T2K neutrino oscillation results

Ciro Riccio
WIN2019 - The 27th International Workshop on Weak Interactions and Neutrinos
June 4th, 2019
Overview
Overview

• Neutrino oscillations
Overview

• Neutrino oscillations

• T2K experimental setup
Overview

- Neutrino oscillations
- T2K experimental setup
- Oscillation analysis strategy
Overview

• Neutrino oscillations

• T2K experimental setup

• Oscillation analysis strategy

• T2K latest results
Overview

• Neutrino oscillations

• T2K experimental setup

• Oscillation analysis strategy

• T2K latest results

• Conclusions
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i \delta_{CP}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[\Delta m^2_{ji} = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}\]
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Atmospheric and accelerator
\[\theta_{23} \sim 50^\circ\]
\[|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2\]

\[
\Delta m_{ji}^2 = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}
\]
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- Atmospheric and accelerator
 - \(\theta_{23} \sim 50^\circ \)
 - \(|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \)
- Reactor and accelerator
 - \(\theta_{13} \sim 8^\circ \)
- Accelerator only \(\delta_{CP} = ?? \)

\[\Delta m_{ji}^2 = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}\]
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Atmospheric and accelerator
\[\theta_{23} \sim 50^\circ\]
\[|\Delta m_{32}^2| \sim 2.5 \times 10^{-3}\] eV\(^2\)

Reactors and accelerators
\[\theta_{13} \sim 8^\circ\]

Accelerator only \[\delta_{CP} = ?\]

Solar and reactor
\[\theta_{12} \sim 34^\circ\]
\[|\Delta m_{12}^2| \sim 7.5 \times 10^{-5}\] eV\(^2\)

\[\Delta m_{ji}^2 = m_j^2 - m_i^2\]
\[c_{ij} = \cos \theta_{ij}\]
\[s_{ij} = \sin \theta_{ij}\]
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

$$
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
$$

Atmospheric and accelerator
$$\theta_{23} \sim 50^\circ$$
$$|\Delta m_{32}^2| \sim 2.5\times10^{-3}\text{ eV}^2$$

Reactor and accelerator
$$\theta_{13} \sim 8^\circ$$
$$\text{Accelerator only } \delta_{CP} = ??$$

Solar and reactor
$$\theta_{12} \sim 34^\circ$$
$$|\Delta m_{12}^2| \sim 7.5\times10^{-5}\text{ eV}^2$$

Inferred from event rate: $P(\nu_\alpha \rightarrow \nu_\beta) = P(E,L,\Delta m^2,\theta)$

$$\Delta m^2_{ji} = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}$$
Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing angles and 1 complex CPV phase

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Atmospheric and accelerator
\[\theta_{23} \sim 50^\circ\]
\[|\Delta m_{32}^2| \sim 2.5\times 10^{-3}\text{ eV}^2\]

Reactor and accelerator
\[\theta_{13} \sim 8^\circ\]
Accelerator only \[\delta_{CP} = ??\]

Solar and reactor
\[\theta_{12} \sim 34^\circ\]
\[\Delta m_{12}^2 \sim 7.5\times 10^{-5}\text{ eV}^2\]

Inferred from event rate:
\[P(\nu_\alpha \rightarrow \nu_\beta) = P(E,L,\Delta m^2,\theta)\]

Open questions: \[\delta_{CP}, \theta_{23} \text{ octant and mass ordering}\]

\[\Delta m_{ji}^2 = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}\]
The T2K experiment

Super-Kamiokande

Near Detectors

J-PARC

Mt. Noguchi-Goro
2,924 m

Mt. Ikeno-Yama
1,360 m

1,700 m below sea level

295 km

Ciro Riccio, Naples U. & INFN | WIN2019
The T2K experiment

Super-Kamiokande

J-PARC

Near Detectors

Mt. Noguchi-Goro 2,924 m

Mt. Ikeno-Yama 1,360 m

1,700 m below sea level

295 km

Physics goals:

Ciro Riccio, Naples U. & INFN | WIN2019
The T2K experiment

Physics goals:
- Precise measurement of $\theta_{23}, |\Delta m_{32}^2|$
The T2K experiment

 Physics goals:
 • Precise measurement of θ_{23}, $|\Delta m_{32}^2|$
 • Determine θ_{13} and δ_{CP}
Physics goals:

