SNO+ from water to scintillator

ALBERTA

J. P. Yáñez for the SNO+ Collaboration Weak Interactions and Neutrinos 2019 j.p.yanez@ualberta.ca

SNQ

A matter/antimatter asymmetry search

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Would be its own antiparticle
- Some isotopes undergo double beta decay
 - If the neutrino is Majorana, the decay can produce zero neutrinos
- $2\nu 2\beta$ is rare; $0\nu 2\beta$ would be even rarer. Detection requires to:
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique

A matter/antimatter asymmetry search

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Would be its own antiparticle
- Some isotopes undergo double beta decay
 - If the neutrino is Majorana, the decay can produce zero neutrinos
- $2\nu 2\beta$ is rare; $0\nu 2\beta$ would be even rarer. Detection requires to:
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique

The SNO+ detector

- Very low background neutrino detector
- Located in SNOLAB
 - Sudbury, ON, Canada
- At a depth of 2km (rock, 5900 mwe)
 - About 63 cosmic muons/day

This Is What Life In The Happiest City In Canada Is Like

Welcome to Sudbury, Ontario.

Posted on April 28, 2015, at 10:10 a.m.

Image: Contributor

View 34 comments ↓

Image: Contributor

Image: Contributor</td

Welcome to the happiest city in Canada: Sudbury, Ontario.

The SNO+ detector

- Very low background neutrino detector
- Located in SNOLAB
 - Sudbury, ON, Canada
- At a depth of 2km (rock, 5900 mwe)
 - About 63 cosmic muons/day

The SNO+ detector

- Detector itself is over 9000 PMTs monitoring an acrylic vessel
 - Mounted at 8.5m radius
 - 54% of photocoverage
 - Cavity is flooded with ultra-pure water
- Fiducial volume: spherical acrylic vessel
 - Radius of 6m
 - Held in place by tensylon rope systems
 - Access via neck at the top

Fiducial volume material

Material in vessel sets the physics goal

- 1. Ultra-pure water phase
 - Recording 7 hits/MeV deposited energy (Cherenkov)
 - Physics goals are nucleon decay, solar and reactor neutrinos
 - Understanding of detector optics and external backgrounds
 - Intermediate stage: scintillator
 - Estimated 500 hits/MeV deposited energy
 - Studies of solar, geo and reactor neutrinos
 - Understanding of scintillator backgrounds
 - Ultimate goal: Tellurium-loaded scintillator
 - Search for $0\nu 2\beta$ in 130-Te (Q value 2.5 MeV)
 - Expect 400 hits/MeV deposited energy

Fiducial volume material

Material in vessel sets the physics goal

- 1. Ultra-pure water phase
 - Recording 7 hits/MeV deposited energy (Cherenkov)
 - Physics goals are nucleon decay, solar and reactor neutrinos
 - Understanding of detector optics and external backgrounds
 - Intermediate stage: scintillator
 - Estimated 500 hits/MeV deposited energy
 - Studies of solar, geo and reactor neutrinos
 - Understanding of scintillator backgrounds
 - Ultimate goal: Tellurium-loaded scintillator
 - Search for $0\nu 2\beta$ in 130-Te (Q value 2.5 MeV)
 - Expect 400 hits/MeV deposited energy

Current status

- Taking water data since early 2017
- Physics results include 114.7 days of livetime (of 235 calendar days)
 - Twice the amount of data collected in the mean time
- Extensive detector calibration with deployed and mounted sources

Optical calibration

- Isotropic light source deployed at multiple positions/wavelengths
- Full analysis of optical response in water conducted
 - Attenuation, group velocity, relative angular acceptance of optical sensors
- LED/laser systems mounted and being tested to do constant monitoring

Detector response

- Response calibrated using an ¹⁶N source
 - Producing two gammas \rightarrow Compton scatter e^{-}
 - Data used to characterize energy response and fit algorithms (position, direction)

Solar flux measurement in water

Neutrinos from ⁸B observed

• Flux $\Phi_{^{8}B} = 5.95^{+0.75}_{-0.71}(\text{stat.})^{+0.28}_{-0.30}(\text{syst.}) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}.$ consistent with SNO

 Fit in direction of cos(θ_{sun}), backgrounds are flat

Phys. Rev. D 99, 012012 (2019)

Solar flux measurement in water

- Neutrinos from ⁸B observed
- Flux $\Phi_{^{8}B} = 5.95^{+0.75}_{-0.71} (\text{stat.})^{+0.28}_{-0.30} (\text{syst.}) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}.$ consistent with SNO
- Fit in direction of $\cos(\theta_{sun})$, backgrounds are flat

Background levels

- Internal backgrounds
 - Intrinsic radioactivity of water in the vessel
- External backgrounds
 - Intrinsic radioactivity in vessel, ropes, PMTs and water
 - Will not change in between phases
- Observables to identify backgrounds
 - Energy, position, isotropy and direction

