Results from the CUORE experiment
DOUBLE BETA DECAY

Processes explained by the Standard Model

- Lepton number not conserved
- Occurs if neutrinos have mass and are their own antiparticle

2nd order weak interaction

Normal beta decay suppressed by Q value or J^\pi

\begin{align*}
\beta^- & \rightarrow e^- + \bar{\nu} \\
2\nu \beta^- & \rightarrow e^- + \bar{\nu} + \bar{\nu} \\
0\nu \beta^- & \rightarrow e^- + \bar{\nu}
\end{align*}
\[T_{1/2}^{0\nu}(n\sigma) = \frac{\ln 2}{n\sigma} \frac{N_A i \varepsilon}{A} f(\Delta E) \sqrt{\frac{M t}{B \Delta E}} \]

- Sum energy of emitted electrons: Peak at Q value of the decay.

Sensitivity of the search
IMPLICATIONS

- Neutrinos are Majorana fermions.
- Physics beyond standard model.
- Constraints on absolute mass scale.
- Probes the mass hierarchy of the neutrinos.
- Constraints on CP violating phases?

\[\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e^2} \right)^2 \]

- Past and present (~10 kg)
- Present and near future (~100 kg)
- Future (~1000 kg)
- Dreams (~10000+ kg?)
The Cryogenic Underground Observatory for Rare Events

- Search for $0\nu\beta\beta$ in 130Te at LNGS, Italy (depth ~ 3600 m.w.e.)
CUORE

- $Q_{\beta\beta} = 2527.515$ keV
- Isotopic mass of 130Te : 206 kg
- 988 TeO$_2$ crystals (arranged in 19 towers with 13 floors each)
- Massive thermal calorimeters operated at \sim10 mK
- Goal:
 - $\triangle E_{\text{FWHM}} \leq 5$ keV @ 2615 keV
 - $B = 0.010$ cnts/(keV·kg·yr)
 - $T_{1/2}$ (90% C.L.) $> 9 \times 10^{25}$ y
 5 yrs of live time ;
 - $<m_{\beta\beta}> \sim 45 - 210$ meV.
DETECTOR PRINCIPLE: THERMAL CALORIMETERS

- Electron events mostly contained in the bulk: Large detection efficiency.
- The calorimeter cannot discriminate background from signal events easily.

\[\Delta E_{TFN} = \sqrt{k_B T^2 C(T)} \]

- Thermodynamic limit for energy resolution can be made small by operating the detectors at a very low temperature.
- Requires ultra-low temperature facility with ultra-stable operating conditions.
DETECTOR PRINCIPLE

- 750 g (5x5x5 cm\(^3\)) crystal
- \(\Delta T \approx 100 \mu K\) for 1 MeV energy deposit
- NTD-Ge thermistor read out
 - \(R(T) \approx R_0 \exp \left[(T_0/T)^{1/2} \right]\)
 (large sensitivity at low T)
- Energy response calibrated using known gamma sources
- Note:
 - Signal ➔ thermal channel only
 - No active background rejection
DETECTOR ASSEMBLY

- Strict material selection
- Stringent surface cleaning procedures for detectors and materials nearby the detectors
- Minimize radon contamination at every step of the detector assembly.
DETECTOR ARRAY

CUORE Assembly efficiency
- 984/988 NTD-Ge thermistors connected
- > 99.5% functional detectors.
- 942/988 heaters connected
CUORE CRYOSTAT

- Experimental Conditions
 - Low radioactivity environment
 - Stable ultra-low temperatures
 - Extremely low vibrations
EXTERNAL SHIELDING

External lead: 25 cm thick

Neutron shield: 18 cm of PET + 2 cm of H$_3$BO$_3$
SCIENCE RUNS

Science operations:
Very short commissioning run (identified issue with the thermistor bias on about 1/3 of the channels)
- First optimization of the detector working point
- **Dataset 1**: 3 weeks of physics data (May - June 2017)
- Second optimization campaign
- **Dataset 2**: 4 weeks of physics data (August - September 2017)

Operational performance:
- 984/988 operational channels
- Improved detector stability, compared to Cuoricino/CUORE-0
- Calibrations/physics ratio data to be optimized to maximize $0\nu\beta\beta$ sensitivity

