

MEASUREMENT OF *PP*-CHAIN SOLAR NEUTRINOS WITH BOREXINO

ÖMER PENEK

Mitglied der Helmholtz-Gemeinschaft

On Behalf of the Borexino Collaboration

WIN Conference Bari, Italy 4th June 2019

CONTENTS

➢Introduction and motivation

➤Measurement of pp-chain solar neutrinos

➤Towards CNO neutrinos

➤Summary and outlook

Introduction and Motivation

SOLAR NEUTRINO PHYSICS MOTIVATION

Studying Neutrinos with the Sun ...

- Neutrino Oscillation Parameters
- Searching for Deviations from the MSW-LMA
 Scenario of Solar Neutrino Oscillations in the P_{ee} transition region
 (Search for New Physics e.g. Non-standard interactions)

Studying the Sun with Neutrinos ...

- Thermodynamic Stability
 - Photons need around ~100k years to escape from the solar core
 - Neutrinos escape almost without interaction losses
- Fusion Mechanisms (pp-chain and CNO cycle)
- Testing energy production (and loss) mechanisms
- Metallicity

Nasa.org

HOW IS THE SUN FUELED? → SOLAR NEUTRINOS

Production in the Core of the Sun

Fueling < 1 % of solar energy ν (CNO) \approx 57% ν (¹³N)+42% ν (¹⁵O)+1% ν (¹⁷F) Theoretically well motivated !

SOLAR NEUTRINOS FLUXES

Assume photon luminosity L_{\odot} , the solar mass M_{\odot} , the solar radius R_{\odot} ,

the oblateness $O_{\odot} = \frac{R_{equator}}{R_{polar}} - 1$, and the solar age A_{\odot} is given:						
Species	Flux [cm ⁻² s ⁻¹] GS98 (HZ)	Flux [cm ⁻² s ⁻¹] AGSS09met (LZ)	Difference (HZ-LZ)/HZ %			
рр	$5.98(1 \pm 0.006) \times 10^{10}$	$6.03(1 \pm 0.005) \times 10^{10}$	-0.8 %			
рер	$1.44(1 \pm 0.01) \times 10^{8}$	$1.46(1 \pm 0.009) \times 10^{8}$	-1.4 %			
hep	$7.98(1 \pm 0.30) \times 10^3$	$8.25(1 \pm 0.30) \times 10^3$	-3.4 %			
⁷ Be	$4.93(1 \pm 0.06) \times 10^9$	$4.50(1 \pm 0.06) \times 10^9$	8.9 %			
⁸ B	$5.46(1 \pm 0.12) \times 10^{6}$	$4.50(1 \pm 0.12) \times 10^{6}$	17.6 %			
¹³ N	$2.78(1 \pm 0.15) \times 10^8$	$2.04(1 \pm 0.14) \times 10^8$	26.6 %			
¹⁵ O	$2.05(1 \pm 0.17) \times 10^8$	$1.44(1 \pm 0.16) \times 10^{8}$	29.7 %			
¹⁷ F	$5.29(1 \pm 0.20) \times 10^8$	$3.26(1 \pm 0.18) \times 10^8$	38.3 %			

Seite 5

Metallicity:

Metal-to-Hydrogen Ratio $\left(\frac{Z}{X}\right)_{\bigcirc}$

(above He)

C N O is very sensitive to metallicity Borexino: Look at ⁷Be - ⁸B Contour (later)

EXPECTED SOLAR NEUTRINO SPECTRA

➔ Difference in endpoint energies and shapes gives possibility to distinguish them

HOW TO "DETECT" THE SUN ?

The Borexino Detector located at LNGS in Italy

2212 inward-facing PMTs

Nylon Outer Vessel

R = 5.5 m Barrier for Rn from steel, PMTs etc.

Nylon Inner Vessel

R = 4.25 m ~ 300 tons of liquid scintillator: (PC/PPO solution)

Fiducial volume:

~100 tons (software cut)

✓ Hardware Threshold ~ 50 keV ✓ $\frac{\Delta E}{E} \sim \frac{5\%}{\sqrt{E[MeV]}}$ ✓ Ph. Yield ~ 551 p.e./MeV ✓ Position Reconstruction: 16-9 cm Detection principle: elastic scattering on electrons Technique advantages: high light-yield Technique disadvantages: no directional information