Background levels

- Internal backgrounds
 - Intrinsic radioactivity of water in the vessel
- External backgrounds
 - Intrinsic radioactivity in vessel, ropes, PMTs and water
 - Will not change in between phases
- Observables to identify backgrounds
 - Energy, position, isotropy and direction

External background results

- Multiple analyses constrain the backgrounds
 - Fit to spectral shapes, counting events within a region
- Results are consistent, indicate external background at expectation

Background source	Results (observed / expected) for latest period analyzed		
	z > 0 (upper hemisphere)	z < 0 (lower hemisphere)	
Acrylic vessel + rope system	2.2 ± 0.08 (stat) ^{+2.4} -1.9 (syst)	1.3 ± 0.08 (stat) ^{+1.0} -0.9 (syst)	
External water	0.6 ± 0.06 (stat) ^{+1.9} - _{0.6} (syst)	1.0 ± 0.07 (stat) ^{+3.3} -1.0 (syst)	
PMTs	1.2 ± 0.02 (stat) +1.1 _{-0.5} (syst)		

Invisible nucleon decay search

- Never observed baryonnumber violating process
- Theories propose invisible decay modes (e.g. n → 3v)
- Decay could be observed indirectly with gammas

Results from nucleon decay search

- Selection based on straight cuts to remove backgrounds
- Two analysis performed: cut & count and likelihood fit

Data	Observed	Expected		
set	events	events		
1	1	$1.17^{+4.60}_{-0.05} {}^{+1.33}_{-0.39}$		
2	2	$2.35^{+4.62}_{-0.40} {}^{+3.44}_{-0.81}$		
3	4	$3.47^{+4.60}_{-0.15} {}^{+3.11}_{-0.96}$		
4	8	$3.37^{+4.60}_{-0.17}$ $^{+2.70}_{-0.98}$		
5	1	$1.46^{+4.60}_{-0.13} {}^{+2.17}_{-0.60}$		
6	6	$5.84^{+7.40}_{-2.31}$ $^{+2.68}_{-0.62}$		
Total	22	$17.65^{+12.68}_{-2.36}$ $^{+6.51}_{-1.85}$		

• No excesses, only limits

Limits on nucleon decay

• Results and comparison with existing limits

	Spectral analysis	Counting analysis	Existing limits
n	$2.5 \times 10^{29} \text{ y}$	$2.6 \times 10^{29} \text{ y}$	5.8×10^{29} y[KamLAND]
p	$3.6 \times 10^{29} \text{ y}$	$3.4 \times 10^{29} \text{ y}$	2.1×10^{29} y [SNO]
pp	$4.7 \times 10^{28} \text{ y}$	$4.1 \times 10^{28} \text{ y}$	5.0×10^{25} y [Borexino]
pn	$2.6 \times 10^{28} \text{ y}$	$2.3 \times 10^{28} \text{ y}$	2.1×10^{25} y [Treyak et al.]
nn	$1.3 \times 10^{28} \text{ y}$	$0.6 \times 10^{28} \text{ y}$	$1.4 \times 10^{30} \text{ y[KamLAND]}$

Phys. Rev. D 99, 032008 (2019)

Next: scintillator fill

- Cover-gas system in place to seal the vessel
- Radon monitor in place to follow activity
- Liquid scintillator purification plant being tested
 - About 1.8 tonnes injected in the vessel thus far
- Fill had to be halted several months due to a leak in the distillation column
- Leak has been repaired about to restart fill very soon

Tellurium process systems installed

• TeA and TeDiol plants moving to commissioning

2016

Telluric acid plant

2019

Tellurium process systems installed

• TeA and TeDiol plants moving to commissioning

Majorana neutrino search

- Signal of Majorana neutrinos in the energy spectrum
- Using best knowledge of background levels
- Two analyses planned
 - Cut&count
 - Likelihood

Majorana neutrino search

Majorana neutrino search

Towards the future

- SNO+ Phase I is 0.5% Te-loaded
 - Main backgrounds aren't from loading
 - Test-bed for a multi-ton experiment
- Telluric acid loading R&D
 - Chemistry studies to increase light yield
- Detector upgrade path
 - High QE PMTs being studied
 - Possible to replace PMT focusing

Summary

- Water phase wrapping up
 - Calibration systems tested
 - Detector response understood
 - Modeling of sub-leading effects with low background data
- Results from the water phase out
 - Nucleon decay limits and observation of solar neutrinos published
 - Working on neutron capture and reactor antineutrinos in water
- Scintillator phase to begin soon
 - Loading liquid scintillator this year

University of Alberta Queen's University Laurentian University TRIUMF SNOLAB

LIP Coimbra LIP Lisboa

Oxford University Queen Mary University of London University of Liverpool University of Sussex University of Lancaster

Thank you for your attention