flavor case. In the same table we also report

as a benchmark the “guaranteed” discovery potential for the particular value δ13 = −900.
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Figure 8. Reconstructed regions for the two CP-phases δ13 and δ14 for the four choices of their true
values indicated in each panel. The NH is taken as the true hierarchy, while we have marginalized
over the two possible hierarchies in the test model. The contours refer to 2σ and 3σ levels. We
have fixed the values θ34 (true) = 00.

violating cases [−π/2,−π/2] and [π/2,π/2]. The two confidence levels correspond to 2σ

and 3σ (1 d.o.f.). We see that in all cases we obtain a unique reconstructed region at the 3σ

level7. The typical 1σ level uncertainty on the reconstructed CP-phases is approximately

200 (300) for δ13 (δ14). The regions in Fig. 8 should be compared with the analogous ones

7Note that this is true also in the second panel, because the four corners of the square form a connected

region due to the cyclic nature of the two CP-phases.
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3σ levels.

fourth panel around (δ13, δ14) = (1500, 1500). This misreconstruction is imputable to the

well known degeneracy between δ13 and sgn(∆m2
31). The combination of phases chosen for

the third panel seems to be the most favorable one (no misreconstructed islands). This

happens because in such a case the difference in the number of events for NH and IH is more

pronounced and therefore there is a better discrimination of the MH (see the discussion

in [41]). We have explicitly checked that if the MH is supposed to be known a priori (i.e.

it is fixed and not marginalized in the fit), the spurious islands disappears in all cases.

Therefore, our results show that in T2HK in order to have good reconstruction capabilities

of the two CP phases, one needs the prior knowledge of the mass hierarchy.

We close this section by performing a comparison of the CP-phase reconstruction

potential of three different experimental setups8 : T2K+NOνA, DUNE and T2HK. In Fig. 8

8For a detailed discussion of the CP-phases reconstruction potential of T2K+NOνA and DUNE, see
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Degradation of  sensitivity but  4σ level preserved 
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Figure 5. Discovery potential for excluding the wrong hierarchy (IH) as a function of true δ13. In
both panels we have fixed θ14 = θ24 = 90. The left (right) panel refers to θ34 = 0 (θ34 = 300). In
each panel, we give the results for the 3-flavor case (black line) and for the 3+1 scheme for four
different values of true δ14. In the right panel the CP-phase δ34 has been marginalized over its full
allowed range.

region of the minimum, the sensitivity never drops below the 5σ level. In the right panel

(corresponding to θ34 = 300) the situation is qualitatively similar but the deterioration

is quantitatively larger. In particular, in the range δ13 ∈ [450, 1350], the sensitivity can

drop down to the 4σ level. This range corresponds to the region of the space spanned by

the thee CP-phases, where there is a basically a complete degeneracy at the level of the

total number of events (in both neutrino and antineutrino channels) and the distinction

between NH and IH is totally entrusted to the energy spectrum. A concrete example of

this kind has been provided in the previous subsection. To this regard it is important

to underline the fundamental difference between the experiments (like DUNE) that make

use of an on-axis broad-band neutrino beam and those using an off-axis configuration

(T2K and NOνA). In this last case, there is basically no spectral information and, as a

consequence, there are regions of the parameters space where the MH discovery potential

is almost zero (see for example Fig. 14 in [18]). In a nutshell, in the off-axis configuration

one has basically only the events counting at disposal, while in the on-axis case, there is

the extra information coming from the spectral shape. Needless to say, the precondition to

take advantage of this additional information is a good understanding of all the ingredients

that enter the calculation of the event spectrum and a refined treatment of the related

systematic uncertainties.
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0

5

10

15

20

25

30

35

40

-180 -135 -90 -45 0 45 90 135

2 O
ct

an
t 

13(true)

LO-NH (true)

-180 -135 -90 -45 0 45 90 135 180

13(true)

HO-NH (true)3

14(true) = 00

14(true) = 1800

14(true) = -900

14(true) = 900

FIG. 2: Discovery potential for excluding the wrong octant as
a function of true δ13 assuming the LO-NH (left panel) and
HO-NH (right panel) as the true choice. In each panel, we
present the results for the 3-flavor case (black line) and for
the 3+1 scheme for four different values of true δ14. In the 3ν
case we have marginalized over (θ23, δ13) (test). In the 3+1
scheme, we have fixed θ14 = θ24 = 90 and θ34 = 0 and we
have marginalized over (θ23, δ13, δ14) (test). In all cases we
have marginalized over the mass hierarchy.