- Precise measurement of θ_{23}, $|\Delta m_{32}^2|$
- Determine θ_{13} and δ_{CP}
- ν cross section measurements at the near detectors
Oscillations measurements at T2K
Oscillations measurements at T2K

Long baseline accelerator-based experiments are sensitive to:
Long baseline accelerator-based experiments are sensitive to:

- Atmospheric parameters ($\theta_{23}, \Delta m_{32}^2$) through ν_μ disappearance

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)
\]
Oscillations measurements at \(T2K \)

Long baseline accelerator-based experiments are sensitive to:

- Atmospheric parameters \((\theta_{23}, \Delta m_{32}^2)\) through \(\nu_\mu\) disappearance

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)
\]

- \((\theta_{13}, \delta_{\text{CP}})\) depends on the \(\nu_e/\bar{\nu}_e\) appearance

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right) \mp O(\delta_{\text{CP}})
\]
Oscillations measurements at T2K

Long baseline accelerator-based experiments are sensitive to:

- Atmospheric parameters ($\theta_{23}, \Delta m_{32}^2$) through ν_μ disappearance

\[P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right) \]

- (θ_{13}, δ_{CP}) depends on the $\nu_e/\bar{\nu}_e$ appearance

\[P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right) \text{ (±) } O(\delta_{CP}) \]

In the case of T2K δ_{CP} change the appearance probability by ±30% while the mass ordering has a ~10% effects
30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target producing hadrons (mainly pions and kaons)
30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target producing hadrons (mainly pions and kaons)

Hadrons are focused and selected in charge by 3 electromagnetic horns:
- ν_μ beam created by π^+ and $\bar{\nu}_\mu$ beam by π^- decay
30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target producing hadrons (mainly pions and kaons)

Hadrons are focused and selected in charge by 3 electromagnetic horns:
- ν_μ beam created by π^+ and $\bar{\nu}_\mu$ beam by π^- decay

Detectors 2.5° off the direction of the beam centered around 0.6 GeV. Off-axis method reduce high energy tail and maximize oscillation detection probabilities

$\sin^2 2\theta_{23} = 1.0$
$\sin^2 2\theta_{13} = 0.1$
$\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2$
The off-axis near detector (ND280)
The off-axis near detector (ND280)

A large dipole magnet (UA1) produces 0.2 T.
The off-axis near detector (ND280)

A large dipole magnet (UA1) produces 0.2 T.

Side muon range detector (SMRD): plastic scintillators instrumenting the magnet iron slice

Ciro Riccio, Naples U. & INFN | WIN2019
The off-axis near detector (ND280)

A large dipole magnet (UA1) produces 0.2 T.

Side muon range detector (SMRD): plastic scintillators instrumenting the magnet iron slice

π^0 detector (P0D): xy layers plastic scintillator alternated with water layers
The off-axis near detector (ND280)

A large dipole magnet (UA1) produces 0.2 T.

Side muon range detector (SMRD): plastic scintillators instrumenting the magnet iron slice

\(\pi^0 \) detector (P0D): \(xy \) layers plastic scintillator alternated with water layers

3 Time projection chambers (TPC): reconstruct momentum and charge, PID based on ionization
The off-axis near detector (ND280)

A large dipole magnet (UA1) produces 0.2 T.

Side muon range detector (SMRD): plastic scintillators instrumenting the magnet iron slice

π^0 detector (P0D): xy layers plastic scintillator alternated with water layers

3 Time projection chambers (TPC): reconstruct momentum and charge, PID based on ionization

2 Fine-grained detectors (FGD): upstream constituted of xy layers of plastic scintillator, the other is alternated with water layers
The off-axis near detector (ND280)

- A large dipole magnet (UA1) produces 0.2 T.
- Side muon range detector (SMRD): plastic scintillators instrumenting the magnet iron slice.
- π^0 detector (P0D): xy layers plastic scintillator alternated with water layers.
- 3 Time projection chambers (TPC): reconstruct momentum and charge, PID based on ionization.
- 2 Fine-grained detectors (FGD): upstream constituted of xy layers of plastic scintillator, the other is alternated with water layers.
- An electromagnetic calorimeter (ECal) is used to distinguish tracks from showers.