Water tank: R = 9 m, 2.1 kt of water

Shielding
 Cherenkov muon veto

Stainless Steel Sphere: R = 6.85 m Scintillator container PMTs support

208 Outer Detector PMTs

BOREXINO RESULTS OVERVIEW

pp7Be, pep, 8BImproved Measurement of IGeo-Nupep Discovery (5σ)2007Calibrations201020122012							
Bx Phase I		Bx Pha	se II	В	x Phase III		
	Scintillator Purification Improved Radiopurity: ⁸⁵ Kr ~ 4.6 ²¹⁰ Bi ~ 2.3			Improved CN	Thermal stability O analysis		
Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy (Phys. Rev. D 89, 112007 (2014))	Measureme neutrinos fr of Borexino 722 295-30	ent of geo- om 1353 days (Phys. Let. B 0 (2013))	Seasonal mod the ⁷ Be solar r rate in Borexin (Astroparticle I 92, 21-29 (201	lulation of neutrino no Phys. Vol. I7))	Modulations of the Cosmic Muon Signal in Ten Years of Borexino Data (arXiv:1808.04207v3 (2018))		
Neutrino rate with a fusio liquid scintillator target (Natu and 3 MeV energy (2014)		Neutrinos from the primary proton-proton fusion process in the Sun (Nature 512, 383-386 (2014))		eous ctroscopy d <i>pep</i> Solar Borexino	Comprehensive measuremen of <i>pp</i> -chain solar neutrinos (Nature 562, 505–510 (2018) Constraints on Non-Standard Neutrino Interactions from		
detector (Phys. Rev. D 82, 033006 (2010))	Spectrosco geoneutrinc days of Bor (Phys. Rev. 031101® (2	Spectroscopy of geoneutrinos from 2056 days of Borexino Data (Phys. Rev. D 92, 031101® (2015))		9279v2 Isurement utrinos with exino 9756v1	Borexino Phase-II (arXiv:1905.03512v1)		

(2017))

Seite 9

Forschungszentrum

BOREXINO RESULTS OVERVIEW

⁷ Be, <i>pep,</i> ⁸ B Geo-Nu 2007 Calibrations	2010 2012	pp Improved Measu pep Discove ⁷ Be seasonal r	urement of I ery (5σ) nodulation	2016	2019+	
Bx Phase I		Bx Pha	ase II	B	x Phase III	
	Scintillator Purification Improved Radiopurity: ⁸⁵ Kr ~ 4.6 ²¹⁰ Bi ~ 2.3			Improved CN	Thermal stability O analysis	
Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy (Phys. Rev D 89, 112007 (2014))	Measureme neutrinos fr of Borexino 7. 722 295-30	ent of geo- om 1353 days (Phys. Let. B 0 (2013))	Seasonal mod the ⁷ Be solar n rate in Borexin (Astroparticle F 92, 21-29 (201	lulation of neutrino lo Phys. Vol. I7))	Modulations of the Cosmic Muon Signal in Ten Years of Borexino Data (arXiv:1808.04207v3 (2018))	
Measuremnt of the solar ⁸ B neutrino rate with a liquid scintillator target	Neutrinos fr primary pro fusion proce (Nature 512	om the ton-proton ess in the Sun 2, 383-386	First Simultane Precision Spec of <i>pp</i> , ⁷ Be, and	eous ctroscopy d <i>pep</i> Solar	Comprehensive measurement of <i>pp</i> -chain solar neutrinos (Nature 562, 505–510 (2018))	
and 3 MeV energy threshold in the Borexino detector (Phys. Rev. D 82, 033006 (2010))	(2014)) Spectrosco geoneutrinc	(2014)) Spectroscopy of geoneutrinos from 2056		Borexino 9279v2	Constraints on Non-Standard Neutrino Interactions from Borexino Phase-II (arXiv:1905.03512v1)	
	days of Bor (Phys. Rev. 031101® (2	exino Data D 92, 015))	Improved mea of ⁸ B solar neu 1.5 kt y of Bore exposure (arXiv:1709.00	surement utrinos with exino)756v1		

(2017))

Seite 10

Forschungszentrum

Measurement of pp-Chain Solar Neutrinos

Mitglied der Helmholtz-Gemeinschaft

ANALYSIS (LOW AND HIGH ENERGY)

2500

2000

3000

3500

4000

4500

5000

5500

Energy [pe]

6000

Energy Spectrum after all Selection Cuts for low-energy region (LER) for *pp*, *pep*, ⁷Be, and CNO analysis

(μ and μ daughter cut: 300 ms internal and 2 ms external, Fiducial Volume Cut: R < 2.8 m, -1.8 m < z < 2.2 m)

- Exposure: 1291.51 days × 71.3 t
- LER Analysis Range: 0.19 - 2.93 MeV
- Binned Poissonian Likelihood Fit (Analytical and Monte Carlo Fit)

