FINAL RESULTS OF THE CUPID-0 PHASE I EXPERIMENT

Davide Chiesa
University and INFN of Milano-Bicocca

On behalf of the CUPID-0 collaboration
CUPID-0 FOR CUPID
(CUORE UPGRADE WITH PARTICLE ID)

CUPID is a proposed 0νββ experiment based on scintillating bolometers. Its mission is to discover 0νββ decay if $m_{ββ} > 10$ meV.

TECHNICAL CHALLENGES
- Detector mass in the range of several hundred kg of the ββ isotope
 ➢ Isotopic enrichment
- Background close to zero at the ton×year exposure scale
 ➢ Active background rejection and improved material selection
- Energy resolution of a few keV (FWHM) around 0νββ Q-value

CUPID-0 is the first demonstrator of the new technologies that will be implemented in CUPID and it is also a competitive 0νββ decay search in its own right.
Scintillating bolometers

- A bolometer is a highly sensitive calorimeter operated at cryogenic temperature (~10 mK)
- Energy deposits are measured as temperature variations of the absorber
- If the absorber is also an efficient scintillator the energy is converted into heat + light

Detector Features

- High energy resolution $\mathcal{O}(1/1000)$
- High detection efficiency (source = detector)
- Particle IDentification

A close-to-zero background experiment is feasible:

- α background: identification and rejection
- γ/β background: $\beta\beta$ isotope with large Q-value
Array of scintillating bolometers for the investigation of $^{82}\text{Se}\, 0\nu\beta\beta$ ($Q = 2997.9 \pm 0.3$ keV).

- 95% enriched Zn82Se bolometers
- 10.5 kg of ZnSe, 5.17 kg of ^{82}Se (3.8×10^{25} $\beta\beta$ nuclei)
- Ge bolometers at top/bottom of crystals to detect scintillation
- NTD thermistors to measure energy depositions
- Reflecting foils to enhance light collection
- High radiopure copper holder structure
CUPID-0 @ LNGS

- Deep underground location at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, 1400 m of rock (~3600 m.w.e.)
- Installed in the cryostat previously used for Cuoricino and CUORE-0 experiments
CUPID-0 DATA TAKING (PHASE I)

- Data taking started on March 17th, 2017
- Data presented here collected between June 2017 and December 2018

\begin{itemize}
 \item 56Co Energy Calibration
 \item 232Th Energy Calibration
 \item System maintenance
 \item Neutron calibration (characterization of β/γ shape parameters at RoI)
 \item $\beta\beta$ physics
 - ZnSe exposure: $9.95 \text{ kg}\times\text{yr}$
 - 82Se exposure: $5.29 \text{ kg}\times\text{yr}$
\end{itemize}
Detector Calibration with 232Th

- 232Th sources are periodically deployed beside the cryostat for calibration of heat and intercalibration of light detectors
Detector Calibration with 56Co

We performed a calibration run with a 56Co source to:

- check the goodness of energy reconstruction
- evaluate the energy resolution at 82Se $Q_{\beta\beta}$

The exposure-weighted harmonic mean FWHM energy resolution at 82Se $Q_{\beta\beta}$ is equal to:

$$(20.05 \pm 0.34) \text{ keV}$$
0νββ SEARCH: HEAT SPECTRUM PRODUCTION

- **Anti-coincidence** → tag & reject events depositing energy in more than one ZnSe crystal within a ±20ms window
- Rejection of **pile-up** (1 sec before and 4 sec after trigger)
- Rejection of “non-particle” events through **pulse shape analysis**

ββ physics spectrum

0νββ RoI

- **82Se exposure:** 5.29 kg·yr

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca
0νββ SEARCH: REJECTION OF α PARTICLES

- Rejection of α events based on the shape of the light pulse

- mean value of α particle SP ($\mu_\alpha(E)$)
- acceptance threshold = $\mu_\alpha(E) - 3 \cdot \sigma_\alpha(E)$
- energy below which the PID is not applied

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca
0νββ SEARCH: REJECTION OF ^{208}Tl EVENTS

Analysis of $\alpha - \beta/\gamma$ delayed coincidences:

- ^{208}Tl β/γ events are preceded by ^{212}Bi α events
- We veto any event preceded by a primary ^{212}Bi α event within 7 half-life time window
- ^{212}Bi events are selected among α events with energy in the range 2 – 6.5 MeV
0νββ SEARCH: RESULTS

Background index in the range [2.8 – 3.2] MeV:

\[(3.5^{+1.0}_{-0.9}) \cdot 10^{-3} \text{ cnts/(keV\cdot kg\cdot yr)}\]

Lowest background achieved with bolometric experiments.