Ciro Riccio, Naples U. & INFN | WIN2019
Super-Kamiokande (SK)

SK is a 50 kton water Cherenkov detector
Super-Kamiokande (SK)

SK is a 50 kton water Cherenkov detector

Inner detector ~11000
20 inch PMTs

Ciro Riccio, Naples U. & INFN | WIN2019
Super-Kamiokande (SK)

SK is a 50 kton water Cherenkov detector

Inner detector ~11000
20 inch PMTs

Outer detector ~2000
8 inch PMTs

Ciro Riccio, Naples U. & INFN | WIN2019
Super-Kamiokande (SK)

SK is a 50 kton water Cherenkov detector

Inner detector ~11000
20 inch PMTs

Outer detector ~2000
8 inch PMTs

Very good μ/e separation

Ciro Riccio, Naples U. & INFN | WIN2019
Collected data

• Total proton on target (POT) collected: 3.1×10^{21} POT: 1.5×10^{21} POT in ν mode and 1.6×10^{21} POT in $\bar{\nu}$ mode

• Beam power 500 kW!
Flux prediction:
proton beam measurements and
external hadron production
measurements

Neutrino interactions model:
tuned using external data
T2K oscillation analysis strategy

Flux prediction:
proton beam measurements and external hadron production measurements

ND280 measurements:
select CC ν_μ and $\bar{\nu}_\mu$ interactions
constrain flux and cross sections

Neutrino interactions model:
tuned using external data
T2K oscillation analysis strategy

Flux prediction:
proton beam measurements and external hadron production measurements

Prediction at the Far Detector:
ND280 measurements predict the expected events at SK

ND280 measurements:
select CC ν_μ and $\bar{\nu}_\mu$ interactions constrain flux and cross sections

Neutrino interactions model:
tuned using external data
T2K oscillation analysis strategy

Flux prediction:
proton beam measurements and
external hadron production
measurements

ND280 measurements:
select CC ν_μ and $\bar{\nu}_\mu$ interactions
constrain flux and cross sections

Neutrino interactions model:
tuned using external data

Prediction at the Far Detector:
ND280 measurements predict the
expected events at SK

SK measurements:
Select CC $\nu_\mu/\bar{\nu}_\mu$ and $\nu_e/\bar{\nu}_e$ candidates
after the oscillations
T2K oscillation analysis strategy

Flux prediction:
proton beam measurements and external hadron production measurements

ND280 measurements:
select CC ν_μ and $\bar{\nu}_\mu$ interactions constrain flux and cross sections

Prediction at the Far Detector:
ND280 measurements predict the expected events at SK

SK measurements:
Select CC $\nu_\mu/\bar{\nu}_\mu$ and $\nu_e/\bar{\nu}_e$ candidates after the oscillations

Neutrino interactions model:
tuned using external data

Extract oscillation parameters
T2K oscillation analysis strategy

Flux prediction: proton beam measurements and external hadron production measurements

ND280 measurements: select CC ν_μ and $\bar{\nu}_\mu$ interactions constrain flux and cross sections

Neutrino interactions model: tuned using external data

Prediction at the Far Detector: ND280 measurements predict the expected events at SK

SK measurements: Select CC $\nu_\mu/\bar{\nu}_\mu$ and $\nu_e/\bar{\nu}_e$ candidates after the oscillations

Extract oscillation parameters

Ciro Riccio, Naples U. & INFN | WIN2019
Neutrino fluxes

SK: Neutrino Mode, ν_μ

SK: Antineutrino Mode, $\bar{\nu}_\mu$
Neutrino fluxes

Fluxes known with uncertainties smaller than 10% based on NA61/SHINE thin-target measurements
Neutrino fluxes

Fluxes known with uncertainties smaller than 10% based on NA61/SHINE thin-target measurements

Dominant systematics due to the hadron interactions modeling
Neutrino fluxes

It will be reduced to ~5% by using NA61/SHINE measurements of T2K replica target.

Fluxes known with uncertainties smaller than 10% based on NA61/SHINE thin-target measurements.

Dominant systematics due to the hadron interactions modeling.
Relevant ν interactions at T2K

\[\sigma_{\nu_{\mu}CH}(E_\nu) \]

FHC ν_μ Flux (arbitrary norm.)

- CC-Total
- CC-RES
- CC-1p1h+2p2h
- NC-Total
- NC-RES

\[\frac{\sigma(E_\nu/E_\nu)(10^{38} \text{cm}^2 \text{nucleon}^{-1} \text{GeV}^{-1})}{E_\nu (\text{GeV})} \]

T2K: ND off-axis

[1707.01048] B.F. Super-K oscillated

Ciro Riccio, Naples U. & INFN | WIN2019
Relevant ν interactions at T2K

CCQE
(Charged-Current Quasi-Elastic)

ν_{μ} Flux (arbitrary norm.)