- Energy Spectrum after all Selection Cuts for high-energy regions (HER-I,II) for ⁸B-analysis (more cosmogenics, less internal background)
- ► Exposure HER-I: 2062.4 days ×227.8 t
- Exposure HER-II: 2062.4 days ×266.0 t
- HER-I Range: 3.2 5.7 MeV
- HER-II Range: 5.7 16 MeV (no natural long-lived radioactive background above 5 MeV)
- Binned Poissonian Likelihood Fit in Radial (Monte Carlo Fit only)

THREEFOLD COINCIDENCE (TFC)

Muon interactions with $^{12}\mathrm{C}$

TFC Algorithm

- Calculate for each event the probability to be ¹¹C (using a Likelihood)
- Divide Total Exposure in TFC-subtracted and TFC-tagged spectra

ANALYSIS IN LER (0.19 – 2.93 MEV)

Multivariate Likelihood Definition: $\mathcal{L}_{MV}(\vec{\theta}) = \mathcal{L}_{sub}^{TFC}(\vec{\theta}) \mathcal{L}_{Tag}^{TFC}(\vec{\theta}) \mathcal{L}_{PS}(\vec{\theta}) \mathcal{L}_{Radial}(\vec{\theta})$

ANALYSIS IN HER (3.2 – 16 MEV)

Selection Cuts:

- Removed muons
- Neutron cut: 2 ms after all muons
- Cosmogenics cut: 6.5 s after all internal muons (¹²B, ⁸He, ⁹C, ⁹Li, ⁸B, ⁶He, ⁸Li)

HER I Fit: [1650, 2950] p.e.

- ¹⁰C TFC cut: 120 s, 0.8 m radius sphere around **neutrons**
- Fast coincidence cut: no ²¹⁴Bi ²¹⁴Po
- Coincidence cut: no events closer than 5 s

Radial Fit not Energy Fit \Rightarrow Not to assume shape of survival probability P_{ee}

HER II Fit: [2950, 8500] p.e.

BOREXINO SOLAR ANALYSIS RESULTS

Species	Phase 1 [cpd/100t]	Phase 2 [cpd/100t]	Flux [cm ⁻² s ⁻¹]	Uncert. Reduction
рр	144±13±10	134±10 ⁺⁶ -10	6.1±0.5 ^{+0.3} -0.5 ×10 ¹⁰	1.3
рер	3.1±0.6±0.4	2.43±0.36 ^{0.15} -0.22 (HZ) 2.65±0.36 ^{0.15} -0.24 (LZ)	$\begin{array}{c} 1.27 \pm 0.19^{+0.08} \\ 1.39 \pm 0.19^{+0.08} \\ _{-0.13} \times 10^8 \end{array}$	1.6
⁷ Be	48.3±2.0±0.9	48.3±1.1 ^{+0.4} -0.7	4.99±0.11 ^{+0.06} -0.08 ×10 ⁹	1.8
⁸ B	0.217±0.038±0.008	0.223 ^{+0.015} -0.016±0.006	$5.68^{+0.39}_{-0.41} \pm 0.03 \times 10^{6}$	2.4
CNO	< 7.9 (95 % C.L.)	< 8.1 (95 % C.L.)	-	-
hep	-	< 0.002 (90 % C. L.)	< 2.2 ×10 ⁵ (90 % C. L.)	-

 $\frac{210}{\text{Bi} - pep - \text{CNO Correlation}}$

Break it by fixing the CNO rate to: R_{CNO} (HZ) = 4.92 \pm 0.55 cpd/100t R_{CNO} (LZ) = 3.52 \pm 0.37 cpd/100t (There is almost 100% anti-correlation between CNO and ²¹⁰Bi)

IMPLICATIONS: *P*_{ee} **AND HZ VS. LZ**

JÜLICH Forschungszentrum

d der Helmholtz-Gemeinschaft

IMPLICATIONS: PP-CHAIN AND LUMINOSITY

pp chain

Nasa.org

 $\succ \text{ Compare Ratio of } pp\text{-I to } pp\text{-II:}$ $R_{I/II} = \frac{\langle {}^{3}\text{He} + {}^{4}\text{He} \rangle}{\langle {}^{3}\text{He} + {}^{3}\text{He} \rangle} = \frac{2\Phi({}^{7}\text{Be})}{\Phi(pp) - \Phi({}^{7}\text{Be})}$

Borexino:

$$R_{I/II} = 0.1780^{+0.027}_{-0.023}$$

SSM-HZ:

$$R_{I/II} = 0.180 \pm 0.011$$

SSM-LZ:

$$R_{I/II} = 0.161 \pm 0.010$$

Borexino consistent with predictions from SSM

Solar Luminosity (Stability for > 100k years):
Borexino:

