

Status of the search for neutrinoless double-beta decay with GERDA

A.V. Lubashevskiy¹

on behalf of the GERDA and LEGEND collaborations,

¹Joint Institute for Nuclear Research, Dubna, Russia

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Motivation

Neutrinoless double beta $(0\nu\beta\beta)$ decay experiments are a good way to search for the physics beyond the Standard Model. The observation of such a decay would prove that lepton number is not conserved. Lepton number (L) is accidentally conserved in Standard Model \rightarrow L number violation is expected. Most of the SM extension predict $\nu = \overline{\nu}$.

WIN2019, A.Lubashevskiy

$0\nu\beta\beta$ decay

 $2\nu\beta\beta$ decay has been observed already in more than ten isotopes, but $0\nu\beta\beta$ not found yet.

Experimental sensitivity

The GERDA Collaboration

Background reduction

GERDA experimental setup located at **LNGS** underground laboratory of INFN (Italy). The rock overburden is equivalent to **3500 m w.e.** This allows to reduce μ (~ 10⁶ times) and neutron flux induced by cosmic radiation.

HPGe detectors

The search is performed with High Purity Ge detectors enriched up to 88% in ⁷⁶Ge. They are submerged into liquid argon (LAr). LAr shields from the radiation and cools down the germanium detectors.

WIN2019, A.Lubashevskiy

Pulse Shape Discrimination

WIN2019, A.Lubashevskiy

Detector array

07.06.2019

To minimize contamination from the detector's surrounding GERDA uses:

- Low mass holder made from copper and silicon plates.
- Low radioactive electronics and cables

WIN2019, A.Lubashevskiy

9

LAr light instrumentation

LAr scintillation veto works in the coincidence with Ge detectors allowing to suppress background events which deposit energy in LAr.

PMTs readout

PMTs

consist of 16 3"

Scintillation fibers

and SiPM readout

600

1000

600

[mm]

Ø = 490

General concept of GERDA

⁴²Ar background mitigation

Collection of ⁴²K on the detector's surface

Copper MSs for Phase I

NMS for Phase II in UV light

⁴²₂₀Ca

In Phase I mini-shroud made from a copper foil placed around the detectors was used to decrease a collection of ⁴²K ions towards the detector. For GERDA Phase II copper MS would block the scintillation light \rightarrow decrease efficiency of LAr veto significantly.

Transparent Nylon Mini-Shroud (NMS) covered with wavelength shifter is used for Phase II.

Thanks to Princeton for providing such clean nylon foils (which was developed for Borexino).

NMS around the detector string

See more Eur. Phys. J. C (2018) 78:15

07.06.2019

WIN2019, A.Lubashevskiy

GERDA Phase II configuration

Configuration from December 2015 to May 2018:

- 7 enriched (semi-)coaxial (15.6 kg)
- 30 enriched BEGe (20.0 kg)
- 3 natural semi-coaxial (7.6 kg)

Calibration and stability check

FWHM of 2.6 MeV line (keV)

Shifts of 2.6 MeV line (keV)

Background suppression

Data taking until upgrade 2018

Dataset	Exposure [kg∙yr]	FWHM [keV]	٤	Bl [10 ⁻³ cts/(keV·kg·yr)]	Requirements to
Phase I golden	17.9	4.3 ± 0.1	0.57 ± 0.03	11 ± 2	achieved even for
Phase I silver	1.3	4.3 ± 0.1	0.57 ± 0.03	30 ± 10	coax detectors!
Phase I BEGe	2.4	2.7 ± 0.2	0.66 ± 0.02	5 ⁺⁴ -3	Duty cycle: 92.9%.
Phase I extra	1.9	4.2 ± 0.2	0.58 ± 0.04	5 ⁺⁴ -3	Data quality: 80.4%.
Phase II coax-1	5.0	3.6 ± 0.1	0.52 ± 0.04	3.5 ^{+2.1} -1.5	including Phase Lis
Phase II coax-2	23.1	3.6 ± 0.1	0.48 ± 0.04	0.6 ^{+0.4} _{-0.3}	82.4 kg·yr
Phase II BEGe	30.8	3.0 ± 0.1	0.60 ± 0.02	0.6 ^{+0.4} _{-0.2}	

WIN2019, A.Lubashevskiy

GERDA Phase II results

Frequentist analysis:

- Best fit \rightarrow no signal.
- $T_{1/2} > 0.9 \cdot 10^{26}$ yr (median sensitivity for limit $1.1 \cdot 10^{26}$ yr) @ 90% C.L. Bayesian analysis:
- Best fit \rightarrow no signal. Bayes factor = 0.054
- $T_{1/2} > 0.8 \cdot 10^{26}$ yr (median sensitivity for limit 0.8 $\cdot 10^{26}$ yr) @ 90% C.I.

The median limit on effective Majorana mass is < (0.11-0.26) eV NME range from [Rept.Prog.Phys. 80 (2017) no.4, 046301]

GERDA upgrade 2018

Major upgrade of the experimental setup (May 2018):

- New **5 enriched inverted coaxial (9.5 kg)** installed instead of natural
- Improved LAr veto: new fibers + central fiber shroud
- Improved electronic noise
- Cleaner materials (cables and electronics)

Beyond GERDA: LEGEND

LEGEND collaboration:

- **GERDA + MAJORANA** + external contributions
- **52** institutes
- ~ 250 members

Staged approach:

- LEGEND 200: up to 200 kg of ⁷⁶Ge in the existing GERDA cryostat at LNGS. Sensitivity ~ 10²⁷ yr.
- LEGEND 1000: 1 ton detector mass, proposal for the future, location is under discussion. Sensitivity ~ 10²⁸ yr

LEGEND-200

- Increased detector mass up to 200 kg
- Funding basically secure
- Inverted coaxial point contact HPGe detectors with mass up to 3 kg
- New Low Mass Front End (LMFE) electronics with reduced noise → better resolution and PSA
- Optimization of LAr veto using GERDA experience
- Radiopure detector surrounding
- Ultra-pure electroformed copper
- BI goal: 0.6 cts/(FWHM·t·yr) factor of 3 better than now in GERDA.

Summary

- Lowest background per ROI ever achieved in $0\nu\beta\beta$ experiments. Background Index:
 - for coaxial detectors: $5.7 \cdot 10^{-4} \text{ cts/(kg·keV·yr)}$
 - for BEGe detectors 5.6· 10⁻⁴ cts/(kg·keV·yr)
- Excellent energy resolution and "background free" regime offer very good conditions for discovery of $0\nu\beta\beta$ decay. More results with higher sensitivity are expected in coming years.
- No $0\nu\beta\beta$ signal is observed so far.
- The obtained limit is $T_{1/2}^{0v} > 0.9 \cdot 10^{26}$ yr (90% C.L.).
- GERDA keeps taking data.
- Preparations for LEGEND-200 are ongoing. Most of the funding for LEGEND-200 is secured.
- Data taking in LEGEND-200 is planning to start in 2021.

⁴²Ar background mitigation

In measurements in LArGe test facility with spiked ⁴²Ar it was shown that with NMS after applying all the cuts (PSD+PMT) it is possible to dramatically decrease ⁴²K background: suppression factor of more than 1000 was obtained in the measurements.