No evidence of 0νββ signal

Best half-life limit on \(^{82}\)Se 0νββ

\[T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr (90\% C.I.)}\]

\[m_{\beta\beta} < 311 – 638 \text{ meV}\]

range due to the nuclear matrix element calculations

<table>
<thead>
<tr>
<th>Event Confined inside a Single Crystal</th>
<th>81.0±0.2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Efficiency + Energy Properly Reconstructed</td>
<td>99.5 %</td>
</tr>
<tr>
<td>Heat Pulses Selection Efficiency + Delayed Coincidences</td>
<td>88 %</td>
</tr>
<tr>
<td>Beta/Gamma Selection Efficiency</td>
<td>98 %</td>
</tr>
<tr>
<td>Total Signal Efficiency</td>
<td>70±1 %</td>
</tr>
</tbody>
</table>

82Se exposure: 5.29 kg×yr
BACKGROUND MODEL

Experimental Data

Analysis of background source signatures

Monte Carlo Simulations of Background Source Spectra

Fit of the Source Spectra to the Experimental Data

Activity of Background Sources

Comprehension of background in $0\nu\beta\beta$ RoI.

Predictions

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca

arXiv:1904.10397
Experimental data divided according to \textit{multiplicity} and \textit{particle type}

→ we build 4 spectra

- Analysis of γ and α lines in the spectra.

\begin{itemize}
 \item \textbf{Multiplicity (M)}
 \end{itemize}

Time-coincidence window: 20ms

- M_1: energy in each crystal
- M_2: energy in two crystals
- Σ_2: total energy in two crystals

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca
BACKGROUND MODEL: MC SIMULATIONS

- Monte Carlo simulations (Geant4) of background sources
- CUPID-0 geometry modelled with high detail
- Reproduction of detector features (coincidences, resolution, particle ID, thresholds, ...)

[Diagram showing CUPID-0 geometry with labels for CryoExt, CryoInt, IntPb, Holder, Crystals & Reflectors]
BACKGROUND MODEL: SOURCES

Background model uses 33 sources:
- different contaminants (232Th and 238U decay chains, 40K, cosmogenic activation, ...)
- different positions in the experimental setup
- Muons

BACKGROUND SOURCES

- **Cryostat**:
 - **CryoInt**: 50mK and 600mK cryostat internal shields & holder bulk
 - **CryoExt**: IVC, OVC, superinsulation, main bath & External Lead shield

- **Internal/near sources to fit M1α spectrum**
 - **Crystals**: bulk / shallow surface $\mathcal{O}(10\text{nm})$ / deep surface $\mathcal{O}(10\mu\text{m})$
 - **Reflectors & Holder surface**: shallow surface $\mathcal{O}(10\text{nm})$ / deep surface $\mathcal{O}(10\mu\text{m})$
 - **Surface**: exponential profile

- **External sources**
 - **CryoInt**: 50mK and 600mK cryostat internal shields & holder bulk
 - **IntPb**: ancient roman lead shield
 - **CryoExt**: IVC, OVC, superinsulation, main bath & External Lead shield
BACKGROUND MODEL: BAYESIAN FIT

- We perform a simultaneous **Bayesian fit** to M1\(\alpha\), M1\(\beta/\gamma\), M2, and \(\Sigma 2\) spectra to determine source activities (i.e. MC normalizations)
- We use **Markov Chain MC** to sample the **Joint PDF** of fit parameters
- **Priors** are exploited to include additional information from previous experiments/radioassay measurements and from special analyses of CUPID-0 data:
 - Muons \(\rightarrow\) normalized to M\(>3\) events
 - Analysis of \(\alpha-\alpha\) delayed coincidences to get information about positions of crystal contaminations.