Now, let us come to the 3+1 scheme. In this case
the third term in Eq. (12) is active. We can notice that
this term depends on the additional CP-phase δ14 (test),
so its sign can been chosen independently of that of the
second term. This circumstance gives much more free-
dom in the 3+1 scheme and there is much more space for
degeneracy. The bi-event plot in Fig. 1 confirms such a
basic expectation. The graph now becomes a blob, which
can be seen as a convolution of an ensemble of ellipses
(see [48, 49]), and the separation between LO and HO
is lost even if one is considering both neutrino and an-
tineutrino events. To better understand this point, let fix
the LO as the true octant and a generic point of the red
LO blob which is located in the overlapping (red/green)
region. This point will correspond to sin2 θ23 = 0.42 and
two values of the true CP-phases δLO13 and δLO14 . Since
this point is in the overlapping region it is also a point of
the green HO blob. This means that for sin2 θ23 = 0.58
there exist a combination of two test CP-phases δHO

13 and
δHO
14 , which leads to the same number of neutrino and
antineutrino events.

Numerical results. In our simulations we use the
GLoBES software [58, 59]. For DUNE, we consider a
total exposure of 248 kt · MW · year, shared equally
between neutrino and antineutrino modes. For the de-
tails of the DUNE setup and of the statistical analysis
we refer the reader to our recent paper [49] and refer-
ences therein. Figure 2 displays the discovery potential
for identifying the true octant as a function of true δ13.
The left (right) panel refers to the true choice LO-NH
(HO-NH). In both panels, for the sake of comparison,
we show the results for the 3-flavor case (represented by
the black curve). Concerning the 3+1 scheme, we draw
the curves corresponding to four representative values of
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corresponds to the 3-flavor case, while the right panel repre-
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curves correspond, respectively, to the 2σ, 3σ, and 4σ confi-
dence levels.
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marginalized over (θ23, δ13) (test). In the 3+1 scheme,
we have fixed θ14 = θ24 = 90 and θ34 = 0 and we have
marginalized over (θ23, δ13, δ14) (test). In all cases we
have marginalized over the mass hierarchy. However, we
have checked that the minimum of ∆χ2 is never reached
in the wrong hierarchy. This confirms that the mass hier-
archy is not a source of degeneracy in the determination
of the octant in DUNE.

The 3-flavor curves have already been discussed in the
literature (see for example [2, 8, 42]). Nonetheless, we
deem it useful to make the following remarks: i) a good
θ23 octant sensitivity for all values of δ13 (true) can be
achieved with equal neutrino and antineutrino runs [8],
ii) the spectral information plays an important role in
distinguishing between the two octants for unfavorable
choices of true hierarchy and δ13, and iii) always the
sensitivity is higher for the LO case compared to HO
irrespective of the hierarchy choice. For the first time,
during this work, we realized that that this last issue of
asymmetric sensitivity between LO and HO is related to
a synergistic effect of the νµ → νµ and νµ → νe channels.
Basically, the νµ → νµ channel fixes the test value of θ23
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Conclusions  

• Sterile neutrinos are sources of  additional CPV   
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• Full exploration of  new CP-phase (δ14,δ34) possible 
  only with LBL’s     
• LBL experiments complementary to the SBL ones     
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• Consequences for the LBL estimates of  the  
  standard parameters (MH, CP-phase δ, octant of  θ23)      



Thank you  
for your attention! 
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ACP
αβ = −16J12

αβ sin∆21 sin∆13 sin∆32

∆ ≡ ∆13 � ∆23 � 1

ACP
αβ �= 0

CPV and averaged oscillations 

The bottom line is that if  one of  the three νi is ∞ far  
from the other two ones this does not erase CPV 

(relevant for the 4ν case)  

It can be:  (if  sin δ = 0)  / 

{

if  

osc. averaged out by finite E resol. 
→ �sin2 ∆� = 1/2

ACP
αβ ≡ P (να → νβ)− P (ν̄α → ν̄β)
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No anomaly in νµ disappearance 
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stability. The Wilks confidence intervals [64] were vali-
dated using Feldman-Cousins ensembles along the con-
tour [39] and found to be accurate frequentist confidence
intervals.

