

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

European European European European European

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Relic neutrinos: clustering and consequences for direct detection

Featuring "Milky Way" & friends

WIN 2019, Bari (IT), 03-08/06/2019

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

- Milky Way parameterization
- Results from the Milky Way
- 3 Beyond the Milky Way
- 4 Direct detection of relic neutrinos

5 Conclusions

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture
- 2 Neutrino clustering
 Milky Way parameterization
 Results from the Milky Way
- **3** Beyond the Milky Way
- 4 Direct detection of relic neutrinos
- 5 Conclusions

Three Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1968] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $\textit{U}_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

 $\Delta m_{ji}^2 = m_j^2 - m_i^2$, θ_{ij} mixing angles NO: Normal Ordering, $m_1 < m_2 < m_3$ IO: Inverted Ordering, $m_3 < m_1 < m_2$

Three Neutrino Oscillations

Analogous to CKM mixing for quarks:

[Pontecorvo, 1968] [Maki, Nakagawa, Sakata, 1962]

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $\textit{U}_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Current knowledge of the 3 active ν mixing: [de Salas et al. (2018)]

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe:

$$\rho_{r} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_{\gamma}$$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{\rm eff} = 3.046$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{\rm eff} = 3.045$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: $3.040 < N_{
m eff} < 3.059$ [de Salas et al., 2016]

Observations: $N_{\rm eff}\simeq 3.0\pm 0.2$ [Planck 2018] Indirect probe of cosmic neutrino background!

Cosmological neutrino mass bounds

S. Gariazzo

Cosmological neutrino mass bounds

S. Gariazzo

Cosmological neutrino mass bounds

S. Gariazzo

Relic neutrino capture

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

Remember that
$$\langle E_
u
angle \, \simeq \, {\cal O}(10^{-4})$$
 eV today

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta–decaying nuclei $u+n
ightarrow p+e^-$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma} \\ \sim \mathcal{O}(10) \text{ yr}^{-1} \\ N_T \text{ number of }^{3}\text{H nuclei in a sample of mass } M_T \quad \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 \quad n_i \text{ number density of neutrino } i \\ \text{(without clustering)}$$

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

Milky Way parameterizationResults from the Milky Way

3 Beyond the Milky Way

4 Direct detection of relic neutrinos

5 Conclusions

[JCAP 09 (2017) 034] ν clustering with N-one-body simulations Milky Way (MW) matter attracts neutrinos! clustering $\rightarrow \Gamma_{\text{CNB}} = \sum |U_{ei}|^2 f_c(m_i) [n_{i,0}(\nu_{h_R}) + n_{i,0}(\nu_{h_L})] N_T \bar{\sigma}$ $f_c(m_i) = n_i/n_{i,0}$ clustering factor \rightarrow How to compute it? Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations \rightarrow each ν evolved from initial conditions at z = 3 \rightarrow spherical symmetry, coordinates (r, θ , p_r , l) Assumptions: \rightarrow need $\rho_{\text{matter}}(z) = \rho_{\text{DM}}(z) + \rho_{\text{baryon}}(z)$ ν s are independent only gravitational interactions how many ν s is "N"? ν s do not influence matter evolution $(\rho_{\nu} \ll \rho_{\rm DM})$ \rightarrow must sample all possible r, p_r, l \rightarrow must include all possible ν s that reach the MW (fastest ones may come from given N ν : several (up to $\mathcal{O}(100)$) Mpc!) \rightarrow weigh each neutrinos \rightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994] S. Gariazzo "Relic neutrinos: clusteringand consequences for direct detection" WIN2019, 04/06/2019

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

DM: Time evolution of the profiles

[JCAP 09 (2017) 034]

profile evolution from universe expansion

$$\rho_{cr}(z) = \frac{3}{8\pi G}H^{2}(z) \qquad M_{vir} = \frac{4\pi}{3}\Delta_{vir}(z)\rho_{cr}(z)a^{3}r_{vir}^{3}(z)$$

$$F_{cr}(z) = \Omega_{m,0}(1+z)^{3} + \Omega_{\Lambda,0} \qquad (constant in time)$$

$$H^{2}(z) = H_{0}^{2}F_{cr}(z) \qquad (virial radious r_{vir})$$

$$\rho_{cr}(z) = F_{cr}(z) \times \rho_{cr}(z=0) \qquad virial radious r_{vir}, average density \Delta_{vir}(z) \times \rho_{cr}(z)$$

