T2K latest results on neutrinonucleus cross sections

Marcela Batkiewicz-Kwaśniak The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, Cracow

for the T2K Collaboration

27th International Workshop on Weak Interactions and Neutrinos WIN 2019

3-8 June 2019, Bari

Content

- T2K experiment overview
- Motivation
- Recent measurements:
 - On axis: Inclusive ν_{μ} CC on water, CH and iron
 - 1.5° off-axis: $\overline{\nu}_{\mu}$ CC0 π 0p on water and CH
 - 2.5° off-axis: v_{μ} CC0 π on oxygen and O/C
- Other cross-section measurements
- Summary

T2K experiment

Far detector in Kamioka

3-8 June 2019, WIN 2019

Beam-line and near detectors

T2K data-taking summary

Motivation

6

- Good neutrino interaction model is essential to decrease systematic errors in oscillation analysis, because of differences between near and far detectors:
 - angular acceptance
 - target material
 - neutrino energy spectra
 - \Rightarrow Need of measurements of diverse type of interaction on different target materials at various range of neutrino energies and flavours

T2K systematics

 $FHC = \nu \text{-mode}$ RHC = $\overline{\nu}$ -mode 1 d.e. = CC1 π sample

from M.Friend, KEK Physics Seminar, Jan 10, 2019

		1-Ri	$ng \mu$	1-Ring e			
	Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
	SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
	SK FSI+SI+PN	2.21	1.98	3.00	2.31	11.43	1.57
\rightarrow	Flux + Xsec constrained	3.27	2.94	3.24	3.10	4.09	2.67
	E _b	2.38	1.72	7.13	3.66	2.95	3.62
	$\sigma(u_e)/\sigma(ar u_e)$	0.00	0.00	2.63	1.46	2.61	3.03
	$NC1\gamma$	0.00	0.00	1.09	2.60	0.33	1.50
	NC Other	0.25	0.25	0.15	0.33	0.99	0.18
	Osc	0.03	0.03	2.69	2.49	2.63	0.77
	All Systematics	5.12	4.45	8.81	7.13	18.38	5.96
	All with osc	5.12	4.45	9.19	7.57	18.51	6.03

% Errors on Predicted Event Rates

• Flux and cross-section errors constrained by ND280 from ~15% to ~5%

Inclusive v_{μ} CC on water, CH and iron cross sections and their ratios at on-axis T2K beam

https://arxiv.org/abs/1904.09611

On-axis neutrino beam

- ν beam mode data used:
- 5.89x10²⁰ POT for Proton Module collected from Nov 2010 till May 2013
- 7.25x10²⁰ POT for Water Module collected from Oct 2016 till Apr 2017

Detectors

Non-magnetised detectors (momentum measurement possible only for stopping particles):

- INGRID (2.1 tons) iron (96%), CH
- Proton module (0.16 tons) CH (98%)
- Water Module/Wagasci (0.10 tons) water(80%), CH (20%)

Event reconstruction

Results

MC nominal model is NEUT v5.3.3 – for model details see backup slides

- The most precise measurement of neutrino cross section on water for this energy region (on-axis neutrino beam, with 1.5 GeV mean energy)
- The first measurement of neutrino cross-section ratios of water/CH and water/iron
- The results agree with the model used in the T2K oscillation analysis

Results

NEUT v5.3.3 prediction – for model details see backup slides

Cross section	NEUT expectation with RPA	NEUT expectation without RPA
$\sigma_{ m H_2O}$	$0.819 imes 10^{-38} m \ cm^2$	$0.860 \times 10^{-38} \ { m cm}^2$
$\sigma_{ m CH}$	$0.832 \times 10^{-38} \ { m cm}^2$	$0.875 \times 10^{-38} \ {\rm cm}^2$
$\sigma_{ m Fe}$	not available	$0.904 \times 10^{-38} \ {\rm cm}^2$
$\sigma_{ m H_{2}O}/\sigma_{ m CH}$	0.984	0.983
$\sigma_{ m Fe}/\sigma_{ m H_2O}$	not available	1.051
$\sigma_{ m Fe}/\sigma_{ m CH}$	not available	1.033