Acquired statistics used for this $0\nu\beta\beta$ decay search (Dataset 1 + Dataset 2):
- $^{nat}\text{TeO}_2$ exposure: **86.3 kg yr** (37.6 + 48.7)
- ^{130}Te exposure: **24.0 kg yr**
CUORE: ENERGY RESOLUTION IN ROI

Calibration resolution at 2615 keV

- Dataset 1: 9 keV FWHM
- Dataset 2: 7.4 keV FWHM
- Effective (exposure-weighted): 8 keV FWHM

Physics data Resolution@ Q-value

- Dataset 1: (8.3 ± 0.4) keV FWHM
- Dataset 2: (7.4 ± 0.7) keV FWHM
- Effective (exposure-weighted): (7.7 ± 0.5) keV FWHM
CUORE: EFFICIENCIES FOR $0\nu\beta\beta$ ANALYSIS

- First we remove events from periods of low-quality data (~1% of total live time)
- Base cuts (number of pulses in the window, baseline stability)
- Anti-coincidence: accept/reject events based on a multiplicity cut.
- Pulse shape analysis and cuts: reject deformed events

<table>
<thead>
<tr>
<th></th>
<th>DATASET 1</th>
<th>DATASET 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>(99.766 ± 0.003) %</td>
<td>(99.735 ± 0.004) %</td>
</tr>
<tr>
<td>Energy reconstruction</td>
<td>(99.168 ± 0.006) %</td>
<td>(99.218 ± 0.006) %</td>
</tr>
<tr>
<td>Base cuts</td>
<td>(95.63 ± 0.01) %</td>
<td>(96.69 ± 0.01) %</td>
</tr>
<tr>
<td>Anti-coincidence</td>
<td>(99.4 ± 0.5) %</td>
<td>(100.0 ± 0.4) %</td>
</tr>
<tr>
<td>Pulse Shape Analysis</td>
<td>(91.1 ± 3.6) %</td>
<td>(98.2 ± 3.0) %</td>
</tr>
<tr>
<td>$0\nu\beta\beta$ containment</td>
<td>(88.345 ± 0.085) %</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(75.7 ± 3.0) %</td>
<td>(83.0 ± 2.6) %</td>
</tr>
</tbody>
</table>
CUORE: $0\nu\beta\beta$ RESULTS

Limits combining CUORE with CUORE-0 and Cuoricino:

- **Bayesian limit @ 90% c.i. (flat prior for $\Gamma_{\beta\beta}>0$):**
 \[1.5 \times 10^{25} \text{ yr}\]

- **Profile likelihood ("frequentist") limit @ 90% CL:**
 \[2.2 \times 10^{25} \text{ yr}\]

Region of interest: [2465..2575] keV
Overall efficiency: (75.7 ± 3.0)%
 (83.0 ± 2.6)%

ROI background index: (1.49 −0.17 +0.18) \(\times\) \(10^{-2}\) counts/(keV·kg·yr)
 (1.35 −0.18 +0.20) \(\times\) \(10^{-2}\) counts/(keV·kg·yr)

Events in the ROI: 155

Best fit for 60Co mean: (2506.4 ± 1.2) keV

Best fit decay rate: [−1.0−0.3+0.4 (stat.) ± 0.1 (syst.)] \(\times\) \(10^{-25}\) yr\(^{-1}\)
CUORE: $<m_{\beta\beta}>$ SENSITIVITY

CUORE Nuclear Transition Matrix Element (NTME) calculations from:
- JHEP02 (2013) 025
- Phys. Rev. C 87, 064302 (2014)

Half-life limits:
- 136Xe: 1.1×10^{26} yr from Phys. Rev. Lett. 117, 082503 (2016)
- 136Te: 1.5×10^{25} yr from PRL 120, 132501 (2018)
- 76Ge: 8.0×10^{25} yr from PRL 120, 132503 (2018)
- 100Mo: 1.1×10^{24} yr from Phys. Rev. D 89, 111101 (2014)
- CUORE sensitivity: 9.0×10^{25} yr

$m_{\beta\beta} < 110 - 520$ meV
• Relevant reduction in the γ region, compared to CUORE-0
• Spectrum is consistent with the background expectations

• 2615 keV in calibration normalized to physics data
• Shows background in ROI dominated by alphas
BACKGROUND EXPECTATION

