SNO+ from water to scintillator

J. P. Yáñez for the SNO+ Collaboration
Weak Interactions and Neutrinos 2019
j.p.yanez@ualberta.ca
A matter/antimatter asymmetry search

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Would be its own antiparticle
- Some isotopes undergo double beta decay
 - If the neutrino is Majorana, the decay can produce zero neutrinos
- $2\nu2\beta$ is rare; $0\nu2\beta$ would be even rarer. Detection requires to:
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique
A matter/antimatter asymmetry search

- The neutrino could be a Majorana fermion
 - Only possible for neutral particles
 - Would be its own antiparticle
- Some isotopes undergo double beta decay
 - If the neutrino is Majorana, the decay can produce zero neutrinos
- $2\nu2\beta$ is rare; $0\nu2\beta$ would be even rarer.
Detection requires to:
 - Achieve (and understand) very low background
 - Accurately determine detector response
 - Consider scalability of the technique

http://next.ific.uv.es/
The SNO+ detector

- Very low background neutrino detector
- Located in SNOLAB
 - Sudbury, ON, Canada
- At a depth of 2km (rock, 5900 mwe)
 - About 63 cosmic muons/day
The SNO+ detector

- Very low background neutrino detector
- Located in SNOLAB
 - Sudbury, ON, Canada
- At a depth of 2km (rock, 5900 mwe)
 - About 63 cosmic muons/day
The SNO+ detector

- Detector itself is over 9000 PMTs monitoring an acrylic vessel
 - Mounted at 8.5m radius
 - 54% of photocoverage
 - Cavity is flooded with ultra-pure water

- Fiducial volume: spherical acrylic vessel
 - Radius of 6m
 - Held in place by tensylon rope systems
 - Access via neck at the top
Fiducial volume material

Material in vessel sets the physics goal

1. Ultra-pure water phase
 - Recording 7 hits/MeV deposited energy (Cherenkov)
 - Physics goals are nucleon decay, solar and reactor neutrinos
 - Understanding of detector optics and external backgrounds

2. Intermediate stage: scintillator
 - Estimated 500 hits/MeV deposited energy
 - Studies of solar, geo and reactor neutrinos
 - Understanding of scintillator backgrounds

3. Ultimate goal: Tellurium-loaded scintillator
 - Search for $0\nu2\beta$ in 130-Te (Q value 2.5 MeV)
 - Expect 400 hits/MeV deposited energy
Material in vessel sets the physics goal

1. Ultra-pure water phase
 - Recording 7 hits/MeV deposited energy (Cherenkov)
 - Physics goals are nucleon decay, solar and reactor neutrinos
 - Understanding of detector optics and external backgrounds

2. Intermediate stage: scintillator
 - Estimated 500 hits/MeV deposited energy
 - Studies of solar, geo and reactor neutrinos
 - Understanding of scintillator backgrounds

3. Ultimate goal: Tellurium-loaded scintillator
 - Search for $0v2\beta$ in 130-Te (Q value 2.5 MeV)
 - Expect 400 hits/MeV deposited energy
Current status

- Taking water data since early 2017
- Physics results include 114.7 days of livetime (of 235 calendar days)
 - Twice the amount of data collected in the mean time
- Extensive detector calibration with deployed and mounted sources
Optical calibration

• Isotropic light source deployed at multiple positions/wavelengths
• Full analysis of optical response in water conducted
 • Attenuation, group velocity, relative angular acceptance of optical sensors
• LED/laser systems mounted and being tested to do constant monitoring
Detector response

• Response calibrated using an 16N source
 • Producing two gammas \rightarrow Compton scatter e^-
 • Data used to characterize energy response and fit algorithms (position, direction)
Solar flux measurement in water

- Neutrinos from ^8B observed

- Flux
 \[\Phi_{^8\text{B}} = (5.95^{+0.75}_{-0.71}\text{ (stat.)}^{+0.28}_{-0.30}\text{ (syst.)}) \times 10^6 \text{ cm}^{-2}\text{s}^{-1}. \]
 consistent with SNO

- Fit in direction of $\cos(\theta_{\text{sun}})$, backgrounds are flat

Solar flux measurement in water

- Neutrinos from 8B observed

- Flux

$$\Phi_{8B} = (5.95^{+0.75}_{-0.71} \text{ (stat.)}^{+0.28}_{-0.30} \text{ (syst.)} \times 10^6 \text{ cm}^{-2} \text{s}^{-1}. $$

 consistent with SNO

- Fit in direction of $\cos(\theta_{\text{sun}})$, backgrounds are flat

Background levels

• Internal backgrounds
 • Intrinsic radioactivity of water in the vessel

• External backgrounds
 • Intrinsic radioactivity in vessel, ropes, PMTs and water
 • Will not change in between phases

• Observables to identify backgrounds
 • Energy, position, isotropy and direction
Background levels

• Internal backgrounds
 • Intrinsic radioactivity of water in the vessel

• External backgrounds
 • Intrinsic radioactivity in vessel, ropes, PMTs and water
 • Will not change in between phases

• Observables to identify backgrounds
 • Energy, position, isotropy and direction
External background results

