

Physics prospects of JUNO

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

The JUNO Collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
China	CIAE	China	Zhengzhou U.	Latvia	IECS
China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)
China	ECUST	China	CUG-Beijing	Russia	INR Moscow
China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR
China	Harbin Institute of Technology	Czech R.	Charles University	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	LAL Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD1
China	Shanghai JT U.	Germany	TUM	USA	UMD2
China	IGG-Beijing	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Wuhan	Germany	FZJ-IKP	= 77	members

J. P. A. M. de André for JUNO

Neutrino oscillations with Reactor Neutrinos

- Distance: selects "oscillation regime"
 - ► JUNO placed at Δm_{21}^2 minimum
 - First experiment to see both Δm^2

• Only sensitive to $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$

WIN 2019

Measuring reactor $\bar{\nu}_e$: Inverse Beta Decay (IBD)

- Detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - IBD used since discovery of $\bar{\nu}$
 - Prompt+delayed signal \Rightarrow large background suppression

• $E_{vis}(e^+) \simeq E(\bar{\nu}) - 0.8 \text{ MeV} \leftarrow$ used to as proxy for neutrino energy

J. P. A. M. de André for JUNO

WIN 201

The JUNO detector

Top Tracker (TT)

- Precise $\hat{\mu}$ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD

Water Cherenkov Detector (WCD)

- 25 kton ultra-pure water
- 2.4k 20" PMTs
- High μ detection efficiency
- Protects CD from external radioactivity

→ Central Detector (CD) – $\bar{\nu}$ target

- Acrylic sphere with 20 kton liquid scint.
- 18k 20" PMTs + 25k 3" PMTs
- 3% energy resolution @ 1 MeV

The JUNO detector

Poster by Tao Hu: Design and status of JUNO

43.5 m (Acrylic Sphere: Ø=35.4 m)

Top Tracker (TT)

- Precise μ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD

Water Cherenkov Detector (WCD)

- 25 kton ultra-pure water
- 2.4k 20" PMTs
- High μ detection efficiency
- Protects CD from external radioactivity

\rightarrow Central Detector (CD) – $\bar{\nu}$ target

- Poster by Filippo Marini :
- The JUNO Large PMT Readout
- electronics

44 m

۱t.

JUNO physics

"Neutrino Physics with JUNO," J. Phys. G 43 (2016) no.3, 030401

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- SN neutrinos
- Diffuse SN ν background
- Solar ν
- Atmospheric ν
- Geo ν
- Nucleon decay & Exotic searches

JUNO physics

"Neutrino Physics with JUNO," J. Phys. G 43 (2016) no.3, 030401

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- SN neutrinos
- Diffuse SN ν background
- Solar ν

- Poster by Giulio Settanta:
- Atmospheric ν Atmospheric neutrino spectrum reconstruction with JUNO
- Geo ν
- Nucleon decay & Exotic searches

Measuring NMO with reactor neutrinos

method: S. T. Petcov, M. Piai, Phys. Lett. B 533 (2002) 94; formulas: S. F. Ge, et al, JHEP 1305 (2013) 131

$$\begin{split} P_{ee} &= \left| \sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_{i}^{2}}{2E_{i}}\right) U_{ei}^{*} \right|^{2} \\ &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{31}) \\ &- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{32}), \\ P_{ee} &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \sin^{2} 2\theta_{13} \sin^{2} (|\Delta_{31}|) \\ &- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|) \\ &\pm \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|), \\ \Delta_{ij} &\equiv \frac{\Delta m_{ij}^{2} L}{4E_{\nu}}, \quad (\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}) \end{split}$$

- Normal(+)/Inverted(-) Ordering \rightarrow measurable only if θ_{13} "large"
- Need excellent energy resolution to distinguish fast oscillation

Substructures in the reactor spectrum

- The reactor neutrino spectrum prediction has a series of limitations
 - ▶ 5 MeV bump, "reactor neutrino anomaly", ...
 - These "large structures" have minor impact on NMO sensitivity
- However, when trying to fix the model "fine structures" can appear
 - Current data from Daya Bay cannot distinguish these differences

Relative difference of 3 synthetic spectra to spectrum predicted from ILL data (Huber+Mueller model)

JUNO-TAO

- JUNO-TAO (Taishan Antineutrino Observatory) provides reference for reactor spectrum
- Data driven approach to eliminate dependency of model of reactor neutrino spectrum
- Requirement: energy resolution of JUNO-TAO equal to or better than JUNO

JUNO-TAO detector:

- 1 ton fiducial volume Gd-LS detector
 - 30 m from reactor core
 - 30× JUNO event rate
- 10 m² SiPM of 50% photon detection efficiency (PDE) operated at -50°C
 - Energy resolution: 1.7% @ 1 MeV

