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Outline

● Water Cherenkov detectors in Japan
● Hyper-Kamiokande technical design
● physics program

– beam neutrinos
– atmospheric neutrinos
– solar neutrinos
– supernova neutrinos
– nucleon decay searches

● summary
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Water Cherenkov detectors in Japan
● Kamiokande 4.5 (0.68) kton

(1983-1996) PMT coverage 20%
– neutrinos from SN1987a, deficit of atmospheric

neutrinos
● Super-Kamiokande 50 (22.5) kton

(1996- ) PMT coverage 40%
– oscillations of solar and

atmospheric neutrinos
– world leading limit on proton lifetime
– ν

e
 appearance

● mature, known, scalable technology
● Hyper-Kamiokande 258 (187) kton

(~2027- ) PMT coverage 40%
– proto-collaboration formed January 2015
– ~300 people, ~80 institutes

60m

74m
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The photodetectors
● new Hamamatsu 50 cm B&L PMT with improved

dynode and higher pressure tolerance
– 2x better photon efficiency
– improved charge and timing

resolution (1 ns)
– 40 000 in the inner detector
– 40% photocoverage

→ almost 2x better overall photon
efficiency than Super-K

● other considered solutions
– multiPMT – arrays of 19 smaller

(8 cm) PMTs
– possible light collection devices

(reflectors, photon traps etc.)
● outer detector: 10-20k PMT of 8 cm diameter
● covers to protect PMT from sudden pressure changes

poster  →
by A.C.Ruggeri
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Physics program
● neutrino oscillations

– with beam and atmospheric neutrinos
– CP violation
– precise measurement of θ

23

– mass hierarchy determination
● neutrino astrophysics

– precise measurement of solar neutrinos, 
sensitivity to address solar and reactor
neutrinos discrepancy. 

– supernova burst and relic supernova neutrinos
● searching for nucleon decay

– sensitivity 10x better than Super-K
(1035 years)

– all visible modes can be advanced
● and other

J-PARC
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Location and beam neutrinos
● candidate site 8 km south of Super-K

– the same baseline (295 km) and
off-axis angle as Super-K

● the J-PARC beamline
– 2.5 degree off-axis
– narrow band beam at ~600MeV

● upgrade of beam power
– 0.75 MW upgrade starting in 2021

(currently ~485 kW)
– increasing repetition rate to

0.86 Hz → 1.326 MW by 2026
– 3.2e14 protons per pulse

● upgrade power supplies for horns
– design current of 320 kA (wrt 250 kA)

– 10% higher neutrino flux.
– reduction of wrong-sign neutrino contamination by 5-10%.
–

“J-PARC upgrade for HK is the highest priority", KEK Project 
Implementation Plan, N. Saito, at the Third International Meeting for 
Large Neutrino Infrastructures (KEK, 30 May-1 June 2016). 
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Near and Intermediate Detectors
● upgrade of ND280 near 

detector to reduce systematic 
uncertainties 
– expanded angular acceptance
– lower energy threshold
– systematic uncertainties

~18% (2011) → ~9% (2014) → 
~6% (2016) → 4% (2020...)?

● N61 intermediate water 
Cherenkov detector 
– distance 1-2 km
– Gd loading
– off-axis angle spanning 

coverage (1-4º)
– energy dependence of

neutrino interactions
– further reduction of systematic 

uncertainties

50
m

10m arXiv:1412
.3086

existing tracker

new tracker
TPC

TPC

SuperFGD

surrounded by TOF

CERN-SPSC-
2018-001,
talk by Y.Kudenko 
tomorrow
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Expected systematics
● based on T2K experience

with some assumptions
on better knowledge of
the neutrino beam,
interactions and
detector
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Expected numbers of events
● 10 years exposure

– 2.7·1022 POT
– ν:ν data taking 1:3

● ν
e
 appearance

– shape
information
can be used
to distinguish
different 
values of δ

CP

● ν
μ
 disappearance

– -90°
– +90°
– 180°

δ
CP

 = 0 right-sign 
ν

μ
 → ν

e
 CC

wrong sign
ν

μ
 → ν

e
 CC

ν
μ
, ν

μ
 

CC
intrinsic 
beam ν

e
 

NC

ν beam 1643 15 7 259 134

ν beam 1183 206 4 317 196

ν
μ
 + ν

μ
 

CCQE

ν
μ
 CC

nonQE

others

ν beam 6391 3175 515
ν beam 8798 4315 614
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Precise measurements of θ23