ν_{μ} ch (E_{ν})

$\frac{\sigma(E_{\nu})/E_{\nu}}{(10^{38}\text{cm}^{2}\text{nucleon}^{-1}\text{GeV}^{-1})}$

E_{ν} (GeV)

ν_{μ} to μ^-

W^+

n to p

Ciro Riccio, Naples U. & INFN | WIN2019
Relevant ν interactions at $T2K$.

CCQEs

- Charged-Current Quasi-Elastic (CCQE)
- Charged-Current Resonant pion production (CCRES)

Fluxes

- ν_μ flux (arbitrary norm.)
- μ flux

Relevant Events

- CC-Totals
- CC-RES
- CC-1p1h+2p2h
- NC-Totals
- NC-RES

Graphs

- Graph showing the cross-section $\sigma(E_{\nu})/E_{\nu}$ in units of 10^{-38} cm2 nucleon$^{-1}$ GeV$^{-1}$.
- Graph showing the ν_μ and μ^- interactions with W^+ and π^+.

References

- NEUT 5.3.6, $\sigma_{\nu_{CH}}(E_{\nu})$
- FHC ν_μ flux (arbitrary norm.)
- T2K ND off-axis
- [1707.01048] B.F. Super-K oscillated

Author

Ciro Riccio, Naples U. & INFN | WIN2019
Relevant ν interactions at T2K

CCQE
(Charged-Current Quasi-Elastic)

$\nu_\mu \rightarrow \mu^-$

$\nu_\mu \rightarrow \mu^- W^+$

$\nu_\mu \rightarrow \mu^- n \rightarrow \mu^- p + \Delta^{++} \pi^+$

$\nu_\mu \rightarrow \mu^- n \rightarrow \mu^- p + \pi^+$

CCRES
(Charged-Current Resonant pion production)

$\nu_\mu \rightarrow \mu^- W^+$

$\nu_\mu \rightarrow \mu^- n \rightarrow \mu^- p + \pi^+$

CCDIS
(Charged-Current Deep Inelastic Scattering)

$\nu_\mu \rightarrow \mu^- W^+$

$\nu_\mu \rightarrow \mu^- n \rightarrow \mu^- p + n, p + X$

--

Ciro Riccio, Naples U. & INFN | WIN2019
Nuclear effects
Nuclear effects

Nucleons bound in the nucleus \Rightarrow Nuclear effect!
Nuclear effects

Nucleons bound in the nucleus \implies Nuclear effect!
Nuclear effects

Nucleons bound in the nucleus \rightarrow Nuclear effect!

Fermi motion

Nucleon correlations
Nuclear effects

Nucleons bound in the nucleus \rightarrow Nuclear effect!

Fermi motion

Nucleon correlations

Final State Interaction (FSI)
Nuclear effects

Nucleons bound in the nucleus \rightarrow Nuclear effect!

Fermi motion

Nucleon correlations

Final State Interaction (FSI)

Neutrino Energy reconstructed using CCQE hypothesis
Nuclear effects

Nucleons bound in the nucleus \Rightarrow Nuclear effect!

Fermi motion

Nucleon correlations

Final State Interaction (FSI)

Neutrino Energy reconstructed using CCQE hypothesis

Nuclear effects introduce a bias in neutrino energy reconstruction

Ciro Riccio, Naples U. & INFN | WIN2019
Detector acceptance

Nucleons bound in the nucleus \(\Rightarrow \) Nuclear effect!

Fermi motion

Nucleon correlations

Final State Interaction (FSI)
Detector acceptance

Nucleons bound in the nucleus ⇒ Nuclear effect!

Fermi motion

Nucleon correlations

Final State Interaction (FSI)

Limited detector acceptance
Detector acceptance

Nucleons bound in the nucleus \(\Rightarrow\) Nuclear effect!

Limited detector acceptance
Nucleons bound in the nucleus ⇒ Nuclear effect!

Detector acceptance

Limited detector acceptance

Fermi motion
Nucleon correlations
Final State Interaction (FSI)
Detector acceptance

Nucleons bound in the nucleus \Rightarrow Nuclear effect!