An independent search was conducted using the 59-
string IceCube data [65, 66], introduced previously, that
also finds no evidence of sterile neutrinos. The IC59
analysis, described in detail in [17], used different treat-
ments for the systematic uncertainties, for the fitting
methods and employed independent Monte Carlo sam-
ples that were compared to data using unique weighting
methods. In particular, the event selection used for this
data set had higher efficiency for low-energy neutrinos,
using a threshold at 320 GeV, extending the sensitivity
of the analysis to smaller ∆m2. However, detailed a pos-
teriori inspections revealed that a background contam-
ination from cosmic ray induced muons, on the level of
0.3% of the full sample, is largest in this region and could
lead to an artificially strong exclusion limit. Further-
more, the energy reconstruction algorithm used in both
analyses, which measures the level of bremsstrahlung and
other stochastic light emission along the muon track, is
vulnerable to subtle detector modeling issues and suf-
fers degraded energy resolution in the low-energy region
where most muons are minimum-ionizing tracks and a
large fraction either start or stop within the detector. It
was therefore decided to exclude these events to avoid bi-
asing the resulting exclusion regions. As a result of this
a posteriori change, the IC59 analysis retains a compara-
ble range of sensitivity in ∆m2 but the reach in sin2θ24 is
strongly reduced (see Fig. 4). However, we still present
this result as it independently confirms the result pre-
sented here.

DISCUSSION AND CONCLUSION

Resonant oscillations due to matter effects would pro-
duce distinctive signatures of sterile neutrinos in the large
set of high energy atmospheric neutrino data recorded by
the IceCube Neutrino Observatory. The IceCube collab-
oration has performed searches for sterile neutrinos with
∆m2 between 0.1 and 10 eV2. We have assumed a mini-
mal set of flavor mixing parameters in which only θ24 is
non-zero.

A nonzero value for θ34 would change the shape of the
MSW resonance while increasing the total size of the dis-
appearance signal [25]. As discussed in [27], among the
allowed values of θ34 [8], the model with θ34=0 presented
here leads to the most conservative exclusion in θ24. The
angle θ14 is tightly constrained by electron neutrino dis-
appearance measurements [12], and nonzero values of θ14
within the allowed range do not strongly affect our result.

Figure 5 shows the current IceCube results at 90% and
99% confidence levels, with predicted sensitivities, com-
pared with 90% confidence level exclusions from previ-

FIG. 4. Results from IceCube sterile neutrino searches (re-
gions to the right of the contours are excluded). The dot-
dashed blue line shows the result of the original analysis based
on shape alone, while the solid red line shows the final result
with a normalization prior included to prevent degeneracies
between the no-steriles hypothesis and sterile neutrinos with
masses outside the range of sensitivity. The dashed black line
is the exclusion range derived from an independent analysis
of data from the 59-string IceCube configuration.

ous disappearance searches [7–10]. Our exclusion con-
tour is essentially contained within the expected +/- 95%
range around the projected sensitivity derived from sim-
ulated experiments, assuming a no-steriles hypothesis. In
any single realization of the experiment, deviations from
the mean sensitivity are expected due to statistical fluc-
tuations in the data and, to a considerably lesser ex-
tent, in the Monte Carlo data sets. Also shown is the
99% allowed region from a fit to the short baseline ap-
pearance experiments, including LSND and MiniBooNE,
from [12, 13, 25], projected with |Ue4|2 fixed to its world
best fit value according to global fit analyses [12, 13, 67].
This region is excluded at approximately the 99% con-
fidence level, further increasing tension with the short
baseline anomalies, and removing much of the remaining
parameter space of the 3+1 model. We note that the
methods developed for the IC59 and IC86 analyses are
being applied to additional data sets, including several
years of data already recorded by IceCube, from which
we anticipate improvements in IceCubes sterile neutrino
sensitivity.