T2K measurements

$$\begin{split} \sigma_{\rm CC}^{\rm H_2O} &= (0.840 \pm 0.010({\rm stat.})_{-0.08}^{+0.10}({\rm syst.})) \times 10^{-38} \ {\rm cm}^2/{\rm nucleon}, \quad \frac{\sigma_{\rm CC}^{\rm H_2O}}{\sigma_{\rm CC}^{\rm CH}} = 1.028 \pm 0.016({\rm stat.}) \pm 0.053({\rm syst.}), \\ \sigma_{\rm CC}^{\rm CH} &= (0.817 \pm 0.007({\rm stat.})_{-0.08}^{+0.11}({\rm syst.})) \times 10^{-38} \ {\rm cm}^2/{\rm nucleon}, \quad \frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm H_2O}} = 1.023 \pm 0.012({\rm stat.}) \pm 0.058({\rm syst.}), \\ \sigma_{\rm CC}^{\rm Fe} &= (0.859 \pm 0.003({\rm stat.})_{-0.10}^{+0.12}({\rm syst.})) \times 10^{-38} \ {\rm cm}^2/{\rm nucleon}, \quad \frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm CH}} = 1.049 \pm 0.010({\rm stat.}) \pm 0.043({\rm syst.}). \end{split}$$

$\overline{\nu}_{\mu}$ CC0 π 0p with limited acceptance on water and CH cross sections and their ratio at 1.5° off-axis T2K beam

collected from Dec 2017 till May 2018

Detectors

Interaction vertices in:

- Proton module CH (98%)
- Water Module/Wagasci water(80%), CH (20%)
- INGRID used only for muon tracking
- Detector not magnetised ⇒ no distinction between neutrinos and anti-neutrinos
- Significant v_{μ} background in \overline{v}_{μ} beam mode (less pure beam, higher cross section for neutrinos)

- Phase space restriction and thresholds
 - muon: $p_{\mu} > 400 \text{ MeV/c}, \theta_{\mu} < 30^{\circ}$
 - no proton: $p_p > 600$ MeV/c, $\theta_p < 70^\circ$
 - no pion: p_{π} > 200 MeV/c, θ_{π} < 70°

Cross sections on water

Cross sections on CH

3-8 June 2019, WIN 2019

A basilute x^2 for \overline{x} measurement

Results

- All integrated cross sections are consistent within 1σ level with NEUT v5.3.3 prediction:

$$\begin{split} \sigma_{\rm H_2O}^{\overline{\nu}_{\mu}} &= \left[1.082 \pm 0.068({\rm stat.})^{+0.145}_{-0.128}({\rm syst.})\right] \times 10^{-39} {\rm cm}^2 \cdot {\rm nucleon}^{-1} \\ \sigma_{\rm CH}^{\overline{\nu}_{\mu}} &= \left[1.096 \pm 0.054({\rm stat.})^{+0.132}_{-0.117}({\rm syst.})\right] \times 10^{-39} {\rm cm}^2 \cdot {\rm nucleon}^{-1} \\ \sigma_{\rm H_2O}^{\overline{\nu}_{\mu}} / \sigma_{\rm CH}^{\overline{\nu}_{\mu}} &= 0.987 \pm 0.078({\rm stat.})^{+0.093}_{-0.090}({\rm syst.}) \\ \sigma_{\rm H_2O}^{\overline{\nu}_{\mu}+\nu_{\mu}} &= \left[1.155 \pm 0.064({\rm stat.})^{+0.148}_{-0.129}({\rm syst.})\right] \times 10^{-39} {\rm cm}^2 \cdot {\rm nucleon}^{-1} \\ \sigma_{\rm CH}^{\overline{\nu}_{\mu}+\nu_{\mu}} &= \left[1.159 \pm 0.049({\rm stat.})^{+0.129}_{-0.115}({\rm syst.})\right] \times 10^{-39} {\rm cm}^2 \cdot {\rm nucleon}^{-1} \\ \sigma_{\rm H_2O}^{\overline{\nu}_{\mu}+\nu_{\mu}} &= \left[1.159 \pm 0.049({\rm stat.})^{+0.083}_{-0.078}({\rm syst.})\right] \times 10^{-39} {\rm cm}^2 \cdot {\rm nucleon}^{-1} \\ \end{split}$$

Absolute χ for v measurement			Absolute χ for $v + v$ measurement				
	σ_{H_2O}	σ_{CH}	$\sigma_{H_2O}/\sigma_{CH}$		σ_{H_2O}	σ_{CH}	$\sigma_{H_2O}/\sigma_{CH}$
NEUT	0.74	0.16	0.81	NEUT	5.93	0.33	5.76
GENIE	0.72	0.54	0.89	GENIE	5.98	0.57	6.35

Absolute x^2 for $x \perp \overline{x}$ massurement

2.5° off-axis beam FGD1 and FGD2 sub-detectors

3-8 June 2019, WIN 2019

Double differential Cross section on oxygen

Double differential Cross section on carbon

For the first time FGD1 and FGD2 samples treated together to extract cross section on oxygen.