 $L_{\odot} = 3.89^{+0.35}_{-0.42} \times 10^{33} \text{ erg s}^{-1}$ Photon Output:

 $L_{\odot} = (3.846 \pm 0.015) \times 10^{33} \text{ erg s}^{-1}$ Proof of the nuclear origin of the solar power and thermodynamic equilibrium for > 100k years

Search For Non-Standard Interactions

INTRODUCTION TO THE NSI SEARCH

Calculation of the Recoiled Electron Spectra ? (*T* = electron energy)

$$\frac{dR}{dT}(T) = N_e \Phi_v \int dE_v \frac{d\lambda_v}{dE_v}(E_v) \left(\frac{d\sigma_e}{dT}(T, E_v) P_{ee}(E_v) + \left(\cos^2 \theta_{23} \frac{d\sigma_\mu}{dT}(T, E_v) + \sin^2 \theta_{23} \frac{d\sigma_\tau}{dT}(T, E_v) \right) \right) \left(1 - P_{ee}(E_v) \right) \right)$$

"Standard" Cross Section (monoenergetic):

$$\frac{d\sigma(E,T)}{dT} = \frac{2}{\pi} G_F^2 m_e \left[g_{\alpha L}^2 + g_{\alpha R}^2 \left(1 - \frac{T}{E} \right)^2 - g_{\alpha L} g_{\alpha R} \frac{m_e T}{E^2} \right]$$

$$g_{\alpha L} = \begin{cases} 0.5 + \sin^2 \theta_W, \alpha = e \\ -0.5 + \sin^2 \theta_W, \alpha = \mu, \tau \end{cases} \rightarrow \boldsymbol{g}_{\alpha L}^{NSI} = \boldsymbol{g}_{\alpha L} + \boldsymbol{\varepsilon}_{\alpha}^{L}$$

$$g_{lpha R} = \sin^2 heta_W$$
 , $lpha = e$, μ , $au o oldsymbol{g}_{lpha R}^{NSI} = oldsymbol{g}_{lpha R} + oldsymbol{arepsilon}_{lpha}^R$

 $\varepsilon' = (\varepsilon_{\tau}^{L} + \varepsilon_{\tau}^{R}) \sin^{2} \theta_{23} - (\varepsilon_{e}^{L} + \varepsilon_{e}^{R}) (\rightarrow \text{ shift of the MSW potential (matter-effect)})$

$$P_{ee}(E_{\nu}) \to P_{ee}(E_{\nu}, \varepsilon')$$
$$\frac{d\sigma_{\alpha}}{dT}(T, E_{\nu}) \to \frac{d\sigma_{\alpha}}{dT}(T, E_{\nu}, \varepsilon_{\alpha}^{L,R})$$

- Replace standard L,R couplings by the non-standard L,R couplings
- Calculate the recoiled electron spectra
- Perform a fit and scan NSI parameters

NSI SEARCH RESULTS

[-0.42, +0.43]

[-0.19, +0.79]

Constraints on Non-Standard Neutrino Interactions from Borexino Phase-II (arXiv:1905.03512v1)

 ε_{τ}^{R}

 ε_{τ}^{L}

Limits

Ref. [23]: S. K. Agarwalla, F. Lombardi and T. Takeuchi, Constraining Non-Standard Interactions of the Neutrino with Borexino, JHEP 12 (2012) 079 [1207.3492] Ref. [55]: J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D77 (2008) 093014 [0711.0698].

[-0.83, +0.36]

[-0.11, +0.67]

Seite 21

[-0.3, +0.4]

[-0.5, +0.2]

[-0.98, +0.73]

[-0.23, +0.87]

Towards CNO Neutrinos

Mitglied der Helmholtz-Gemeinschaft

(BREAKING THE) CORRELATIONS

Almost 100 % anti-correlation between ²¹⁰Bi and CNO

How to constrain the Rate of ²¹⁰Bi? Decay Chain

Necessary for CNO Measurement Bi-Po-Tagging: In secular equilibrium Rate(²¹⁰Bi, β^-) = Rate(²¹⁰Po, α) ²¹⁰Po identification:

- Monoenergetic Decay ("Gaussian")

CHALLENGES

- Temperature gradients present in the detector cause convective motions of ²¹⁰Po present at the nylon vessel to move inside the scintillator
- > This breaks the secular equilibrium of the ²¹⁰Pb chain
- > Need to identify the ²¹⁰Po in secular equilibrium with the ²¹⁰Bi events