CUORE-0 Bkg Model
- Surface of TeO2
- Surface of near elements
- Bulk of TeO2
- Bulk of near elements
- Cosmogenic Activation of CuNOSV elements
- Cosmogenic Activation of TeO2
- Far Bulk: CuOFE elements
- Far Bulk: Roman Pb
- Far Bulk: Modern Pb
- Far Bulk: Superinsulation
- Far Bulk: Stainless steel parts
- Environmental muons
- Environmental neutrons
- Environmental gammas

Energy spectra for different backgrounds:

Bkg Goal

CUORE Goal: 0.01 counts/keV/kg/y

90% CL limit

Value

Major background sources identified and ascribed to different locations in the experimental setup using

- Coincidence analysis
- Gamma peaks
- Alpha peaks
- Radio-assay measurements
- Data from neutron activation

Bayesian Fit:
- Split data into inner and outer layers: utilize self shielding by the outer layers.
- Split data by Multiplicities: different multiplicities are sensitive to different types of backgrounds
Excellent agreement of the data with the $2\nu\beta\beta$ background model

CUORE: $T_{1/2} = [7.9 \pm 0.1 \text{ (stat.)} \pm 0.2 \text{ (syst.)}] \times 10^{20} \text{ y}$

- **CUORE-0**: $T_{1/2} = [8.2 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}] \times 10^{20} \text{ y}$
- **NEMO**: $T_{1/2} = [7.0 \pm 0.9 \text{ (stat.)} \pm 1.1 \text{ (syst.)}] \times 10^{20} \text{ y}$
In CUORE-0, 20% of the counts in the region of 1 - 2 MeV were from $2\nu\beta\beta$.

In CUORE, almost all the counts in the region of 1-2 MeV are accounted by $2\nu\beta\beta$.
CUORE : STATUS

• We found a small leak into the cryostat in the previous phase of data taking and had to warm up the cryostat to 100 K.

• We cooled down to the base temperature in March 2018.

• We spent quite some time in optimizing the detector performance (towards 5 keV FWHM goal)

• May 2018 - Back to the data taking mode!

DEVELOPING ANALYSIS TECHNIQUES

• Signal separation using multi-channel decorrelation.

• Thermal model to describe the pulse template and noise in bolometers.

• Possibility of using delayed coincidences to develop a better background model.

Finding optimal working temperature for the best Signal-to-noise ratio

More updates at TAUP 2019
LIFE BEYOND CUORE

CUPID = CUORE UPGRADE WITH PARTICLE IDENTIFICATION

- Increase Sensitive mass ➞ Enrichment
- Active background rejection ➞ $\alpha / (\beta - \gamma)$ separation
- Goal:
 - $\Delta E_{FWHM} \leq 5$ keV @ 2615 keV
 - $B = 0.1$ c/ton/y in ROI
 - $<m_{\beta\beta}> \sim 10$ meV discovery sensitivity
 (10 yrs of live time)
CUPID = CUORE UPGRADE WITH PARTICLE IDENTIFICATION

Li$_{2}^{100}$MoO$_{4}$ bolometers have been recognized as the baseline for next generation high sensitivity background experiment

- Large scale enriched crystal production feasible.
- Internal radio-purity targets met.
- Demonstrated active background rejection.
- Energy resolution of ~ 5 keV demonstrated.
- Total background of 0.1 c/ton/y achievable.
SUMMARY:

- CUORE a ton scale cryogenic experiment will be able to probe $<m_{\beta\beta}> \sim 45 - 210$ meV
- CUORE → Limited by the surface α background near the detector.
- Natural successor → CUPID, one tonne experiment with particle identification
 - $B = 0.1$ c/ton/y in ROI
 - $<m_{\beta\beta}> \sim 10$ meV discovery sensitivity (covers IHE)
- Heat + Light channel most favorable technique for particle ID.
- $\text{Li}_2^{100}\text{MoO}_4$ bolometers have been recognized as the baseline for next generation high sensitivity background experiment
- TeO_2 with enrichment and Cherenkov is a viable alternative.
- Extensive ongoing R&D on crystal production and sensor technology.
- CUPID collaboration to be formed soon.
COLLABORATION
Funding and support

The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. CUORE is supported by:

- The Istituto Nazionale di Fisica Nucleare (INFN)
- The Alfred P. Sloan Foundation
- The University of Wisconsin Foundation
- Yale University
- The US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-SC0012654
- The DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DE-FG03-00ER41138
- The National Energy Research Scientific Computing Center (NERSC)
BACK UP
CUORE Preliminary

130Te

100Mo