We acknowledge the support from the following
agencies: U.S. National Science Foundation-Office of
Polar Programs, U.S. National Science Foundation-
Physics Division, University of Wisconsin Alumni Re-

sin22θµµ	


SBL & MINOS (NC) IceCube 

32 

3+1 best fit 

6

)24θ(2sin
-310 -210 -110 1

)2
 (e

V
412 mΔ

-410

-310

-210

-110

1

10

210

 POT2010.56x10
 modeµν

Excluded region

MINOS data 90% C.L.
MINOS data 95% C.L.
Super-K 90% C.L.
CDHS 90% C.L.
CCFR 90% C.L.
SciBooNE + MiniBooNE 90% C.L.

FIG. 4. The MINOS 90% and 95% confidence limits in the
(sin2 θ24,∆m2

41) plane compared with results from previous
experiments [36–39]. The areas to the right of the MINOS
lines are excluded at their respective confidence levels.

Letter [40], we present a combination of this constraint
with those on θ14 from the Daya Bay [16] and Bugey [17]
reactor experiments to set a limit that is directly compa-
rable with the possible hints of sterile neutrinos seen by
the LSND and MiniBooNE experiments.
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Note Added.—A paper by the IceCube Collabora-
tion that sets limits using sterile-driven disappearance
of muon neutrinos has recently appeared [41]. The re-
sults place strong constraints on sin2 2θ24 for ∆m2

41 ∈
(0.1, 10) eV2. Furthermore, a paper that reanalyses the
same IceCube data in a model including nonstandard
neutrino interactions has also recently appeared [42].
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Figure 12. Allowed regions in the sin2 2ϑeµ–∆m2
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41 (b), and sin2 2ϑµµ–∆m2
41

(c), planes obtained in the 3+1 global fit “Glo17” of all SBL data. There is a comparison with
the 3σ allowed regions obtained from

(−)

νµ →(−)

νe SBL appearance data (App) and the 3σ constraints
obtained from

(−)

νe SBL disappearance data (νe Dis),
(−)
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combined
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νe and
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νµ SBL disappearance data (Dis). The best-fit points of the Glo17 and App fits
are indicated by crosses.
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Figure 13. Allowed regions in the sin2 2ϑeµ–∆m2
41 (a), sin2 2ϑee–∆m2

41 (b), and sin2 2ϑµµ–
∆m2

41 (c), planes obtained in the pragmatic 3+1 global fit “PrGlo17” of SBL data. There is a
comparison with the 3σ allowed regions obtained from

(−)

νµ → (−)

νe SBL appearance data (App) and
the 3σ constraints obtained from

(−)

νe SBL disappearance data (νe Dis),
(−)

νµ SBL disappearance data
(νµ Dis) and the combined

(−)

νe and
(−)

νµ SBL disappearance data (Dis). The best-fit points of the
PrGlo17 and App fits are indicated by crosses.
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|Ue4||Uµ4| > 0  
|Ue4| > 0 
|Uµ4| ~ 0 
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Impact on the standard parameters [θ13,δ13] 

   

- Allowed range for θ13 from LBL alone gets enlarged   

- Values preferred for δ13≡δ basically unaltered	


- Mismatch (in IH) of  LBL and Reactors decreases in 3+1    
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FIG. 4: Regions allowed in the plane [sin2 2θ13, δ13] by the
joint analysis of all the SBL experiments and the LBL experi-
ments (T2K and NOνA). The interval of θ13 identified by the
reactor experiments (green vertical band) is displayed for the
sake of comparison. The left (right) panels represent the NH
(IH) case. The upper (lower) panels refer to the 3-flavor (4-
flavor) scheme. The confidence levels are the same reported
in Fig. 1.

