Results from the CUORE experiment

DOUBLE BETA DECAY

Processes explained by the Standard Model

Lepton number not conserved
Occurs if neutrinos have mass and are their own antiparticle

EXPERIMENTAL SIGNATURE

 Sum energy of emitted electrons: Peak at Q value of the decay.

Sensitivity of the search
$$\longrightarrow$$
 $T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A \, i \, \varepsilon}{A} f(\Delta E) \sqrt{\frac{M \, t}{B \, \Delta E}}$

IMPLICATIONS

 $\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2$ $m_{\beta\beta}$

Past and present (~10 kg)

Present and near future (~100 kg)

- Neutrinos are Majorana fermions.
 - Physics beyond standard model.
- Constraints on absolute mass
 - Probes the mass hierarchy of the neutrinos.
- Constraints on CP violating phases?

CUORE

 Search for 0vββ in ¹³⁰Te at LNGS, Italy (depth ~ 3600 m.w.e)

CUORE

- $Q_{\beta\beta} = 2527.515 \text{ keV}$
- Isotopic mass of ¹³⁰Te : 206 kg
- 988 TeO₂ crystals (arranged in 19 towers with 13 floors each)
- Massive thermal calorimeters operated at ~10 mK
- Goal:
 - $\triangle E_{FWHM} \leq 5 \text{ keV} @ 2615 \text{ keV}$
 - → $B = 0.010 \text{ cnts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$
 - T_{1/2} (90% C.L.) > 9 x 10²⁵ y
 5 yrs of live time ;
 <m_{ββ}> ~ 45 210 meV.

DETECTOR PRINCIPLE : THERMAL CALORIMETERS

Source = Detector

 $\Delta E_{TFN} = \sqrt{k_B T^2 C(T)}$

- Electron events mostly contained in the bulk : Large detection efficiency.
- The calorimeter cannot discriminate background from signal events easily.

 $<\Delta E_{FWHM}>^2 = <\Delta E_{TFN}>^2 + <\Delta E_{electronics}>^2 + <\Delta E_{vibration}>^2 + \dots$

- Thermodynamic limit for energy resolution can be made small by operating the detectors at a very low temperature.
- Requires ultra-low temperature facility with ultra-stable operating conditions.

DETECTOR PRINCIPLE

- 750 g (5x5x5 cm³) crystal
- $\triangle T \sim 100 \ \mu K$ for 1 MeV energy deposit
- NTD-Ge thermistor read out
 - R(T) ~ R₀ exp [(T₀/T)^{1/2}] (large sensitivity at low T)
- Energy response calibrated using known gamma sources
- Note:
 - Signal → thermal channel only
 - No active background rejection

DETECTOR ASSEMBLY

- Strict material selection
- Stringent surface cleaning procedures for detectors and materials nearby the detectors
- Minimize radon contamination at every step of the detector assembly.

WIN 2019, Bari

DETECTOR ARRAY

CUORE Assembly efficiency

- ➡ 984/988 NTD-Ge thermistors connected
- → > 99.5% functional detectors.
- 942/988 heaters connected

CUORE CRYOSTAT

30 cm of Pb Top Shield (2.5 tons@50 mK)

Vivek Singh, UC Berkeley

WIN 2019, Bari

EXTERNAL SHIELDING

External lead: 25 cm thick

Neutron shield: 18 cm of PET + 2 cm of H_3BO_3

WIN 2019, Bari

SCIENCE RUNS

Science operations :

Very short commissioning run (identified issue with the thermistor bias on about 1/3 of the channels)

- First optimization of the detector working point
- Dataset 1: 3 weeks of physics data (May June 2017)
- Second optimization campaign
- Dataset 2: 4 weeks of physics data (August - September 2017)

Operational performance:

- 984/988 operational channels
- Improved detector stability, compared to Cuoricino/CUORE-0
- Calibrations/physics ratio data to be optimized to maximize $0\nu\beta\beta$ sensitivity

Acquired statistics used for this $0\nu\beta\beta$ decay search (Dataset 1 + Dataset 2):

- natTeO₂ exposure: **86.3 kg yr** (37.6 + 48.7)
- ¹³⁰Te exposure: **24.0 kg yr**

CUORE : ENERGY RESOLUTION IN ROI

Calibration Resolution@ 2615 keV

- Dataset 1: 9 keV FWHM
- Dataset 2: 7.4 keV FWHM
- Effective (exposure-weighted): 8 keV FWHM

Physics data Resolution@ Q-value

- Dataset 1: (8.3 ± 0.4) keV FWHM
- Dataset 2: (7.4 ± 0.7) keV FWHM
- Effective (exposure-weighted): (7.7 ± 0.5) keV FWHM

$\textbf{CUORE}: \textbf{EFFICIENCIES FOR } \textbf{0} \nu \beta \beta \textbf{ ANALYSIS}$

- First we remove events from periods of low-quality data (~1% of total live time)
- Base cuts (number of pulses in the window, baseline stability)
- Anti-coincidence : accept/reject events based on a multiplicity cut.
- Pulse shape analysis and cuts: reject deformed events

	DATASET 1	DATASET 2
Trigger	(99.766 ± 0.003) %	(99.735 ± 0.004) %
Energy reconstruction	(99.168 ± 0.006) %	(99.218 ± 0.006) %
Base cuts	(95.63 ± 0.01) %	(96.69 ±0.01) %
Anti-coincidence	(99.4 ± 0.5) %	(100.0 ± 0.4) %
Pulse Shape Analysis	(91.1 ± 3.6) %	(98.2 ± 3.0) %
0νββ containment	$(88.345 \pm 0.085)\%$	
Total	(75.7 ± 3.0) %	(83.0 ± 2.6) %