$$but \rho_{DM} = \rho_{DM}(r; r_{s}, \mathcal{N}, [\gamma|\alpha])$$

$$relation between r_{s} and r_{vir}? \qquad (\frac{3M_{vir}}{4\pi\rho_{cr,0}\Omega_{m,0}})^{1/3} \left(\frac{\Omega_{m}(z)}{\Delta_{vir}(z)F_{cr}(z)}\right)^{1/3}$$

$$\int_{cr} \Delta_{vir}(z) = \begin{cases} 200 & \text{for EIN}, \\ 18\pi^{2} + 82\lambda(z) - 39\lambda(z)^{2} & \text{for NFW}. \\ \lambda(z) = \Omega_{m}(z) - 1 \end{cases}$$
final expression $\Longrightarrow \left(\rho_{DM}(r, z) = N(z)\tilde{\rho}_{DM}(r, r_{s}(z))\right) \qquad \tilde{\rho}_{DM}$

$$P_{DM}(r, z) = h = 0.6727, \Omega_{m,0} = 0.3156, \Omega_{\Lambda,0} = 0.6844 [Plack Collaboration, 2015]$$

$$P_{Cariazo} \qquad \text{"Relic neutrinos: clusteringand consequences for direct detection"} \qquad W12019, 04/06/2019$$

Baryons: the complexity of a structure

Complex problem: how to model baryon content of a galaxy? models for the bulge Х e.g. [Pato et al., 2015]: 5 for the disc 70 different baryonic models Х 2 for the gas 10^{2} 10⁹ 101 [Misiriotis et al., 2006]: 108 5 independent 100 100 10 p/ (M_{sol}/kpc³) p/ (GeV/cm³) components 10 warm dust cold dust 10⁵ stars NFW best stars atomic H gas dust and gas molecular H gas 10-4 barvons 103 10 15 20 25 30 r/ kpc [Misiriotis et al., 2006], spherically symmetrized our case: 10/23 "Relic neutrinos: clusteringand consequences for direct detection" WIN2019, 04/06/2019

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019. 04/06/2019

[JCAP 09 (2017) 034]

Overdensity when $m_{\rm heaviest} \simeq 60$ meV

ordering dependence from $\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 f_i [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

Overdensity when $m_{ m u} \simeq 150$ meV

[JCAP 09 (2017) 034]

 \Longrightarrow minimal mass detectable by PTOLEMY if Δ \simeq 100–150 meV

no ordering dependence: $m_1 \simeq m_2 \simeq m_3 \implies f_1 \simeq f_2 \simeq f_3$

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture
- 2 Neutrino clustering
 Milky Way parameterization
 Results from the Milky Way

3 Beyond the Milky Way

4 Direct detection of relic neutrinos

5 Conclusions

[JCAP 09 (2017) 034]

[JCAP 09 (2017) 034]

Additional clustering due to Virgo cluster

[JCAP 09 (2017) 034]

nearest galaxy cluster:

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

S. Gariazzo

final phase space, z = 0

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution compute final position of each particle final phase space, z = 0S. Gariazzo "Relic neutrinos: clusteringand consequences for direct detection" WIN2019, 04/06/2019 16/23

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution only interested in overdensity at Earth? **★** a lot of time is wasted! smarter way: track backwards only interesting particles! final phase space, z = 0S. Gariazzo "Relic neutrinos: clusteringand consequences for direct detection" WIN2019, 04/06/2019 16/23

Advantages of tracking back

17/23

First advantage is in computational terms: much less points to compute

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

Forward-tracking

initial conditions need to sample 1D for position + 2D for momentum when using spherical symmetry

> with full grid would require 3+3 dimensions!

Impossible to relax spherical symmetry!

