

Justyna Łagoda

WIN 2019, Bari

Outline

- Water Cherenkov detectors in Japan
- Hyper-Kamiokande technical design
- physics program
 - beam neutrinos
 - atmospheric neutrinos
 - solar neutrinos
 - supernova neutrinos
 - nucleon decay searches
- summary

Water Cherenkov detectors in Japan

4.5 (0.68) kton

- Kamiokande
 - (1983-1996) PMT coverage 20%
 - neutrinos from SN1987a, deficit of atmospheric neutrinos
- Super-Kamiokande 50 (22.5) kton (1996-) PMT coverage 40%
 - oscillations of solar and atmospheric neutrinos
 - world leading limit on proton lifetime
 - v_e appearance
- mature, known, scalable technology
- Hyper-Kamiokande 258 (187) kton
 - (~2027-) PMT coverage 40%
 - proto-collaboration formed January 2015
 - ~300 people, ~80 institutes

The photodetectors

- new Hamamatsu 50 cm B&L PMT with improved dynode and higher pressure tolerance
 - 2x better photon efficiency
 - improved charge and timing resolution (1 ns)
 - 40 000 in the inner detector
 - 40% photocoverage
 - \rightarrow almost 2x better overall photon efficiency than Super-K
- other considered solutions
 - multiPMT arrays of 19 smaller (8 cm) PMTs
 - possible light collection devices (reflectors, photon traps etc.)
- outer detector: 10-20k PMT of 8 cm diameter
- covers to protect PMT from sudden pressure changes

Physics program

- neutrino oscillations
 - with beam and atmospheric neutrinos
 - CP violation
 - precise measurement of θ_{23}
 - mass hierarchy determination
- neutrino astrophysics
 - precise measurement of solar neutrinos, sensitivity to address solar and reactor neutrinos discrepancy.
 - supernova burst and relic supernova neutrinos
- searching for nucleon decay
 - sensitivity 10x better than Super-K (10³⁵ years)
 - all visible modes can be advanced
- and other

Location and beam neutrinos

- candidate site 8 km south of Super-K
 - the same baseline (295 km) and off-axis angle as Super-K
- the J-PARC beamline
 - 2.5 degree off-axis
 - narrow band beam at ~600MeV
- upgrade of beam power
 - 0.75 MW upgrade starting in 2021 (currently ~485 kW)
 - increasing repetition rate to
 0.86 Hz → 1.326 MW by 2026
 - 3.2e14 protons per pulse
- upgrade power supplies for horns
 - design current of 320 kA (wrt 250 kA)
 - 10% higher neutrino flux.
 - reduction of wrong-sign neutrino contamination by 5-10%.

Near and Intermediate Detectors

- upgrade of ND280 near detector to reduce systematic uncertainties
 - expanded angular acceptance
 - lower energy threshold
 - systematic uncertainties
 ~18% (2011) → ~9% (2014) →
 ~6% (2016) → 4% (2020...)?

CERN-SPSC-2018-001, talk by Y.Kudenko tomorrow

- N61 intermediate water Cherenkov detector
 - distance 1-2 km
 - Gd loading
 - off-axis angle spanning coverage (1-4°)
 - energy dependence of neutrino interactions
 - further reduction of systematic uncertainties
 arXiv:1412

7

Expected systematics

 based on T2K experience with some assumptions on better knowledge of the neutrino beam, interactions and detector

		Flux & ND-constrained	ND-independent	Far detector	Total
		cross section	cross section		
ν mode	Appearance	3.0%	0.5%	0.7%	3.2%
	Disappearance	3.3%	0.9%	1.0%	3.6%
$\overline{\nu}$ mode	Appearance	3.2%	1.5%	1.5%	3.9%
	Disappearance	3.3%	0.9%	1.1%	3.6%

Expected numbers of events

- 10 years exposure
 - 2.7·10²² POT
 - $v:\overline{v}$ data taking 1:3
- v_e appearance
 - shape information can be used to distinguish different values of δ_{CP}
- v_{μ} disappearance