Measuring NMO with reactor neutrinos: impact of energy resolution

$\bar{\nu}_e$ oscillated spectrum

+ energy resolution

Exposure: 20 kt · 6 years

NMO sensitivity with JUNO

- NMO sensitivity calculated using Asimov sample
- $\Delta \chi^2 = 11 \text{stat}$ only, with 3% energy resolution @1 MeV
 - To reach required energy resolution: high light yield + large PMT coverage + good calibration
- Accounting for systematic uncertainties: $\Delta \chi^2 \approx 10 \Rightarrow 3-4 \ \sigma$
- External constraints on $\Delta m^2_{(\nu_{\mu} \rightarrow \nu_{\mu})}$ w/ 1% precision \Rightarrow improved sensitivity

Calibration systems

Goals:

- 3% energy resolution @1 MeV
- energy scale uncertainty < 1%</p>
- This is essential for NMO
- 4 complementary calibration systems:
 - Automated Calibration Unit: vertical shaft
 - Cable Loop System: move source in LS within given plane
 - Guide Tube: check calibration near FV boundary
 - Remotely Operated Vehicle: full detector scan
- Many radioactive sources used

Calibration systems: Daya Bay experience

- Extensive calibration procedure in Daya Bay shows signifcant reduction of non-linearity uncertainty
- Current Daya Bay non-linearity within requirement for JUNO

J. P. A. M. de André for JUNO

Precision measurements of $\bar{\nu}$ oscillations

- In order to measure NMO, need exquisite details of oscillation pattern
- \Rightarrow can also profit to extract particular oscillation parameters with precision <1%
- And test oscillations over several periods, probing simultaneously Δm_{21}^2 -driven and $\Delta m_{32}^2/\Delta m_{31}^2$ -driven oscillation modes.

Solar ν

- Challenging measurement due to
 - Iow overburden
 - ► no IBD signature → drives JUNO radiopurity requirements
- Mild tension between Solar and KamLAND ν oscillations
 - JUNO will measure reactor and solar v osc. with same detector
- Constraints on solar metalicity composition

Atmospheric Neutrinos Flux Unfolding

- Poster by Giulio Settanta
- ν_e and ν_μ flux unfolding around 1 GeV
- First unfolding of atm. ν flux with LS detector

18/19

Conclusion

- JUNO will have unique properties: large target mass & good energy resolution
 - Measurement of NMO not relying on matter effects
 - \star > 3 σ with JUNO only, can reach > 4 σ with $\Delta m_{\mu\mu}^2$ constraint
 - First observation of several ν oscillation peaks within single experiment
 - Exquisite < 1% precision on $\sin^2 \theta_{12}$, Δm_{21}^2 , and Δm_{ee}^2
 - Rich physics & astrophysics program beyond reactor-v analysis
- To get there need good understanding of detector response and energy scale
 - Very large detection efficiency/coverage/LS light yield
 - Extensive calibration apparatus
 - Double calorimetry system
 - JUNO-TAO for reference reactor spectrum

▶ ...

• JUNO on track to start data taking on 2021!

Calibration systems: Daya Bay experience

New calibration results from Daya Bay at ESCAPE workshop @Heidelberg June 2018

- Extensive calibration procedure in Daya Bay shows signifcant reduction of non-linearity uncertainty
- This will be a critical point for JUNO

Calibration systems

- Goal: 3% en. res. @1 MeV, en. scale uncertainty < 1%
- Many radioactive sources used

Source	Туре	Radiation
¹³⁷ Cs	γ	0.662 MeV
⁵⁴ Mn	γ	0.835 MeV
⁶⁰ Co	γ	1.173 + 1.333 MeV
40K	γ	1.461 MeV
⁶⁸ Ge	e ⁺	annil 0.511 + 0.511 MeV
²² Na	e ⁺	annil + 1.275 MeV
40K	e	0~1.31 MeV
⁹⁰ Sr	e	0~2.28 MeV
²⁴¹ Am-Be	n, γ	neutron + 4.43 MeV
²⁴¹ Am- ¹³ C or ²⁴¹ Pu- ¹³ C	n, γ	neutron + 6.13 MeV
²⁵² Cf	multiple n, multiple y	prompt y's, delayed n's

- 4 complementary calibration systems:
 - Automated Calibration Unit: vertical shaft
 - Cable Loop System: move source in LS within given plane
 - Guide Tube: check calibration near FV boundary
 - Remotely Operated Vehicle: full detector scan

J. P. A. M. de André for JUNO

Central Detector

- Liquid Scintillator-based calorimeter
- Stell structure supporting PMTs + Acrylic Sphere
- 18k 20" PMTs
- 25k 3" PMTs
 - Double Calorimetry
 - ► 78% coverage
- 1200 PE/MeV
 - High light-yield liquid scintillator
 - KamLAND: ~ 250 PE/MeV