\(^{238}\text{U CHAIN}\)

- \(^{222}\text{Rn} \quad \tau_{1/2} = 3.82\text{ d}\)
- \(^{218}\text{Po} \quad \tau_{1/2} = 3.11\text{ m}\)
- \(^{214}\text{Pb} \quad \tau_{1/2} = 26.8\text{ m}\)

\(^{232}\text{Th CHAIN}\)

- \(^{224}\text{Rn} \quad \tau_{1/2} = 3.66\text{ d}\)
- \(^{220}\text{Rn} \quad \tau_{1/2} = 55.6\text{ s}\)
- \(^{216}\text{Po} \quad \tau_{1/2} = 0.145\text{ s}\)
- \(^{212}\text{Pb} \quad \tau_{1/2} = 10.64\text{ h}\)

Given a **parent** event @ Q-value (\(P_Q\)), the probability to observe a time-correlated **daughter** event @ Q-value (\(D_Q\)):

\[
P(D_Q | P_Q)\]

depends on source position (bulk vs surface).
BACKGROUND MODEL: FIT RESULT M1 β/γ

Plot Description:

The plot illustrates the fit result of the background model β/γ with the following key features:

- **Counts per keV:** The y-axis represents the number of counts per keV, with a logarithmic scale.
- **Energy (keV):** The x-axis represents the energy in keV.
- **Alpha (α) and Beta Gamma (β/γ) Regions:** The plot highlights two regions: α and β/γ.
- **Activity Sources:**
 - 65Zn
 - 40K
 - 208Tl

Legend:

- **$M_{1\beta/\gamma}$ - Experimental**
- **$M_{1\beta/\gamma}$ - Fit reconstruction**

Analysis:

The fit result shows a comparison between experimental data and the fitted model, indicating a good agreement in the β/γ region, suggesting that the background model accurately represents the experimental observations.
Background Model: Fit Result M1 α

Counts / keV

- **α-only**
- **147Sm**
- **α-decay peaks from natural decay chains**
- **214BiPo**
- **212BiPo**

Counts ratio vs Energy (keV)

- **1 σ**
- **2 σ**
- **3 σ**

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca
Peaks and continuum are well modelled

Some differences in BiPo pile-up events, due to imperfect energy reconstruction

Distribution of fit residuals compatible with a Gaussian with $\mu = 0$ and $\sigma = 1$.

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca
Background sources contributing to the M1β/γ reconstruction, grouped by position and contaminant:

2νββ is the dominant contribution

Possibility to perform detailed study on this decay (paper in preparation)

232Th in Crystals is the main contribution in RoI because rejection of 208Tl events is not applied here

After delayed coincidences cut

Muons give ~44% of residual background rate in RoI

Other background sources in crystals, reflectors, cryostat & shields, contributing to the RoI at a level of a few 10^{-4} counts/(keV kg y)
CUPID-0 PHASE II: UPGRADES

- Muons are main residual background
- No reflective foil
- New cleaner Cu shield

Installation of μ-veto
Sensitivity to M2 α events
Thermalization and additional shielding

Data taking started this week!!!!!
SUMMARY AND FUTURE PERSPECTIVES

- CUPID-0 is the first large array of enriched scintillating bolometers
- CUPID-0 Phase I → ZnSe exposure: 9.95 kg·y
- Excellent background index in the 82Se 0νββ RoI:
 $$(3.5^{+1.0}_{-0.9}) \cdot 10^{-3} \text{ counts} / (\text{keV} \cdot \text{kg} \cdot \text{yr})$$
- Acquired data allowed to establish the **best half-life limit** on 82Se 0νββ decay:
 $$T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr (90\% C.I.)}$$
- Background model: information on background sources and best measurement of 82Se 2νββ decay (paper in preparation)
- CUPID-0 Phase II → better understanding of background sources

Thanks for your attention!!!