			2
	$v_{\mu} + v_{\mu}$ CCQE	v _µ CC nonQE	others
v beam	6391	3175	515
\overline{v} beam	8798	4315	614

δ _{CP} = 0	$\begin{array}{c} \text{right-sign} \\ v_{\mu} \rightarrow v_{e} \ \text{CC} \end{array}$	wrong sign $v_{\mu} \rightarrow v_{e} CC$	$v_{\mu}^{}, \overline{v}_{\mu}^{}$	intrinsic beam v _e	NC
v beam	1643	15	7	259	134
v beam	1183	206	4	317	196

Reconstructed Energy E^{rec}

Neutrino mode: appearance

Precise measurements of θ_{23}

CPV sensitivity

- exclusion of $\sin \delta_{CP} = 0$ with
 - ~8 σ if true δ_{CP} = ±90°
 - > 5 σ for 57% of δ_{CP} values
 - > 3 σ for 76% of δ_{CP} values
- $\delta_{_{CP}}$ resolution
 - 23° precision at $\delta_{CP} = \pm 90^{\circ}$
 - 7.2° precision at $\delta_{CP} = 0^{\circ}$ or 180°
- combination with atmospheric data enhances the sensitivity

Atmospheric neutrinos

flux of electron neutrinos – affected by matter effects

- presence of a resonance in multi-GeV region → mass hierarchy
- magnitude of the resonance $\rightarrow \theta_{23}$ octant
- scale and direction of the effect at 1 GeV $\rightarrow \delta_{_{\rm CP}}$

Atmospheric+beam neutrinos

- improved performance for octant determination
- 3σ ability to reject the incorrect mass hierarchy after 5 years

wrong hierarchy rejection

wrong octant rejection 3σ for $|\theta_{23} - 45^{\circ}| \ge 2.3^{\circ}$

Solar neutrinos

- tension ~2 σ between Kamland and global solar analysis in Δm_{21}^2
 - from the recent Super-K result of the solar neutrino day-night asymmetry and energy spectrum shape
 - day-night asymmetry caused by electron component regeneration in Earth (3σ indication in Super-K)
 - few percent higher event rate at night
- Hyper-K goal: precise measurement of Δm²₂₁ and day-night asymmetry
 - expected >5 σ sensitivity
- new physics needed if the tension is a real effect

Dav-----+-Night

Solar neutrino spectrum upturn

- transition region between the vacuum oscillations and matterdominated energy regions
- precise measurement of the spectrum shape allow to distinguish the usual neutrino oscillation scenario from exotic models
- 5σ discovery sensitivity to spectrum upturn in 10 years thanks to lower energy threshold (3.5 MeV)
 - 3σ for 4.5 MeV
- other possible measurements
 - first measurement of *hep* component (2-3σ) providing more information on the Sun core
 - time variation measurement (with rate of 200v/day) → monitoring of the Sun core temperature

Supernova burst neutrinos

- v_e from neutronization peak elastic scattering on electrons (directional information, accuracy 1-1.3° expected for supernova at 10kpc)
- \overline{v}_{e} from cooling phase inverse beta decay

expectations: ^[™]
50-80k events (10kpc)
2-3k (SN1987a)

information on

- neutrino oscillations and properties (mass, mass hierarchy)
- core-collapse supernova models
 Early warning for telescopes

Supernova relic neutrinos

- expected flux few tens/cm²/sec
- search limited by background:
 - spallation for low energies
 - atmospheric neutrinos for high energies
- first measurement may be done by SK-Gd
- Hyper-K may measure the spectrum
- different search window (~16-30 MeV),
 - complementary to SK-Gd searches (10-20 MeV)
 - contribution of extraordinary supernova bursts (like black hole formation, BH): provides information on the star formation history and metallicity

Search for $p \rightarrow e^+\pi^0$ decay

/β [years]