● joint fit of ν
μ
 and ν

e
 samples allows to

precisely measure sin2θ
23

 and Δm2
32

● expected precision
– ~0.017 at sin2θ

23
 = 0.5

– ~0.006 at sin2θ
23

 = 0.45

● for non-maximal θ
23

 the reactor constraint breaks octant degeneracy

True sin2θ
23

 =0.5
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CPV sensitivity
● exclusion of sinδ

CP 
= 0 with

– ~8σ if true δ
CP 

= ±90°

– > 5σ for 57% of δ
CP

 values

– > 3σ for 76% of δ
CP

 values

● δ
CP

 resolution

– 23° precision at δ
CP 

= ±90º

– 7.2° precision at δ
CP 

= 0º or 180º

● combination with atmospheric data
enhances the sensitivity
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Atmospheric neutrinos
● flux of electron neutrinos – affected by matter effects

● presence of a resonance in multi-GeV region → mass hierarchy
● magnitude of the resonance → θ

23
 octant

● scale and direction of the effect at 1 GeV → δ
CP

ν
e
 flux

relative to no
oscillations
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Atmospheric+beam neutrinos
● improved performance for octant determination
● 3σ ability to reject the incorrect mass hierarchy after 5 years

wrong hierarchy
rejection

wrong octant rejection
3σ for |θ

23
 – 45°| ≥ 2.3°
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Solar neutrinos
● tension ~2σ between Kamland and global solar analysis in Δm2

21

– from the recent Super-K result of the solar neutrino
day-night asymmetry and energy spectrum shape

– day-night asymmetry caused by electron component
regeneration in Earth (3σ indication in Super-K)

– few percent higher event rate at night
● Hyper-K goal:

precise measurement of
Δm2

21
 and

day-night asymmetry
– expected >5σ sensitivity

● new physics needed if
the tension is a real
effect
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Solar neutrino spectrum upturn
● transition region between the vacuum oscillations and matter-

dominated energy regions
● precise measurement of the

spectrum shape allow to
distinguish the usual neutrino
oscillation scenario from
exotic models

● 5σ discovery sensitivity to
spectrum upturn in 10 years
thanks to lower energy
threshold (3.5 MeV)
– 3σ for 4.5 MeV 

● other possible measurements
– first measurement of hep component (2-3σ) providing more information

on the Sun core
– time variation measurement (with rate of 200ν/day) → monitoring of the

Sun core temperature
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Supernova burst neutrinos
● ν

e
 from neutronization peak – elastic scattering

on electrons (directional information, accuracy
1-1.3° expected for supernova at 10kpc)

● ν
e
 from cooling phase – inverse beta decay

 expectations:
 50-80k events (10kpc)
 2-3k (SN1987a)

●

at 10kpc

information on
● neutrino oscillations

and properties (mass,
mass hierarchy)

● core-collapse
supernova models

Early warning for telescopes
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Supernova relic neutrinos
or diffuse supernova neutrino background

● expected flux few tens/cm2/sec
● search limited by background:

– spallation for low energies
– atmospheric neutrinos for high

energies
● first measurement may be done by SK-Gd
● Hyper-K may measure the spectrum
● different search window

(~16-30 MeV),
– complementary to SK-Gd searches

(10-20 MeV)
– contribution of extraordinary

supernova bursts (like black hole
formation, BH): provides information
on the star formation history and metallicity

expected inverse beta decay events

ν temperature
8 MeV for BH formation

6 MeV
8 MeV for BH
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Search for p→e+π0 decay
● decay mode p →e+π0 is favoured by many GUTs

● analysis similar as in SK
but with neutron tagging (veto)
thanks to improved PMTs
– neutron capture in water

n(p,d)γ (2.2 MeV)
– efficient tagging of prompt γ 

from residual nuclei deexcitation
– ~50% reduction of atmospheric

background

3σ discovery potential reaching t ~ 1035 yrs

e+ and photons are detected as e-like 
rings → final state is fully reconstructed
(practically background free)

Liquid Argon
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● favored by SUSY GUTs
● kaon not visible in Water Cherenkov detector:

reconstructed from decay products
– monochromatic muon (236 MeV)