- Fermi motion
- Nucleon correlations
- Final State Interaction (FSI)

$\nu_\mu \rightarrow W^+ \rightarrow \mu^-$

Detector acceptance

$\nu_\mu \rightarrow W^+ \rightarrow \mu^-$

P0D	FGD	FGD
ECal | TPC | ECal

Magnet | SMRD

Ciro Riccio, Naples U. & INFN | WIN2019
Detector acceptance

Nucleons bound in the nucleus \Rightarrow Nuclear effect!

Increase acceptance and reduce the dependence from the cross-section modeling measuring interaction topologies
ND280 measurements: ν beam
ND280 measurements: ν beam

CC-0\pi

<table>
<thead>
<tr>
<th>Magnet</th>
<th>SMRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>FGD</td>
</tr>
<tr>
<td>p</td>
<td>μ^-</td>
</tr>
<tr>
<td>FGD</td>
<td>FGD</td>
</tr>
<tr>
<td>ECal</td>
<td></td>
</tr>
</tbody>
</table>

Events/(100 MeV/c)

Reconstructed muon momentum (MeV/c)

Data / Sim.

Ciro Riccio, Naples U. & INFN | WIN2019
ND280 measurements: ν beam

CC-0\(\pi\)

- Magnet
- SMRD
- FGD
- TPC
- ECAL

CC-1\(\pi^+\)

- Magnet
- SMRD
- FGD
- TPC
- ECAL

Events/(100 MeV/c)

<table>
<thead>
<tr>
<th>Data / Sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>

Reconstructed muon momentum (MeV/c)

Data / Sim.

<table>
<thead>
<tr>
<th>Data / Sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>
ND280 measurements: ν beam

CC-0π

CC-1π^+

CC-Other

Magnet
SMRD

FGD μ^- FGD

TPC p

ECal

Events/(100 MeV/c)

Reconstructed muon momentum (MeV/c)

Data / Sim.

PRELIMINARY

Ciro Riccio, Naples U. & INFN | WIN2019
ND280 measurements: $\bar{\nu}$ beam
ND280 measurements: $\bar{\nu}$ beam

CC-1Track

<table>
<thead>
<tr>
<th>Magnet</th>
<th>SMRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD μ^\pm FGD</td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td></td>
</tr>
<tr>
<td>ECAL</td>
<td></td>
</tr>
</tbody>
</table>

Ciro Riccio, Naples U. & INFN | WIN2019
ND280 measurements: $\bar{\nu}$ beam
ND280 measurements: $\bar{\nu}$ beam

CC-1Track

<table>
<thead>
<tr>
<th>Magnet</th>
<th>SMRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD μ^\pm</td>
<td>FGD</td>
</tr>
<tr>
<td>TPC</td>
<td>ECal</td>
</tr>
</tbody>
</table>

CC-NTracks

<table>
<thead>
<tr>
<th>μ^\pm</th>
</tr>
</thead>
</table>

$\bar{\nu}_\mu$ in $\bar{\nu}$ mode
int. in FGD1
CC-NTracks

![Graph showing data and simulated events vs. reconstructed muon momentum (MeV/c)]

Ciro Riccio, Naples U. & INFN | WIN2019
ND280 measurements: $\bar{\nu}$ beam

CC-1Track

CC-NTracks

Data / Sim.

Events/(100 MeV/c)

Reconstructed muon momentum (MeV/c)

Ciro Riccio, Naples U. & INFN | WIN2019
ND280 fit results

Impact on SK:

<table>
<thead>
<tr>
<th>Sample</th>
<th>w/o ND280</th>
<th>w/ ND280</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu 1\mu$</td>
<td>14.6%</td>
<td>5.1%</td>
</tr>
<tr>
<td>$\overline{\nu} 1\mu$</td>
<td>12.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>$\nu 1e$</td>
<td>16.9%</td>
<td>8.8%</td>
</tr>
<tr>
<td>$\overline{\nu} 1e$</td>
<td>14.4%</td>
<td>7.1%</td>
</tr>
<tr>
<td>$\nu 1e + 1\pi^+$</td>
<td>22.0%</td>
<td>18.7%</td>
</tr>
</tbody>
</table>
Observed events at SK