• decay mode $p \rightarrow e^{+}\pi^{0}$ is favoured by many GUTs

 e^+ and photons are detected as e-like rings \rightarrow final state is fully reconstructed (practically background free)

- analysis similar as in SK
 but with neutron tagging (veto)
 thanks to improved PMTs
 - neutron capture in water n(p,d)γ (2.2 MeV)
 - efficient tagging of prompt γ from residual nuclei deexcitation
 - ~50% reduction of atmospheric background

 3σ discovery potential reaching t ~ 10^{35} yrs

Search for $p \rightarrow \overline{v}K^+$ decay

Years

Conclusions

- Hyper-Kamiokande is multi-purpose project with long term, wide physics program
 - high sensitivity to CP violation and other oscillation measurements
 - neutrino astrophysics
 - sensitivity to nucleon decay over 5 times higher than current limits
- construction to start in April 2020 (data taking in ~2027)
- plan to build a second tank in the future (in Korea?)
- an updated TDR in preparation

What so special about
$$v_{\mu} \rightarrow v_{e}$$
 channel?

• allows for CP violation studies

$$P(v_{\mu} \rightarrow v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \quad \text{dominant term} \\
+8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP} - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\
-8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\frac{\sin\delta_{CP}}{\sin\delta_{22}}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \quad \text{CP violation} \\
+4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP})\sin^{2}\Delta_{21} \\
-8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} + 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2})\sin^{2}\Delta_{32} \\
\text{for } \bar{v} \\
\delta_{CP} \rightarrow -\delta_{CP} \\
a \rightarrow -a \quad a = 2\sqrt{2}G_{F}n_{e}E_{\nu} \\
n_{e} \text{ related to matter density} \\
\text{subleading effect, can be as large as 30\% of dominant} \\
\frac{606}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{295km}{(\sin^{2}2\theta_{13}=0.1, \theta_{23}=\pi/4, \delta=\pi/4)} \\
\frac{606}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{295km}{\sqrt{2}} \\
\frac{295km$$

How to look for CP violation?

- method 1: use θ_{13} from reactor experiments for predictions and compare to neutrino data

• method 2: compare measured $P(v_{\mu} \rightarrow v_{e})$ with $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

method 3 (for wide band beams): compare 1st and 2nd maximum

Neutrino interactions in WC

- low energies: scattering on electrons, inverse β decay
 CC interactions observed only for v
- high energies: scattering on nuclei
- ΔE/E ~10% for 2-body kinematics
- very good µ/e separation
 muons misidentified as electrons: <1%
- π⁰ detection (2 e-like rings)
- delayed signal detection (Michel electrons,

deexcitation)

(MC

simulation

 $NC1\pi^0$

T2HKK

- under investigation: put 2nd tank in Korea
 - 1000-1200km baseline
 - 1.3-3.0° off-axis beam
 - enhances sensitivity to mass hierarchy and CP violation

Situation with one tank in Korea

- 2nd oscillation maximum covered
 - CP asymmetry for $v_e/\overline{v_e}$ appearance is 3x larger than at 1st maximum
 - larger CP effect \rightarrow less sensitive to systematic errors
- larger matter effect for longer baseline
 - better sensitivity for mass hierarchy
- smaller number of events because of flux reduction

Sensitivities

Nucleon decays in GUTs

Hints on CP violation from T2K

expected	numbers
of events	

v: 1.49 x 10²¹ POT v: 1.63 x 10²¹ POT

δ _{CP}	-0.5π	0	0.5π	π	observed
v _e CCQE	74.4	62.2	50.6	62.7	75
ν _e CC1π	7.0	6.1	4.9	5.9	15
v _e CCQE	17.1	19.4	21.7	19.3	15

- $\delta_{CP} = [-2.966, -0.628] (NH)$ [-1.799, -0.979] (IH) @ 90% CL
 - CP conserving values

 (δ_{CP}= 0 or π)
 disfavored at 2σ level