+prompt deex. photon (6.3 MeV)
– excess in muon spectrum
– or search for K+→π0π+ decay (BR 21%)

p = 205 MeV/c (slightly above
the threshold)

Partial lifetimes limits
(90% C.L., 10 y exposure)

● 7.8·1034 years for p → e+π0

3.24·1034 years for p → νK+

● basically one order of
magnitude improvement
for many other nodes

Search for p→νK+ decay
deexcitation

K+→μ+ν, BR 64%

3σ discovery potential
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Conclusions
● Hyper-Kamiokande is multi-purpose project with long term, wide 

physics program
– high sensitivity to CP violation and other oscillation measurements
– neutrino astrophysics
– sensitivity to nucleon decay over 5 times higher than current limits

● construction to start in April 2020 (data taking in ~2027)
● plan to build a second tank in the future (in Korea?)
● an updated TDR in preparation

?

J.Kameda
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Backup slides
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● allows for CP violation studies

What so special about ν
μ
 → ν

e
 channel? 

for ν
δCP→−δCP
a→−a a=2√2GF ne Eν

P(νμ→νe)=4c13
2 s13

2 s23
2 sin2Δ31

+8c13
2 s12 s13 s23(c12 c23 cosδCP−s12 s13 s23)cosΔ32sinΔ31sinΔ21

−8c13
2 c12 c23 s12 s13 s23 sinδCPsinΔ32sinΔ31sinΔ21

+4 s12
2 c13

2 (c12
2 c23

2 +s12
2 s23

2 s13
2 −2c12 c23 s12s23 s13 cosδCP)sin

2Δ21

−8c13
2 s13

2 s23
2 a L
4 Eν

(1−2 s13
2 )cosΔ32sinΔ31+8c13

2 s13
2 s23

2 a
Δm31

2 (1−2 s13
2 )sin2Δ31

dominant term

matter

CP violation

subleading effect,
can be as large as 30%
of dominant

ne related to matter density
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How to look for CP violation?

● method 1: use θ
13

 from reactor experiments for predictions
and compare to neutrino data

● method 2: compare measured P(ν
μ
→ν

e
) with P(ν

μ
→ν

e
)

● method 3 (for wide band beams): compare 1st and 2nd maximum
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Neutrino interactions in WC
● low energies: scattering on electrons, inverse β decay

– CC interactions observed only for ν
e

● high energies: scattering on nuclei
● ΔE/E ~10% for 2-body kinematics
● very good μ/e separation

– muons misidentified as electrons: <1%
● π0 detection (2 e-like rings)
● delayed signal detection (Michel electrons,

                                         deexcitation)

(MC
simulation)
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T2HKK
● under investigation: put 2nd tank in Korea

– 1000-1200km baseline
– 1.3-3.0º off-axis beam
– enhances sensitivity

to mass hierarchy
and CP violation
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Situation with one tank in Korea
● 2nd oscillation maximum covered

– CP asymmetry for ν
e
/ν

e
 appearance is 3x larger than at 1st maximum

– larger CP effect → less sensitive to systematic errors
● larger matter effect for longer baseline

– better sensitivity for mass hierarchy
● smaller number of events because of flux reduction
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Sensitivities
mass hierarchy
– for 1.5° off-axis

6-8σ    (true NH)
5.5-7σ (true IH)
for all δ

CP

                                                      CP violation
–                                                        – known hierarchy

–                                                        – unknown hierarchy

true NH true IH

– HKx2
– HK+KD at 2.5°
– HK+KD at 2.0°
– HK+KD at 1.5°
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Nucleon decays in GUTs
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Hints on CP violation from T2K
expected numbers
of events

ν: 1.49 x 1021 POT
ν: 1.63 x 1021 POT

δ
CP

 = [-2.966, -0.628] (NH)
         [-1.799, -0.979] (IH) 
         @  90% CL

●  CP conserving values
(δ

CP
= 0 or π)

disfavored at 2σ level

δ
CP

-0.5π 0 0.5π π observed

ν
e
 CCQE 74.4 62.2 50.6 62.7 75

ν
e
 CC1π 7.0 6.1 4.9 5.9 15

ν
e
 CCQE 17.1 19.4 21.7 19.3 15

with
reactor
constraints
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