

Upgrade of T2K Near Detector ND280

Yury Kudenko

INR, Moscow

For the T2K ND280 Upgrade Working Group

WIN2019, Bari, Italy 5 June 2019

Search for CP violation

T2K ND280

Measurement of neutrino energy based on reconstructed muon momentum and angle by ND280

muons at ND280 forward direction

electrons at SuperK 4π acceptance

ND280

- Momentum threshold for protons 450 MeV/c (100 MeV kinetic energy)
- Non-CCQE interaction (2p2h, FSI) observed as CCQE
- Acceptance for tracks in forward direction, SuperK 4π acceptance
- Larger systematic uncertainties due to tracks not measured by TPCs and bad track timing

Physics motivation

Present ND280

ND280 provides mainly acceptance for tracks in forward direction, while Super-Kamiokande has 4π acceptance

Neutrino nucleus interactions are not well known \rightarrow model dependence

The near-to-far prediction in oscillation analysis relies on a cross-section model

Upgrade

- Important to measure neutrino interactions in all phase space
- Precisely detect particles produced at any angle
- Reduce detection threshold, measure protons with low threshold
- \succ Measure neutrons in anti- v_{μ} interactions
- Reduce background, obtain better track identification using TOF
- Provide electron/gamma separation

FGD1

ND280 upgrade

Upgrade ND280 to reduce systematics to \leq 4% level Needed for T2K-II and Hyper-Kamiokande

New upstream tracker:

- Two Horizontal TPCs
- One 3D fine-grained scintillator target SuperFGD
- TOF system around new tracker

Horizontal TPC

SuperFGD

- Fully active detector
- 4π acceptance for charged particles
- Detection of low energy protons and pions
- Electron/gamma separation
- Flectron neutrino studies
- Detection of neutrons

T2K upgrade group ~ 90 participants from 10 countries

FGD2

TPC3

TPC2

TPC1

Horizontal TPC

5

arXiv:1901.03750

Extended Phase Space

4π acceptance for muons

Detection of protons and neutrons in the final state will allow to test nuclear effects and to avoid biases in oscillation measurements

Measurement of nucleons

SuperFGD

- Volume $\sim 200 \text{ x} 200 \text{ x} 60 \text{ cm}^3$
- ~2 x 10⁶ scintillator cubes , each 1 x 1 x 1 cm³
- Each cube has orthogonal 3 holes, diameter 1.5 mm
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2 t

Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout

JINST 13 (2018) 02006

Cubes produced by injection molding Covered by chemical reflector Tolerance (each side) about 30 microns

3 holes in each cube drilled with the tolerance of 50-70 microns

Baseline method: 1- assembly of planes and whole detector using fishing lines2 - replacement of fishing lines by WLS fibers

Method was tested with small prototypes

SFGD planes under assembly

Swiss roll made of a plane of cubes

Four panes assembled with fishing lines and stainless steel needles

Beam tests at CERN

Large prototype

T9 channel at CERN: muons, pions, protons, electrons 0.5 – 5.0 GeV

2017-2018

Small prototype 125 cubes 75 readout channels WLS fibers + MPPC's

Large prototype Length 48 cm Width 24 cm Height 8 cm 9216 cubes Readout: 1728 Y11 WLS fibers and MPPC's

Beam events

500 ⊆

400

200

100

Fiber length = 1.3 m

NIM A923 (2019) 134

Time resolution of a MIP: 1 cube/1 fiber

Light yield of 1 cube/1	fiber	~ 40 p.e./MIP
Light yield of 1 cube/2	fibers	~ 80 p.e./MIP
Time resolution	(σ)	
1 fiber:	0.92 ns	
1 cube/2 fibers:	0.68 ns	
2 cubes/4 fibers:	0.48 ns	
3 cubes/6 fibers:	0.39 ns	

Light yield of a MIP: 1 cube/1 WLS fiber

Detection of neutrons

High Angle TPC

	Parameter	Value
	Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$
Drift volume	Drift distance (cm)	90
	Magnetic Field (T)	0.2
	Electric field (V/cm)	275
MicroMegas	Gas Ar-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2
	Drift Velocity $cm/\mu s$	7.8
Module Frame	Transverse diffusion ($\mu m / \sqrt{cm}$)	265
	Micromegas gain	1000
	Micromegas dim. z×y (mm)	340×410
	Pad $z \times y$ (mm)	10×11
	N pads	36864
	el. noise (ENC)	800
	S/N	100
	Sampling frequency (MHz)	25
	N time samples	511

Micromegas detector: new "resistive bulk" technique
→ charge sharing: same spatial resolution with lower pad density
→ no sparks: no need of protecting diodes at FE input
Field Cage: thin, light-weight and low Z walls
→ thin walls made of solid insulator walls (composite material)
→ minimize dead space + maximize tracking volume

Resistive Micromegas

New Micromegas configuration:

Encapsulated resistive anode with grounded mesh

Test of HATPC

Micromegas RMM0 (DLC-bulk MM) mounted on ex-HARP field cage at T9 beam line at CERN

Gas volume HARP TPC

Drift distance 1.5 m/25 kV 25 l/h Ar(95%)/CF4(3%)/isobutane(2%)

Detector MM0 module

MM with resistive foil Horizontal x Vertical = 36 x 48 pads 1728 pads in total Each pad 0.98 x 0.7 cm2 Nominal MM voltage 340 V Sampling time 80 ns Nominal peaking time 600 ns

Beam test at CERN in August-September 2018 Beam: muons, pions, electrons, protons momentum 0.5, +-0.8, 1, 2 GeV/c

TPC performance (I)

Beam events

dE/dx, 2 GeV/c muons

dE/dx, electrons

2 tracks detected

Excellent results with Resistive type bulk RMM:

- about 10% dE/dx resolution
- 300 μm spatial resolution factor 2 better wrt bulk MM
- stable working conditions no sparks

TOF system

Time-of-Flight detector surrounds the new tracker (Super FGD + High Angle TPCs) for better rejection of incoming background

TOF bar: cast scintillator EJ-200, 1.68 m x 6 cm 1 cm readout by 8 arrays of 6x6 mm² Hamamatsu MPPC's

Achieved time resolution σ ~70 ps

Conclusion

Better understanding of neutrino interactions and reduction of systematics are needed to make full use of the capabilities Of T2K and Hyper-Kamiokande to search for CP violation

Upgrade of the T2K near detector ND280 in progress

ND280 upgrade approved by CERN as the Neutrino Platform NP07 project

Beam tests at CERN \rightarrow good performance of SuperFGD, HATPC, TOF

Innovative technology works well

Production all detector components: 2019-2020

Assembly, installation and commissioning at J-PARC - 2021