CUORE: $0\nu\beta\beta$ RESULTS

Phys. Rev. Lett. 120, 132501 (2018)

CUORE: $< m_{\beta\beta} >$ **SENSITIVITY**

$m_{\beta\beta} < 110 - 520 \text{ meV}$

CUORE Nuclear Transition Matrix Element (NTME) calculations from:

- JHEP02 (2013) 025
- Nucl. Phys. A 818, 139 (2009)
- Phys. Rev. C 87, 045501 (2013)
- Phys. Rev. C 87, 064302 (2014)
- Phys. Rev. C 91, 034304 (2015)
- Phys. Rev. C 91, 024613 (2015)
- Phys. Rev. C 91, 024309 (2015)
- Phys. Rev. C 91, 024316 (2015)
- Phys. Rev. Lett. 105, 252503 (2010)
- Phys. Rev. Lett. 111, 142501 (2013)

Half-life limits:

- * 130 Te: 1.5×10^{25} yr from PRL 120, 132501 (2018)
- * 76 Ge: 8.0 × 10²⁵ yr from PRL 120, 132503 (2018)
- * ¹³⁶Xe: 1.1 × 10²⁶ yr from Phys. Rev. Lett. 117, 082503 (2016)
- * ¹⁰⁰Mo: 1.1 × 10²⁴ yr from Phys. Rev. D 89, 111101 (2014)
- * CUORE sensitivity: 9.0×10^{25} yr

BACKGROUND EXPECTATION

Eur.Phys.J. C77, 543 (2017)

CUORE : BACKGROUND MODEL

Major background sources identified and ascribed to different locations in the experimental setup using

- Coincidence analysis
- Gamma peaks
- Alpha peaks
- Radio-assay measurements
- Data from neutron activation

Bayesian Fit:

- Split data into inner and outer layers: utilize self shielding by the outer layers.
- Split data by Multiplicities: different multiplicities are sensitive to different types of backgrounds

CUORE: $2\nu\beta\beta$

Excellent agreement of the data with the $2\nu\beta\beta$ background model

CUORE : $T_{1/2} = [7.9 \pm 0.1 \text{ (stat.)} \pm 0.2 \text{ (syst.)}] \times 10^{20} \text{ y}$ • CUORE-0: $T_{1/2} = [8.2 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}] \times 10^{20} \text{ y}$

• NEMO: $T_{1/2} = [7.0 \pm 0.9 \text{ (stat.)} \pm 1.1 \text{ (syst.)}] \times 10^{20} \text{ y}$

CUORE: $2\nu\beta\beta$

In CUORE-0, 20% of the counts in the region of 1 - 2 MeV were from $2\nu\beta\beta$.

In CUORE, almost all the counts in the region of 1-2 MeV are accounted by $2\nu\beta\beta$

CUORE : STATUS

- We found a small leak into the cryostat in the previous phase of data taking and had to warm up the cryostat to 100 K.
- We cooled down to the base temperature in March 2018.
- We spent quite some time in optimizing the detector performance (towards 5 keV FWHM goal)
- May 2018 Back to the data taking mode!

DEVELOPING ANALYSIS TECHNIQUES

Finding optimal working temperature for the best Signal-to-noise ratio

- Signal separation using multi-channel decorrelation.
- Thermal model to describe the pulse template and noise in bolometers.
- Possibility of using delayed coincidences to develop a better background model.

More updates at TAUP 2019 20

Median FWHM vs Temperature - October 2017 Temperature Scan

LIFE BEYOND CUORE

CUPID = CUORE UPGRADE WITH PARTICLE IDENTIFICATION

CUPID = CUORE UPGRADE WITH PARTICLE IDENTIFICATION

Li₂¹⁰⁰MoO₄ bolometers have been recognized as the baseline for next generation high sensitivity background experiment

- Large scale enriched crystal production feasible.
- Internal radio-purity targets met.
- Demonstrated active background rejection.
- Energy resolution of \sim 5 keV demonstrated.
- Total background of 0.1 c/ton/y achievable.

SUMMARY:

• CUORE a ton scale cryogenic experiment will be able to probe $\langle m_{\beta\beta} \rangle \sim 45 - 210 \text{ meV}$

- ► CUORE → Limited by the surface α background near the detector.
- ► Natural successor → CUPID, one tonne experiment with particle identification
 - B = 0.1 c/ton/y in ROI
 - → $< m_{\beta\beta} > ~ 10$ meV discovery sensitivity (covers IHE)
- ► Heat + Light channel most favorable technique for particle ID.
- Li₂¹⁰⁰MoO₄ bolometers have been recognized as the baseline for next generation high sensitivity background experiment
- ► TeO₂ with enrichment and Cherenkov is a viable alternative.
- Extensive ongoing R&D on crystal production and sensor technology.
- ► CUPID collaboration to be formed soon.

COLLABORATION

VERSI

Funding and support

The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. CUORE is supported by:

- The Istituto Nazionale di Fisica Nucleare (INFN)
- The National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, NSF-PHY-1314881, NSF-PHY-1401832, and NSF-PHY-1404205
- The Alfred P. Sloan Foundation
- The University of Wisconsin Foundation
- Yale University
- The US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-SC0012654
- The DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DE-FG03-00ER41138
- The National Energy Research Scientific Computing Center (NERSC)

BACK UP