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>$\delta = -\pi/2$</th>
<th>$\delta = 0$</th>
<th>$\delta = +\pi/2$</th>
<th>$\delta = \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like ν mode</td>
<td>75</td>
<td>74.4</td>
<td>62.2</td>
<td>50.6</td>
<td>62.7</td>
</tr>
<tr>
<td>e-like+$1\pi^+$ ν mode</td>
<td>15</td>
<td>7.0</td>
<td>6.1</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>e-like $\bar{\nu}$ mode</td>
<td>15</td>
<td>17.1</td>
<td>19.4</td>
<td>21.7</td>
<td>19.3</td>
</tr>
<tr>
<td>μ-like ν mode</td>
<td>243</td>
<td>272.4</td>
<td>272.0</td>
<td>272.4</td>
<td>272.8</td>
</tr>
<tr>
<td>μ-like $\bar{\nu}$ mode</td>
<td>140</td>
<td>139.2</td>
<td>139.2</td>
<td>139.5</td>
<td>139.9</td>
</tr>
</tbody>
</table>
Observed events at SK

<table>
<thead>
<tr>
<th>Neutrino mode</th>
<th>Observed</th>
<th>$\delta = -\pi/2$</th>
<th>$\delta = 0$</th>
<th>$\delta = +\pi/2$</th>
<th>$\delta = \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like ν mode</td>
<td>75</td>
<td>74.4</td>
<td>62.2</td>
<td>50.6</td>
<td>62.7</td>
</tr>
<tr>
<td>e-like$+1\pi^+$ ν mode</td>
<td>15</td>
<td>7.0</td>
<td>6.1</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>e-like $\bar{\nu}$ mode</td>
<td>15</td>
<td>17.1</td>
<td>19.4</td>
<td>21.7</td>
<td>19.3</td>
</tr>
<tr>
<td>μ-like ν mode</td>
<td>243</td>
<td>272.4</td>
<td>272.0</td>
<td>272.4</td>
<td>272.8</td>
</tr>
<tr>
<td>μ-like $\bar{\nu}$ mode</td>
<td>140</td>
<td>139.2</td>
<td>139.2</td>
<td>139.5</td>
<td>139.9</td>
</tr>
</tbody>
</table>

T2K data prefer $\delta_{CP} = -\pi/2$: maximize ν_e appearance and minimize $\bar{\nu}_e$ appearance
Observed events at SK

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>$\delta = -\pi/2$</th>
<th>$\delta = 0$</th>
<th>$\delta = +\pi/2$</th>
<th>$\delta = \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like ν mode</td>
<td>75</td>
<td>74.4</td>
<td>62.2</td>
<td>50.6</td>
<td>62.7</td>
</tr>
<tr>
<td>e-like+1π^+ ν mode</td>
<td>15</td>
<td>7.0</td>
<td>6.1</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>e-like $\bar{\nu}$ mode</td>
<td>15</td>
<td>17.1</td>
<td>19.4</td>
<td>21.7</td>
<td>19.3</td>
</tr>
<tr>
<td>μ-like ν mode</td>
<td>243</td>
<td>272.4</td>
<td>272.0</td>
<td>272.4</td>
<td>272.8</td>
</tr>
<tr>
<td>μ-like $\bar{\nu}$ mode</td>
<td>140</td>
<td>139.2</td>
<td>139.2</td>
<td>139.5</td>
<td>139.9</td>
</tr>
</tbody>
</table>

T2K data prefer $\delta_{CP} = -\pi/2$: maximize ν_e appearance and minimize $\bar{\nu}_e$ appearance

In ν-mode the deficit of μ-like events is compatible with statistical and systematic uncertainties

Ciro Riccio, Naples U. & INFN | WIN2019
T2K oscillation analysis strategy

Flux prediction:
proton beam measurements and external hadron production measurements

ND280 measurements:
select CC ν_μ and $\bar{\nu}_\mu$ interactions
constrain flux and cross sections

Neutrino interactions model:
tuned using external data

Prediction at the Far Detector:
ND280 measurements predict the expected events at SK

SK measurements:
Select CC $\nu_\mu/\bar{\nu}_\mu$ and $\nu_e/\bar{\nu}_e$ candidates
after the oscillations

Extract oscillation parameters

Ciro Riccio, Naples U. & INFN | WIN2019
T2K data prefer values of $\delta_{CP} \sim -\pi/2$ mostly driven by the large number of events observed in the e-like sample in neutrino mode.

C.L.	Normal hierarchy	Inverted hierarchy
68% | \([-2.51, -1.26]\) | -
90% | \([-2.80, -0.84]\) | -
2σ | \([-2.97, -0.63]\) | \([-1.78, -0.98]\)
δ_{CP} measurement

T2K data prefer values of $\delta_{CP} \sim -\pi/2$ mostly driven by the large number of events observed in the e-like sample in neutrino mode.