20" PMTs

- 20k PMTs: 15k Micro-Channel Plate PMTs (MCP-PMTs) from NNVT; 5k dynode PMTs from Hamamatsu
 - About 10k delivered, more than 6k tested
- New High Quantum Efficiency (HQE) MCP-PMT this year: 10% more PDE!
 - PDE = photon detection efficiency
- Final design of protection covers finished, bidding done

3" PMTs

- 25k PMTs contracted at HZC
 - Very short transient time spread (TTS) < 5 ns</p>
 - 8k already produced and tested at HZC
- Extend dynamic range
- \Rightarrow Better control of systematics and large signals

J. P. A. M. de André for JUNO

WIN 201

June 4th, 2019 27/19

Top Tracker

Plastic scintillators from OPERA Target Tracker

- Design of new supporting structure finished
- New electronics cards being designed to account for 100× higher radioactivity from rock in JUNO site
- Very precise μ tracking
 - Detector granularity 2.6 × 2.6 cm² in X–Y
 - 3 Layers separated by 1.5 m
 - \Rightarrow 0.2° median resolution
 - Well known real μ data for calibration
- Plastic Scintillator modules already in China
 - No significant aging observed

WIN 2019

Test Statistic for NMO

J. P. A. M. de André for JUNO

NMO sensitivity with JUNO + external constraints on Δm^2

- Due to intrinsic differences between $\nu_e \rightarrow \nu_e$ and $\nu_\mu \rightarrow \nu_\mu$, precise measurements of Δm^2 effectively measure a different Δm^2
 - $|\Delta m_{ee}^2| |\Delta m_{\mu\mu}^2| = \pm \Delta m_{21}^2 (\cos 2\theta_{12} \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta) ,$
- Using a 1% external constraint in $|\Delta m^2_{\mu\mu}|$ increases $\Delta\chi^2$ by 4 12

• NMO sensitivity: $> 3\sigma$ with JUNO only, can reach $> 4\sigma$ with $\Delta m_{\mu\mu}^2$ constraint

J. P. A. M. de André for JUNO

• Reactor v oscillation

$$P = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

♦ Daya Bay's 2-v approximation

$$P_{\rm sur} \simeq 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{\rm ee}$$

 $\Rightarrow \text{ In the standard 3-v framework:} \quad \sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$

- "Comments on the Daya Bay's definition and use of Δm_{ee}²",
 S. Parke and R. Zukanovich Funchal, arXiv:1903.001
 - ⇒ (Daya Bay's definition) obfuscates the simple relationship between such an effective Δm² and the fundamental parameters
 - $\Rightarrow \Delta m_{ee}^2 (\text{NPZ}) \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2 \text{ should be used, since at JUNO's baseline, 6<L/E<25 km/MeV, Daya Bay's definition has a 1% jump.$

◆ S. Parke and R. Zukanovich Funchal, arXiv:1903.001: ⇒ Submitted to PRL

[9] Until JUNO determines the mass ordering, which is highly non-trivial due to stringent requirements on the resolution and linearity of the neutrino energy reconstruction, Δm_{ee}^2 is the only atmospheric Δm^2 that JUNO can report without having to give separate measurements for each mass ordering, as would be needed for Δm_{31}^2 (or Δm_{32}^2), since $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{21} \Delta m_{21}^2$.

◆ S. Parke and R. Zukanovich Funchal, arXiv:1903.001: ⇒ Submitted to PRL

[9] Until JUNO determines the mass ordering, which is highly non-trivial due to stringent requirements on the resolution and linearity of the neutrino energy reconstruction, Δm_{ee}^2 is the only atmospheric Δm^2 that JUNO can report without having to give separate measurements for each mass ordering, as would be needed for Δm_{31}^2 (or Δm_{32}^2), since $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{21} \Delta m_{21}^2$.

Attention: although in this plot, $\Delta m_{ee}^2(NPZ)$ is a constant for a given MH, but it is meaningless since the 2-v oscillation formula is then not a good approximation at JUNO's baseline.

 ◆ Response to "Comment on Daya Bay's definition and use of ∆m²_{ee}", Daya Bay collaboration, arXiv:1905.03840

 ⇒ DYB's definition is

 $P_{\rm sur} \simeq 1 - \cos^4\theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{\rm ee}$

where Δm_{ee}^2 is a (model independent) fitting parameter based on experimental facts. It enables multiple interpretations, either in the 3-v framework or beyond.

- \Rightarrow DYB did not define Δm_{ee}^2 using fundamental parameters.
- \Rightarrow At JUNO's baseline, the 2-v approximation is no longer valid. We shouldn't use Δm_{ee}^2 (in any definitions). Instead, the fundamental parameters Δm_{31}^2 and Δm_{32}^2 should be used.

5