confidence levels reported in the previous plots. The com-
parison of the 3-flavor and 4-flavor allowed regions shows
the following features: i) the range allowed by LBL alone
for θ13 is appreciably larger in the 4-flavor case. This is a
consequence of the presence of the new interference term,
which allows larger excursions of the transition probabil-
ity from its average value. However, one can understand
that, once the reactor data sensitive to θ13 (Daya Bay
and RENO) are included in the fit, θ13 is “fixed” with
high precision in both 3-flavor and 4-flavor schemes; ii)
the constraints on the CP-phase δ13 are basically identi-
cal in the two schemes. In both cases there is a preference
(rejection) of values of sin δ13 < 0 (sin δ13 > 0). We have
already discussed this point in the description of Fig. 3
concerning the correlation on the two CP-phases; iii) in
both schemes the allowed regions, at low confidence lev-
els, present two lobes, which are more pronounced in the
3-flavor case. This feature is imputable to the swap of
the best fit value of θ23 among the two quasi-degenerate
non-maximal solutions, one in the lower octant (LO) and
the other one in the higher octant (HO). We will discuss
further this point when commenting Fig. 5.

Figure 4 also evidences appreciable differences between
the two cases of NH and IH, which can be traced to the
presence of the matter effects. As discussed in Sec. IV,
the matter potential tends to increase (decrease) the the-
oretically expected νe rate in the case of NH (IH). The
opposite is true for ν̄e’s but their weight in the analysis

is lower, so the neutrino data sets dominate. In addition,
as discussed in Sec. IV, the NOνA νe data are more sen-
sitive than the T2K νe data to the matter effects. More
specifically, the following differences among the two hier-
archies emerge, which are present both in the 3-flavor and
4-flavor schemes. The regions obtained for the case of IH
are shifted towards larger values of θ13 and are slightly
wider in the variable θ13 with respect to those obtained
in the NH case. In addition, in the IH case, the fit tends
to prefer (reject) values of sin δ13 < 0 (sin δ13 > 0) in a
more pronounced way.
After marginalizing over all parameters we can calcu-

late the ∆χ2(IH-NH) difference between normal and in-
verted hierarchy

∆χ
2(IH-NH) = χ

2

min(IH)− χ
2

min(NH) . (13)

For the 3-flavors (4-flavors) analysis of the LBL data
alone we obtain ∆χ2(IH-NH) � 1.0 (0.8). Therefore
this data are (still) not sensitive to the mass hierarchy.
The situation sensibly changes when the reactor experi-
ments sensitive to θ13 are included in the fit. In fact, the
combination of LBL and reactor provides a slight pref-
erence for NH: ∆χ2(IH-NH) � 2.0 (1.3) in the 3-flavor
(4-flavors) case. The reduced value obtained in the 3+1
framework is due to the inevitable widening of the pa-
rameter space in the presence of an additional neutrino.
The preference for the NH case can be understood com-
paring the allowed regions from T2K and NOνA with the
constraint on sin2 2θ13 from reactor experiments (vertical
green band in Fig. 4. One notes that there is a better
agreement for NH, whereas for IH the separation between
the two best fit points is at the level of about ∼ 1σ.
Let us now come to the estimate of the standard mix-

ing angle θ23. Recently, the disappearance analysis of
the NOνA collaboration [7] has reported a preference for
non-maximal θ23 at the level of 2.5σ. The latest 3-flavor
global fits [4, 5] have shown that this feature persists at
the level of about 2σ even when other datasets are in-
cluded in the analysis. Given the important role of the
atmospheric angle θ23 in the context of model building,
it seems opportune to assess the estimate of such a pa-
rameter in the enlarged 3+1 scheme.
We recall that, in the 3-flavor framework, the disap-

pearance channel is sensitive to possible deviations from
maximal mixing but it is blind to the octant of θ23.
This occurs because the νµ → νµ disappearance prob-
ability is proportional to sin2 2θ23. Therefore, if only the
disappearance channel data are included in the analy-
sis, the allowed ranges are symmetrical with respect to
sin2 θ23 = 0.5. This symmetry is broken when one consid-
ers also the appearance channel. This happens because
the νµ → νe transition probability is octant sensitive
since its leading term depends on sin2 θ23. In the 4-flavor
scheme, the disappearance probability remains basically
unaltered, so one expects that the sensitivity to poten-
tial deviations from maximal mixing remains unaltered.
In contrast, the appearance probability is profoundly af-
fected by the new interference term, which, as recently
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