Fiducial Volume Fiducial Volume Inner Vessel with ²¹⁰Po contamination To stop convective motions thermal insulation needed

seasonal variation of ²¹⁰Po

INSULATION

Hardware

 Rock Wool (2015)
 Active Temperature Control System

Monitoring

54 Temperature probes located (buffer, external tank, different levels)

Results (→ Temperature Stability)

- Temperature Profile shows stability
- ➢ Stability conditions
 → ²¹⁰Bi ²¹⁰Po tagging

Summary + Outlook

Mitglied der Helmholtz-Gemeinschaft

SUMMARY AND OUTLOOK

- ✓ Comprehensive Measurement of *pp*-Chain Solar Neutrinos (Nature volume 562, pages 505–510 (2018))
- ✓ 5σ evidence of *pep* Neutrinos for the first time
 ✓⁷Be(862+384) precision 2.7 % (stat+sys)
 ✓ Improved ⁸B measurement
 ✓ Borexino has slight preference to High Metallicity at 96.6 % C. L.
 ✓ Exclusion of Vacuum-LMA scenario at 98.2 % C. L.
 ✓ First Borexino Limits on Non-Standard Interactions
- \checkmark Future: Continue data taking with stable condititions to attempt a CNO

measurement

Stay Tuned!

Grazie Infinite Thanks a lot

Mitglied der Helmholtz-Gemeinschaft

Questions?

Backup Slides

SYSTEMATICS

Extended Data Table 1 | LER analysis systematics

	<i>pp</i> neutrinos		⁷ Be neutrinos		<i>pep</i> neutrinos	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Fit models (see text)	-4.5	+0.5	-1.0	+0.2	-6.8	+2.8
Fit method (analytical/Monte Carlo)	-1.2	+1.2	-0.2	+0.2	-4.0	+4.0
Choice of the energy estimator	-2.5	+2.5	-0.1	+0.1	-2.4	+2.4
Pile-up modeling	-2.5	+0.5	0	0	0	0
Fit range and binning	-3.0	+3.0	-0.1	+0.1	-1.0	+1.0
Inclusion of the ⁸⁵ Kr constraint	-2.2	+2.2	0	+0.4	-3.2	0
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Fiducial volume	-1.1	+0.6	-1.1	+0.6	-1.1	+0.6
Total systematics (%)	-7.1	+4.7	-1.5	+0.8	-9.0	+5.6

Relevant sources of systematic uncertainties and their contributions to the measured neutrino interaction rates for the LER analysis.

Background	Rate
	[cpd/100 t]
$^{14}C [Bq/100 t]$	40.0 ± 2.0
85 Kr	6.8 ± 1.8
²¹⁰ Bi	17.5 ± 1.9
^{11}C	26.8 ± 0.2
²¹⁰ Po	260.0 ± 3.0
Ext. 40 K	1.0 ± 0.6
Ext. 214 Bi	1.9 ± 0.3
Ext. ²⁰⁸ Tl	3.3 ± 0.1

TABLE II. Best estimates for the total rates of the background species included in the fit with statistical and systematic uncertainties added in quadrature.

> First Simultaneous Precision Spectroscopy of *pp*, ⁷Be, and *pep* Solar Neutrinos with Borexino Phase-II (<u>https://arxiv.org/abs/1707.09279</u>) (2017)

Comprehensive measurement of *pp*-chain solar neutrinos (Nature 562, 505–510 (2018))

••	
JULIC	
Forschungszent	rum

Extended Data Table 2 | HER analysis systematics

	HER-I		HER-II		HER (tot)	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Target mass	-2.0	+2.0	-2.0	+2.0	-2.0	+2.0
Energy scale	-0.5	+0.5	-4.9	+4.9	-1.7	+1.7
z-cut	-0.7	+0.7	0	0	-0.4	+0.4
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Total systematics (%)	-2.2	+2.2	-5.3	+5.3	-2.7	+2.7

Relevant sources of systematic uncertainties and their contributions to the measured neutrino interaction rates for the HER analyses.

Electron Positron Pulse Shape Differences

- Positrons form Positronium in the scintillator with 3.1 ns (only orthopositronium relevant, para-positronium lifetime is negligible)
- Positronium Formation Probability = 53 %
- Delay (ortho)-positronium formation leads to shape differences
- ➤ → Distortion in Time for Hit PMTs and Beta Events

⁷Be are monoenergetic neutrinos

- "Edge" comes from: Ground State vs ~ 90 % Excited State vs ~ 10 %
- Shape differences visible for different NSI params

P_{ee} shape sensitive to NSI parameters

Constraints on Non-Standard Neutrino Interactions from Borexino Phase-II (arXiv:1905.03512v1)