Agreement within uncertainties for cross section on carbon Some discrepancies in high-angle region for oxygen.

Comparisons with other models coming soon!

26

Goodness of fit for 58 bins (29 for carbon and 29 for oxygen):

- NEUT v5.3.2 (CCQE Spectral Function, 2p2h Nieves, MAQE=1.21) generator slightly better than GENIE v2.8
- However, both reproduce the data

Num. toys	NEUT	GENIE	NEUT	GENIE
	unreg.	unreg.	reg.	reg.
1000	113.2	148.2	105.7	145.9
1000 w. pFSI syst.	101.9	136.8	93.6	134.4
1000 w. pFSI and bkw migr. $(100\% \text{ err.})$	79.8	106.8	74.3	106.5
1000 w. pFSI and bkw migr. $(30\% \text{ err.})$	81.4	108.0	76.3	108.2

TZR Other T2K cross-section measurements

Previous measurements presented here:

- NOW 2018 http://www.ba.infn.it/~now/now2018/program.html
 - M.Buizza, T2K v-nucleus cross-section results
- NuInt 2018 https://indico.cern.ch/event/703880/
 - C.Riccio, v_{μ} and \overline{v}_{μ} CC0 π cross-section measurements at T2K
 - D.Cherdack, ν_{μ} CC1 $\pi+$ in the P0D sub-detector of ND280
 - B.Quilain, ν_{μ} CC1 π cross section on carbon and water using T2K on-axis detectors
 - D.Fukuda, v-oxygen NC scattering measurement in the T2K far detector

Some upcoming measurements:

- CC inclusive: $\overline{\nu}_{\!\mu}\!,$ on Ar
- CC0 π on C,C,Pb off-axis, C on/off axis
- Vertex activity for CC0 π 1p
- + ν_{μ} CC1\pi+, CC1\pi0 and NC1\pi0 on H2O and C
- NC1y
 - + many others

Summary

- Good understanding of neutrino interaction mechanisms and reliable interaction model are essential in oscillation analysis
- T2K studies done for various channels of neutrino interactions on different material targets, neutrino energies and types
- Combine measurement of cross sections at different angles w.r.t. neutrino beam (different energy spectra on one beam)
- Ongoing works to make measurements less model-dependent, increase angular acceptance and lower particle reconstruction threshold
- Future T2K upgrade will allow us to produce even better results

Backup slides

on axis measurement مجتبی On axis measurement of inclusive v_µ CC cross sections on water, CH and iron

NEUT v5.3.3 - MC model details

Mode	Nominal model	Parameter		
CCQE-like	Dipole type axial form factor	$M_A^{QE} = 1.15 \text{ GeV}/c^2.$		
	RFG model by Smith-Moniz [25]	$E_b = 25, 27, 33 \text{ MeV} \text{ and}$		
	with binding energy (E_b) and Fermi surface momentum (p_F)	$p_F = 217, 225, 250 \text{ MeV/c for}$		
		$^{12}\mathrm{C}$, $^{16}\mathrm{O},$ and $^{56}\mathrm{Fe},$ respectively.		
	RPA model by Nieves <i>et al.</i> [26]	RPA is applied for 12 O and 16 C.		
		RPA is not applied for 56 Fe.		
	2p2h model by Nieves <i>et al.</i> [27]	Normalization		
1π	Model by Rein-Sehgal [30]	$C_5^A(0) = 1.01,$		
		$M_A^{RES} = 0.95 \text{ GeV}/c^2,$		
		$\text{Isospin}\frac{1}{2}\text{bg} = 1.30.$		
DIS	PYTHIA [31], Parton distribution function by	Energy dependent normalization		
	GRV98 with Bodek and Yang correction $[32]$ $[33]$ $[34]$			
Coherent	Model by Berger-Sehgal [35]	Normalization		

1.5° off-axis measurement of v_{μ} CC0 π 0p on water and CH

NEUT v5.3.3 - MC model details