C.L.	Normal hierarchy	Inverted hierarchy
68% | $[-2.51, -1.26]$ | -
90% | $[-2.80, -0.84]$ | -
2σ | $[-2.97, -0.63]$ | $[-1.78, -0.98]$
Oscillation results (θ_{23}, $|\Delta m^2_{32}|$, θ_{13}, δ_{CP})

- **T2K data compatible with maximal mixing**

- **T2K Run1-9 Preliminary**

- **w/o reactor constraint**

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Best Fit NH (HI)</th>
<th>$\pm 1\sigma$ NH (IH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^2\theta_{32}$</td>
<td>0.54 (0.53)</td>
<td>[0.490,0.558] [0.496,0.560]</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m^2_{32}</td>
<td>$ (10^{-3}eV2/c4)</td>
</tr>
<tr>
<td>$\sin^2\theta_{13}$</td>
<td>0.0268 (0.0305)</td>
<td>[0.0222,0.0319] [0.0253,0.0369]</td>
</tr>
</tbody>
</table>
Conclusions

• T2K released results with 3.1×10^{21} POT (50% ν-mode, 50% $\bar{\nu}$-mode)

• With these data CP conserving values are excluded at more than 2σ

• T2K data prefers maximal mixing

• Future improvements:
 • More data will come with many improvement in the analysis;
 • New antineutrino samples at the near detector;

Stay tuned!!!
Thank you for your attention
Backup
The on-axis near detector (INGRID)

Monitor the beam stability and direction day-by-day looking at ν ($\bar{\nu}$) interactions

14 modules arranged in a cross; two others placed at off-diagonal positions

1 extra module made of scintillators and water at the center of the cross

Ciro Riccio, Naples U. & INFN | WIN2019
As far as possible, use data to constrain systematics; e.g. use cosmic samples to evaluate inter-detector matching.

Dominant systematics are pion secondary interactions and out of fiducial volume events.
Event generators: details

<table>
<thead>
<tr>
<th></th>
<th>NEUT 5.3.2</th>
<th>GENIE 2.8.0</th>
</tr>
</thead>
</table>
| **CCQE** | SF (Benhar et al., 2000)
BBA05 (Bradford et al., 2005)
\(M_{AQE} = 1.21 \text{ GeV/c}^2 \)
\(p_F [^{12}\text{C}] = 217 \text{ MeV/c} \)
\(E_B [^{12}\text{C}] = 25 \text{ MeV} \) | RFG (Bodek et al., 1981)
BBA05 (Bradford et al., 2005)
\(M_{AQE} = 0.99 \text{ GeV/c}^2 \)
\(p_F [^{12}\text{C}] = 221 \text{ MeV/c} \)
\(E_B [^{12}\text{C}] = 25 \text{ MeV} \) |
| **2p2h** | Nieves et al., 2011 | - |
| **CCRES** | \(W < 2 \text{ GeV} \)
Rein-Sehgal, 1981
FF (Graczyk et al., 2008) | \(W < 1.7 \text{ GeV} \)
Rein-Sehgal, 1981
FF (Kuzmin et al., 2016) |
| **CCDIS** | \(W > 1.3 \text{ GeV} \) (w/o single \(\pi \))
GRV98 PDF (Glück et al. 1998)
BY corr. at low \(Q^2 \) (Bodek et al. 2003) | \(W > 1.7 \text{ GeV} \) (for \(W < 1.7 \text{ GeV} \) is tuned)
GRV98 PDF (Glück et al. 1998)
BY corr. at low \(Q^2 \) (Bodek et al. 2005) |
| **Hadronization** | \(W < 2 \text{ GeV} \)
KNO scaling (Koba et al. 1972)
\(W > 2 \text{ GeV} \)
PYTHIA/JETSET | \(W < 2.3 \text{ GeV} \)
AGKY (Koba et al. 1972)
2.3 GeV < \(W < 3 \text{ GeV} \)
AGKY (Koba et al. 1972) + PYTHIA/JETSET
\(W > 3 \text{ GeV} \)
PYTHIA/JETSET |
| **FSI** | Intra-nuclear cascade | Intra-nuclear cascade (INTRANUKE hA) |
Expectation at SK