• Multiple analyses constrain the backgrounds
 • Fit to spectral shapes, counting events within a region
• Results are consistent, indicate external background at expectation

<table>
<thead>
<tr>
<th>Background source</th>
<th>Results (observed / expected) for latest period analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z > 0 (upper hemisphere)</td>
</tr>
<tr>
<td>Acrylic vessel + rope system</td>
<td>2.2 ± 0.08 (stat) +2.4-1.9 (syst)</td>
</tr>
<tr>
<td>External water</td>
<td>0.6 ± 0.06 (stat) +1.9-0.6 (syst)</td>
</tr>
<tr>
<td>PMTs</td>
<td>1.2 ± 0.02 (stat) +1.1-0.5 (syst)</td>
</tr>
</tbody>
</table>
Invisible nucleon decay search

• Never observed baryon-number violating process

• Theories propose invisible decay modes (e.g. \(n \to 3\nu \))

• Decay could be observed indirectly with gammas
Results from nucleon decay search

- Selection based on straight cuts to remove backgrounds
- Two analysis performed: cut & count and likelihood fit
- No excesses, only limits

<table>
<thead>
<tr>
<th>Data set</th>
<th>Observed events</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$1.17^{+4.60}{-0.05}^{+1.33}{-0.39}$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$2.35^{+4.62}{-0.40}^{+3.44}{-0.81}$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$3.47^{+4.60}{-0.15}^{+3.11}{-0.96}$</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>$3.37^{+4.60}{-0.17}^{+2.70}{-0.98}$</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>$1.46^{+4.60}{-0.13}^{+2.17}{-0.60}$</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>$5.84^{+7.40}{-2.31}^{+2.68}{-0.62}$</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>$17.65^{+12.68}{-2.36}^{+6.51}{-1.85}$</td>
</tr>
</tbody>
</table>

Limits on nucleon decay

- Results and comparison with existing limits

<table>
<thead>
<tr>
<th></th>
<th>Spectral analysis</th>
<th>Counting analysis</th>
<th>Existing limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2.5×10^{29} y</td>
<td>2.6×10^{29} y</td>
<td>5.8×10^{29} y [KamLAND]</td>
</tr>
<tr>
<td>p</td>
<td>3.6×10^{29} y</td>
<td>3.4×10^{29} y</td>
<td>2.1×10^{29} y [SNO]</td>
</tr>
<tr>
<td>pp</td>
<td>4.7×10^{28} y</td>
<td>4.1×10^{28} y</td>
<td>5.0×10^{28} y [Borexino]</td>
</tr>
<tr>
<td>pn</td>
<td>2.6×10^{28} y</td>
<td>2.3×10^{28} y</td>
<td>2.1×10^{28} y [Treyak et al.]</td>
</tr>
<tr>
<td>nn</td>
<td>1.3×10^{28} y</td>
<td>0.6×10^{28} y</td>
<td>1.4×10^{30} y [KamLAND]</td>
</tr>
</tbody>
</table>

Next: scintillator fill

• Cover-gas system in place to seal the vessel
• Radon monitor in place to follow activity
• Liquid scintillator purification plant being tested
 • About 1.8 tonnes injected in the vessel thus far
• Fill had to be halted several months due to a leak in the distillation column
• Leak has been repaired – about to restart fill very soon
Tellurium process systems installed

- TeA and TeDiol plants moving to commissioning

Telluric acid plant
Tellurium process systems installed

- TeA and TeDiol plants moving to commissioning
Majorana neutrino search

- Signal of Majorana neutrinos in the energy spectrum
- Using best knowledge of background levels
- Two analyses planned
 - Cut&count
 - Likelihood
Majorana neutrino search

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ]
Counts/Year: 9.47

- Cosmogenic
- $^{8}\text{B}\nu\text{ES}$
- $2\nu\beta\beta$
- (α, n)
- External γ
- Internal Th chain
- Internal U

Counts/5y/20keV bin

Graph showing reconstructed energy vs counts/5y/20keV bin for various sources:
- $0\nu\beta\beta$ (100 meV)
- $2\nu\beta\beta$
- (α, n)
- U chain
- Th chain
- External
- $^{8}\text{B}\nu\text{ES}$
- Cosmogenic
Majorana neutrino search

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ]
Counts/Year: 9.47

Cosmogenic
2νββ
(α, n)
External γ
Internal Th chain
Internal U chain

Projected 2024 0νββ Sensitivities

$\mathcal{M}_{\beta\beta}$ (meV)

$T_{1/2}^{0\nu}$ (yrs)
Towards the future

• SNO+ Phase I is 0.5% Te-loaded
 • Main backgrounds aren’t from loading
 • Test-bed for a multi-ton experiment

• Telluric acid loading R&D
 • Chemistry studies to increase light yield

• Detector upgrade path
 • High QE PMTs being studied
 • Possible to replace PMT focusing
Summary

• Water phase wrapping up
 • Calibration systems tested
 • Detector response understood
 • Modeling of sub-leading effects with low background data

• Results from the water phase out
 • Nucleon decay limits and observation of solar neutrinos published
 • Working on neutron capture and reactor antineutrinos in water

• Scintillator phase to begin soon
 • Loading liquid scintillator this year
Thank you for your attention