Back-tracking

"Initial" conditions only described by 3D in momentum

(position is fixed, apart for checks)

can do the calculation with any astrophysical setup

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

[SG+, in preparation]

In comparison with previous results:

[SG+, in preparation]

In comparison with previous results:

[SG+, in preparation]

[SG+, in preparation]

S. Gariazzo "Relic I

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture
- 2 Neutrino clustering
 - Milky Way parameterization
 Results from the Milky Way
- ³ Beyond the Milky Way
- 4 Direct detection of relic neutrinos

5 Conclusions

 β and Neutrino Capture spectra

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

 β and Neutrino Capture spectra

[PTOLEMY, arxiv:1902.05508]

$$\left(\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{[E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})]^2}{2\sigma^2}}\right)$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left| \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right] \right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), E_{end} endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

Detection of the relic neutrinos

[PTOLEMY, arxiv:1902.05508]

using the definition:

```
N_{\rm th}^{i}(\boldsymbol{\theta}) = A_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + N_{b}
```

if $\mathbf{A_{CNB}} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

Dirac and Majorana neutrinos

[Roulet+, JCAP 10 (2018) 049]

direct detection through $\nu_e + {}^3\mathrm{H} \longrightarrow e^- + {}^3\mathrm{He}$

only neutrinos with correct chirality can be detected!

non-relativistic Majorana case: ν and $\bar{\nu}$ cannot be distinguished!

expect more events for the Majorana than for Dirac case

PTOLEMY collaboration

See talk by M. Messina on Thursday!

S. Gariazzo

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture
- 2 Neutrino clustering
 - Milky Way parameterization
 - Results from the Milky Way
- **3** Beyond the Milky Way
- 4 Direct detection of relic neutrinos

5 Conclusions

Conclusions

2

3

4

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

possible event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

For smallest neutrino masses, enhancement from local astrophysical environment is small...

Conclusions

2

3

4

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

possible event rate enhancement due to clustering in the Milky Way: should also include nearby galaxies/clusters!

For smallest neutrino masses, enhancement from local astrophysical environment is small...

Thank you for the attention!

6 PTOLEMY

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$

with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$ $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}
ight)$$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}$$

repeat for theory spectrum, free amplitudes and endpoint position:

 $N_{\rm th}^{i}(\boldsymbol{\theta}) = \boldsymbol{A}_{\beta}N_{\beta}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + N_{b}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N_{ ext{exp}}^{i}(\hat{E}_{ ext{end}},\hat{m}_{i},\hat{U})=N_{t}^{i}\pm\sqrt{N_{t}^{i}}
ight)$$

repeat for theory spectrum, free amplitudes and endpoint position:

$$N_{ ext{th}}^{i}(m{ heta}) = m{A}_{m{eta}}N_{m{eta}}^{i}(\hat{E}_{end} + \Delta m{E}_{end}, m_{i}, U) + m{A}_{ ext{CNB}}N_{ ext{CNB}}^{i}(\hat{E}_{end} + \Delta m{E}_{end}, m_{i}, U) + N_{b}$$

fit
$$\longrightarrow \chi^2(\theta) = \sum_i \left(\frac{N_{exp}^i(\hat{E}_{end}, \hat{m}_i, \hat{U}) - N_{th}^i(\theta)}{\sqrt{N_t^i}} \right)^2$$
 or $\log \mathcal{L} = -\frac{\chi^2}{2}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

1 year of observation with 100 g of T source

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

WIN2019, 04/06/2019

things are more complicated in this way...low background needed!

1 year of observation with 100 g of T source

Perspectives for the mass determination [PTOLEMY, arxiv:1902.05508]

statistical only!

relative error on $m_{\rm lightest}$

as a function of $\hat{m}_{
m lightest}$, Δ

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

(mass detection already with 10 mg of tritium!)

statistical only!

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

relative error on $m_{
m lightest}$ as a function of $\hat{m}_{
m lightest}$, Δ

statistical only!

Bayesian method:

Fit fiducial ordering $(\widehat{NO} \text{ or } \widehat{IO})$ using both correct and wrong ordering

 $\widehat{\rm NO}/{\rm NO}$ vs $\widehat{\rm NO}/{\rm IO}$

 $\widehat{\mathrm{IO}}/\mathrm{NO}$ vs $\widehat{\mathrm{IO}}/\mathrm{IO}$

Requirements for PTOLEMY discoveries

What do we need to discover...

	low Γ_b	extreme Δ	a lot of ³ H
$\dots \nu$ masses?	×	×	?
$\dots \nu$ mass ordering?	×	?	?
CNB direct detection?	\checkmark	\checkmark	\checkmark

√: strongly required
 ?: not so strongly required
 X: loosely required