ND280 constraints are crucial for oscillation analysis precision

<table>
<thead>
<tr>
<th></th>
<th>μ-like</th>
<th>ν mode</th>
<th>μ-like</th>
<th>ν mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like</td>
<td>14.6%</td>
<td>16.9%</td>
<td>22.0%</td>
<td></td>
</tr>
<tr>
<td>e-like+1π⁺</td>
<td></td>
<td></td>
<td></td>
<td>4.5%</td>
</tr>
<tr>
<td>Total w/o ND280</td>
<td>5.1%</td>
<td>8.8%</td>
<td>18.7%</td>
<td>7.1%</td>
</tr>
<tr>
<td>Total w/ ND280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SK Samples

1 μ-like ring

1 e-like ring

1 e-like + 1 Michel-e-like ring

ν sample

$\overline{\nu}$ sample

Ciro Riccio, Naples U. & INFN | WIN2019
SK reconstruction

- New reconstruction algorithm is used for SK
- It combines time and charge likelihood for a given ring hypothesis
- New definition of fiducial volume combining distance of the vertex from the wall and direction to the wall (previously only distance from the wall was used)
 - ~30% more statistics for ν-mode e-like samples
 - ~20% more statistic for ¯ν-mode e-like
 - Better purity for μ-like samples by reducing NC background

<table>
<thead>
<tr>
<th>Samples</th>
<th>New SK selection</th>
<th>Old SK selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Purity</td>
<td>Purity</td>
</tr>
<tr>
<td>μ-like ν mode</td>
<td>80%</td>
<td>68%</td>
</tr>
<tr>
<td>e-like ν mode</td>
<td>81%</td>
<td>81%</td>
</tr>
<tr>
<td>e-like+1π⁺ ν mode</td>
<td>79%</td>
<td>72%</td>
</tr>
<tr>
<td>μ-like ¯ν mode</td>
<td>80%</td>
<td>71%</td>
</tr>
<tr>
<td>e-like ¯ν mode</td>
<td>62%</td>
<td>64%</td>
</tr>
</tbody>
</table>
Future prospects: T2K-II

T2K was originally approved to collect 7.8×10^{21} POT driven by sensitivity to θ_{13}

Proposal for an extended to collect 20×10^{21} POT

Increase beam power up to 1.3 MW and horn current up to ± 320 kA

SK plan to start to dope water with Gadolinium from next year:

- Enhance neutron detection capability
- Improves low energy antineutrino detection
- Provides wrong sign bkg constraint in T2K antineutrino data

MR Power Supply upgrade
Main ND280 limitations:

- Low efficiency in the “high-angle” region
- Reduced sensitivity to cross section models
- Low threshold for protons
Main ND280 limitations:

- Low efficiency in the “high-angle” region
- Reduced sensitivity to cross section models
- Low threshold for protons
T2K-II physics case

~3σ sensitivity to CP-violation for favorable (and currently favored) parameters

Important to reduce systematics with respect to what we have today

Ciro Riccio, Naples U. & INFN | WIN2019
FIG. 18: Distribution of CCQE and 2p2h contributions as a function of muon momentum in the angular range $\cos \theta = [0.7, 0.8]$ at ND280 (left) and Super-K (right) as predicted in the models of Martini et al. [68] (continuous line) and Nieves et al. [69, 70] (histogram).
T2K oscillation \((\theta_{23}, |\Delta m^2_{23}|)\)

- Atmospheric parameters \((\theta_{23}, \Delta m^2_{32})\) through \(\nu_\mu\) disappearance

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m^2_{32} L}{4E}\right)
\]

\(\sin^2 2\theta_{23}\) proportional to the depth of the dip (oscillation minimum)

\(\Delta m^2_{23}\) proportional to the position of the dip
T2K oscillation \((\theta_{13}, \delta_{CP})\)

- \((\theta_{13}, \delta_{CP})\) depends on the \(\nu_e/\bar{\nu}_e\) appearance

\[
P(\bar{\nu}_\mu \to \bar{\nu}_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m^2_{32} L}{4E} \right) \mp O(\delta_{CP})
\]

In the case of T2K \(\delta_{CP}\) change the appearance probability by \(\pm 30\%\) while the mass ordering has a \(\sim 10\%\) effects

\(\sin^2 2\theta_{13}\) proportional to the oscillation maximum

\(\theta_{13}\) compatible with the one measured by experiments at reactors.